Building arrays of memristive devices with sub-10 nm lateral dimensions is critical for high packing density, low power consumption, and better uniformity in device performance. Here, the authors demonstrate arrays of 8 × 8 nm2 cross point memristive devices using wet chemical etching and nanoimprint lithography. The devices exhibited nonvolatile bipolar switching with extreme low programming current of 600 pA. The devices also exhibited fast switching speed and improved uniformity and promising endurance and data retention. This work opens the opportunities for memristive devices in the next generation ultrahigh-density data storage and low-power high-speed unconventional computing.

1.
L. O.
Chua
,
IEEE Trans. Circuit Theory
18
,
507
(
1971
).
2.
D. B.
Strukov
,
G. S.
Snider
,
D. R.
Stewart
, and
R. S.
Williams
,
Nature
453
,
80
(
2008
).
3.
A.
Chen
 et al,
IEEE Int. Electron Devices Meet. IEDM Technol. Dig.
2005
,
746
.
4.
I. G.
Baek
 et al,
IEEE Int. Electron Devices Meet. IEDM Technol. Dig.
2005
,
750
.
5.
J.
Borghetti
,
G. S.
Snider
,
P. J.
Kuekes
,
J. J.
Yang
,
D. R.
Stewart
, and
R. S.
Williams
,
Nature
464
,
873
(
2010
).
6.
Q.
Xia
 et al,
Nano Lett.
9
,
3640
(
2009
).
7.
S. H.
Jo
,
T.
Chang
,
I.
Ebong
,
B. B.
Bhadviya
,
P.
Mazumder
, and
W.
Lu
,
Nano Lett.
10
,
1297
(
2010
).
8.
G. S.
Snider
,
Nanotechnology
18
,
365202
(
2007
).
9.
C.
Kügeler
,
M.
Meier
,
R.
Rosezin
,
S.
Gilles
, and
R. S.
Waser
,
Solid-State Electron.
53
,
1287
(
2009
).
10.
J.
Park
 et al, in
2011 IEEE International Electron Devices Meeting,
Washington, DC (
Institute of Electrical and Electronics Engineers
,
New York
,
2011
), p.
3
7
.
11.
B.
Govoreanu
 et al, in
2011 IEEE International Electron Devices Meeting,
Washington, DC (
Institute of Electrical and Electronics Engineers
,
New York
,
2011
), p.
31
6
.
12.
J. J.
Yang
,
M. D.
Pickett
,
X.
Li
,
D. A. A.
Ohlberg
,
D. R.
Stewart
, and
R. S.
Williams
,
Nature Nanotechnol.
3
,
429
(
2008
).
13.
S.
Kim
 et al,
IEEE Electron Device Lett.
32
,
671
(
2011
).
14.
S. Y.
Chou
,
P. R.
Krauss
, and
P. J.
Renstrom
,
Science
272
,
85
(
1996
).
15.
J.
Haisma
,
M.
Verheijen
,
K.
van den Heuvel
, and
J.
van den Berg
,
J. Vac. Sci. Technol. B
14
,
4124
(
1996
).
16.
M.
Colburn
 et al,
Proc. SPIE
3676
,
379
(
1999
).
17.
W.
Wu
 et al,
Appl. Phys. A
80
,
1173
(
2005
).
18.
S.
Pi
,
P.
Lin
, and
Q.
Xia
, Proceedings of the International Conference on Nanoimprint & Nanoprint Technology (NNT), Napa, CA,
2012
(unpublished).
19.
J. J.
Yang
 et al,
Adv. Mater.
22
,
4034
(
2010
).
20.
D. B.
Strukov
and
R. S.
Williams
,
Appl. Phys. A
102
,
851
(
2011
).
21.
H.
Jang
and
Q.
Xia
,
Nanoscale
5
,
3257
(
2013
).
22.
D. H.
Kwon
 et al,
Nature Nanotechnol.
5
,
148
(
2010
).
23.
A. C.
Torrezan
,
J. P.
Strachan
,
G.
Medeiros-Ribeiro
, and
R. S.
Williams
,
Nanotechnology
22
,
485203
(
2011
).
24.
Q.
Xia
,
M. D.
Pickett
,
J. J.
Yang
,
M. X.
Zhang
,
J.
Borghetti
,
X.
Li
,
W.
Wu
,
G.
Medeiros-Ribeiro
, and
R. S.
Williams
,
Nanotechnology
22
,
254026
(
2011
).
You do not currently have access to this content.