Poster + Paper
12 March 2024 Processing CoCrMo and AZ91D magnesium alloys with direct laser interference patterning, limits, and possibilities
Author Affiliations +
Conference Poster
Abstract
Surface topography modifications are well-established strategies to improve the biological response of biomaterials and their performance and reliability when used as implants. Studies have shown for instance that surface roughening creates a physical anchorage between the implant and bone and improves its primary and long-term stabilization. This study reports on the fabrication of repetitive periodic structures on CoCrMo and AZ91D magnesium alloys using direct laser interference patterning. An infrared ultra-short, pulsed laser, with a wavelength of 1064 nm and 10 ps laser pulses was combined with a two-beam interference optics to produce line-like patterns. Both, the surface topography and chemical modifications are analyzed using confocal microscopy, scanning electron microscopy and Energy Dispersive Spectroscopy (EDS). By varying the applied laser fluence and pulse overlap different patterns were produced. In particular, homogeneous structures could be achieved for many used process conditions. The used spatial period was 5 μm, and the structure depth was varied up to 0.85 μm and 2.5 μm, for CoCrMo and AZ91D, respectively. For high energy, sub-micrometric secondary structures, so-called LIPSS, could also be observed. In addition, oxidation effects were confirmed by EDS analysis.
(2024) Published by SPIE. Downloading of the abstract is permitted for personal use only.
B. Henriques, D. Fabris, B. Voisiat, and A. F. Lasagni "Processing CoCrMo and AZ91D magnesium alloys with direct laser interference patterning, limits, and possibilities", Proc. SPIE 12873, Laser-based Micro- and Nanoprocessing XVIII, 1287310 (12 March 2024); https://doi.org/10.1117/12.3000333
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Magnesium

Pulsed laser operation

Laser ablation

Oxidation

Laser processing

Back to Top