Implants inside the cardiovascular system are subjected to blood flow. Platelet deposition usually takes place, eventually leading to thrombus formation. Tests must be performed in order to select a suitable biomaterial, but no generally accepted test method exists for biomaterials in contact with blood. At a first glance, the flow appears to play only a minor role in the complex interaction between platelets and biomaterials. However, experiments and models have indeed demonstrated the importance of flow. Flow is the mechanism by which platelets are transported to the site of deposition, enabling deposition and forming the shape of a growing thrombus. This interaction is investigated here by means of two experimental models. The first model generates the simplest shear flow, the plane Couette flow. It serves to quantify the role of the shear rate. The second model, the stagnation point flow model, features a more complex shear flow. This model is used to understand the influence of a changing flow field along the wall over which the platelets travel. The platelet deposition is observed using the two experimental models, and a numerical model is developed to reproduce and simulate the experimental results. In the numerical model, the movement of platelets is computed with a combination of convective and stochastic movements due to diffusion. The combined motion brings some platelets close to the wall. The deposition of the platelet at the wall is modeled by a stochastic model. Probability determines whether the individual platelet deposits or flows onwards. This probability is the product of three different probabilities, which are the properties of the platelet, the wall, and the flow. The results of the models are compared with the experimental results and are used to understand the experiments.

1.
Z. M.
Ruggeri
,
J. N.
Orje
,
R.
Habermann
,
A. B.
Federici
, and
A. J.
Reininger
,
Blood
108
,
1903
(
2006
).
2.
D. L.
Bark
,
A. N.
Para
, and
D. N.
Ku
,
Biotechnol. Bioeng.
109
,
2642
(
2012
).
3.
D. L.
Bark
and
D. N.
Ku
,
Biophys. J.
105
,
502
(
2013
).
4.
L. D. C.
Casa
,
D. H.
Deaton
, and
D. N.
Ku
,
J. Vasc. Surg.
61
,
1068
(
2015
).
5.
V. T.
Turitto
and
H. R.
Baumgartner
,
Trans. - Am. Soc. Artif. Intern. Organs
21
,
593
(
1975
).
6.
K.
Affeld
,
L.
Goubergrits
,
N.
Watanabe
, and
U.
Kertzscher
,
J. Biomech.
46
,
430
(
2013
).
7.
H.
Petschek
,
D.
Adamis
, and
Ar.
Kantrowi
,
Trans. - Am. Soc. Artif. Intern. Organs
14
,
256
(
1968
).
8.
W.
Baldauf
,
L. J.
Wurzinger
, and
J.
Kinder
,
Pathol., Res. Pract.
163
,
9
(
1978
).
9.
K.
Affeld
,
A. J.
Reininger
,
J.
Gadischke
,
K.
Grunert
,
S.
Schmidt
, and
F.
Thiele
,
Artif. Organs
19
,
597
(
1995
).
10.
T.
Kragh
,
J.
Schaller
,
U.
Kertzscher
,
K.
Affeld
,
A.
Reininger
, and
M.
Spannagl
,
Microfluid Nanofluid
19
,
155
(
2015
).
11.
K.
Affeld
,
S.
Stefansdottir
,
J.
Schaller
, and
U.
Kertzscher
,
Biomed. Tech.
59
,
s11
(
2014
).
12.
E.
Wellnhofer
,
J.
Osman
,
U.
Kertzscher
,
K.
Affeld
,
E.
Fleck
, and
L.
Goubergrits
,
Atherosclerosis
213
,
475
(
2010
).
13.
A. L.
Zydney
and
C. K.
Colton
,
Physicochem. Hydrodyn.
10
,
77
(
1988
).
14.
S. J.
Hund
and
J. F.
Antaki
,
Phys. Med. Biol.
54
,
6415
(
2009
).
15.
F.
Jung
,
S.
Braune
, and
A.
Lendlein
,
Clin. Hemorheol. Microcirc.
53
,
97
(
2013
).
16.
R. P.
Alston
,
Br. J. Anaesth.
94
,
699
(
2005
).
18.
F. M.
Dattilio
and
J. E.
Castaldo
,
Neuropsychiatr. Dis. Treat.
2
,
111
(
2006
).
19.
A. J.
Rastan
,
N.
Lachmann
,
T.
Walther
,
N.
Doll
,
T.
Gradistanac
,
J. F.
Gommert
,
S.
Lehmann
,
C.
Wittekind
, and
F. W.
Mohr
,
Int. J. Artif. Organs
29
,
1121
(
2006
).
20.
M. A.
Jamiolkowski
,
J. R.
Woolley
,
M. V.
Kameneva
,
J. F.
Antaki
, and
W. R.
Wagner
,
J. Biomed. Mater. Res., Part A
103
,
1303
(
2015
).
21.
T.
Becherer
,
C.
Grunewald
,
V.
Engelschalt
,
G.
Multhaup
,
T.
Risse
, and
R.
Haag
,
Anal. Chim. Acta
867
,
47
(
2015
).
22.
K.
Höger
,
T.
Becherer
,
W.
Qiang
,
R.
Haag
,
W.
Frieß
, and
S.
Küchler
,
Eur. J. Pharm. Biopharm.
85
,
756
(
2013
).
23.
E. N.
Sorensen
, “
Computational simulation of platelet transport, activation, and deposition
,” Doctoral dissertation (University of Pittsburgh,
2002
).
24.
D. M.
Wootton
,
C. P.
Markou
,
S. R.
Hanson
, and
D. N.
Ku
,
Ann. Biomed. Eng.
29
,
321
(
2001
).
25.
.
R.
Virchow
, “
Über den Faserstoff: Phlogose und Thrombose im Gefäßsystem
,” in
Gesammelte Abhandlungen zur wissenschaftlichen Medicin
(
Meidinger & Sohn Corp.
,
Frankfurt am Main
,
1856
).
You do not currently have access to this content.