Paper
28 February 2008 Photoacoustic wave propagation simulations using the FDTD method with Berenger's perfectly matched layers
Author Affiliations +
Abstract
Several photoacoustic (PA) techniques, such as photoacoustic imaging, spectroscopy, and parameter sensing, measure quantities that are closely related to optical absorption, position detection, and laser irradiation parameters. The photoacoustic waves in biomedical applications are usually generated by elastic thermal expansion, which has advantages of nondestructiveness and relatively high conversion efficiency from optical to acoustic energy. Most investigations describe this process using a heuristic approximation, which is invalid when the underlying assumptions are not met. This study developed a numerical solution of the general photoacoustic generation equations involving the heat conduction theorem and the state, continuity, and Navier-Stokes equations in 2.5D axis-symmetric cylindrical coordinates using a finite-difference time-domain (FDTD) scheme. The numerical techniques included staggered grids and Berenger's perfectly matched layers (PMLs), and linear-perturbation analytical solutions were used to validate the simulation results. The numerical results at different detection angles and durations of laser pulses agreed with the theoretical estimates to within an error of 3% in the absolute differences. In addition to accuracy, the flexibility of the FDTD method was demonstrated by simulating a photoacoustic wave in a homogeneous sphere. The performance of Berenger's PMLs was also assessed by comparisons with the traditional first-order Mur's boundary condition. At the edges of the simulation domain, a 10-layer PML medium with polynomial attenuation grading from zero to 5x106 m3/kg/s was designed to reduce the reflection to as low as -60 and -32 dB in the axial and radial directions, respectively. The reflections at the axial and radial boundaries were 32 and 7 dB lower, respectively, for the 10-layer PML absorbing layer than for the first-order Mur's boundary condition.
© (2008) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Yae-Lin Sheu, Chen-Wei Wei, Chao-Kang Liao, and Pai-Chi Li "Photoacoustic wave propagation simulations using the FDTD method with Berenger's perfectly matched layers", Proc. SPIE 6856, Photons Plus Ultrasound: Imaging and Sensing 2008: The Ninth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics, 685619 (28 February 2008); https://doi.org/10.1117/12.764416
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Photoacoustic spectroscopy

Finite-difference time-domain method

Biomedical optics

Wave propagation

Error analysis

Absorption

Acoustics

Back to Top