HfO2 films were grown on Si(100) by chemical vapor deposition as an attempt to develop an industrially straightforward gate dielectric deposition process. During deposition at ∼400 °C the decomposition of the hafnium-tetra-tert-butoxide Hf(C4H9O)4 precursor provides sufficient oxygen to produce a stoichiometric HfO2 film. Medium energy ion scattering, high resolution transmission electron microscopy, atomic force microscopy, and ellipsometry were used to identify the structure and composition of the film and its interface to the Si substrate. Local crystallinity in the films increased significantly with annealing. Capacitance–voltage and current–voltage methods were used to characterize the electrical properties of simple capacitor structures. When grown on high quality ultrathin oxides or oxynitrides, the deposited films displayed very good physical and electrical properties.

1.
International Technology Roadmap for Semiconductors (2000), International Sematech (Austin).
2.
L. Feldman, E. P. Gusev, and E. Garfunkel, in Fundamental Aspects of Ultrathin Dielectrics on Si-based Devices, edited by E. Garfunkel, E. P. Gusev, and A. Y. Vul’ (Kluwer, Dordrecht, 1998), p. 1.
3.
D. A.
Buchanan
,
IBM J. Res. Dev.
43
,
245
(
1999
).
4.
G. D.
Wilk
,
R. M.
Wallace
, and
J. M.
Anthony
,
J. Appl. Phys.
89
,
5243
(
2001
).
5.
S. A.
Campbell
,
D. C.
Gilmer
,
X. C.
Wang
,
M. T.
Hsieh
,
H. S.
Kim
,
W.
Gladfelter
, and
J.
Yan
,
IEEE Trans. Electron Devices
44
,
104
(
1997
).
6.
G. B.
Alers
,
D. J.
Werder
,
Y.
Chabal
,
H. C.
Lu
,
E. P.
Gusev
,
E.
Garfunkel
,
T.
Gustafsson
, and
R.
Urdahl
,
Opt. Lett.
73
,
1517
(
1998
).
7.
A. I.
Kingon
,
J.-P.
Maria
, and
S. K.
Streiffer
,
Nature (London)
406
,
1032
(
2000
).
8.
B. H.
Lee
,
L.
Kang
,
W.-J.
Qi
,
R.
Nieh
,
Y.
Jeon
,
K.
Onishi
, and
J. C.
Lee
,
Tech. Dig. - Int. Electron Devices Meet.
133
, (
1999
).
9.
M.
Copel
,
M.
Gribelyuk
, and
E.
Gusev
,
Appl. Phys. Lett.
76
,
436
(
2000
).
10.
G.
Lucovsky
and
J. C.
Phillips
,
Microelectron. Eng.
48
,
291
(
1999
).
11.
B. W.
Busch
,
W. H.
Schulte
,
E.
Garfunkel
,
T.
Gustafsson
,
W.
Qi
,
J.
Nieh
, and
J.
Lee
,
Phys. Rev. B
62
,
R13290
(
2000
).
12.
C. T.
Hsu
,
Y. K.
Su
, and
M.
Yokoyama
,
Jpn. J. Appl. Phys., Part 1
31
,
2501
(
1992
).
13.
K.
Kukli
,
J.
Aarik
,
A.
Aidla
,
H.
Siimon
,
M.
Ritala
, and
M.
Leskela
,
Appl. Surf. Sci.
112
,
236
(
1997
).
14.
L.
Kang
,
K.
Onishi
,
Y.
Jeon
,
B. H.
Lee
,
C.
Kang
,
W.-J.
Qi
,
R.
Nieh
,
S.
Gopalan
,
R.
Choi
, and
J. C.
Lee
,
Tech. Dig. - Int. Electron Devices Meet.
35
, (
2000
).
15.
A. C.
Jones
,
T. J.
Leedham
,
P. J.
Wright
,
M. J.
Crosbie
,
K. A.
Fleeting
,
D. J.
Otway
,
P.
O’Brien
, and
M. E.
Pemble
,
J. Mater. Chem.
8
,
1773
(
1998
).
16.
J. C.
Rey
,
L. Y.
Cheng
,
J. P.
McVittie
, and
K. C.
Saraswat
,
J. Vac. Sci. Technol. A
9
,
1083
(
1991
).
17.
A.
Burke
,
G.
Braeckelmann
,
D.
Manger
,
E.
Eisenbraun
,
A. E.
Kaloyeros
,
J. P.
McVittie
,
J.
Han
,
D.
Bang
,
J. F.
Loan
, and
J. J.
Sullivan
,
J. Appl. Phys.
82
,
4651
(
1997
).
18.
M. A.
Cameron
and
S.
George
,
Thin Solid Films
348
,
90
(
1999
).
19.
T. S.
Jeon
,
J. M.
White
, and
D. L.
Kwong
,
Appl. Phys. Lett.
78
,
368
(
2001
).
20.
J. F.
van der Veen
,
Surf. Sci. Rep.
5
,
199
(
1985
).
21.
R. M.
Tromp
,
M.
Copel
,
M. C.
Reuter
,
M. H. v.
Hoegen
,
J.
Speidell
, and
R.
Koudijs
,
Rev. Sci. Instrum.
62
,
2679
(
1991
).
22.
J. F. Ziegler and J. P. Biersach, SRIM - The Stopping Range of Ions in Matter, Ver. 9, (IBM Research, Yorktown Heights, NY, 1998).
23.
E. P.
Gusev
,
H. C.
Lu
,
T.
Gustafsson
, and
E.
Garfunkel
,
Phys. Rev. B
52
,
1759
(
1995
).
24.
CRC Handbook of Chemistry and Physics (Chemical Rubber Corp., Boca Raton, FL, 1990).
This content is only available via PDF.
You do not currently have access to this content.