While the etiology and pathogenesis of adolescent idiopathic scoliosis are still not well understood, it is generally recognized that it progresses within a biomechanical process involving asymmetrical loading of the spine and vertebral growth modulation. This study intends to develop a finite element model incorporating vertebral growth and growth modulation in order to represent the progression of scoliotic deformities. The biomechanical model was based on experimental and clinical observations, and was formulated with variables integrating a biomechanical stimulus of growth modulation along directions perpendicular (x) and parallel (y, z) to the growth plates, a sensitivity factor β to that stimulus and time. It was integrated into a finite element model of the thoracic and lumbar spine, which was personalized to the geometry of a female subject without spinal deformity. An imbalance of 2 mm in the right direction at the 8th thoracic vertebra was imposed and two simulations were performed: one with only growth modulation perpendicular to growth plates (Sim1), and the other one with additional components in the transverse plane (Sim2). Semi-quantitative characterization of the scoliotic deformities at each growth cycle was made using regional scoliotic descriptors (thoracic Cobb angle and kyphosis) and local scoliotic descriptors (wedging angle and axial rotation of the thoracic apical vertebra). In all simulations, spinal profiles corresponded to clinically observable configurations. The Cobb angle increased non-linearly from 0.3° to 34° (Sim1) and 20° (Sim2) from the first to last growth cycle, adequately reproducing the amplifying thoracic scoliotic curve. The sagittal thoracic profile (kyphosis) remained quite constant. Similarly to clinical and experimental observations, vertebral wedging angle of the thoracic apex progressed from 2.6° to 10.7° (Sim1) and 7.8° (Sim2) with curve progression. Concomitantly, vertebral rotation of the thoracic apex increased of 10° (Sim1) and 6° (Sim2) clockwise, adequately reproducing the evolution of axial rotation reported in several studies. Similar trends but of lesser magnitude (Sim2) suggests that growth modulation parallel to growth plates tend to counteract the growth modulation effects in longitudinal direction. Overall, the developed model adequately represents the self-sustaining progression of vertebral and spinal scoliotic deformities. This study demonstrates the feasibility of the modeling approach, and compared to other biomechanical studies of scoliosis it achieves a more complete representation of the scoliotic spine.

1.
Gooding
,
C. A.
, and
Neuhauser
,
E. B. D.
,
1965
, “
Growth and Development of the Vertebral Body in the Presence and Absence of Normal Stress
,”
Am. J. Roentgenol., Radium Ther. Nucl. Med.
,
93
, pp.
388
394
.
2.
McCall
,
I. W.
,
Galvin
,
E.
,
O’Brien
,
J. P.
, and
Park
,
W. M.
,
1981
, “
Alterations in Vertebral Growth Following Plaster Immobilization
,”
Acta Orthop. Scand.
,
52
, pp.
327
330
.
3.
Stokes
,
I. A. F.
,
Aronsson
,
D. D.
, and
Urban
,
J. P. G.
,
1994
, “
Biomechanical Factors Influencing Progression of Angular Skeletal Deformities During Growth
,”
European Journal of Musculoskeletal Research
,
3
, pp.
51
60
.
4.
Arkin
,
A. M.
, and
Katz
,
J. F.
,
1956
, “
The Effects of Pressure on Epiphyseal Growth
,”
J. Bone Jt. Surg.
,
38A
, pp.
1056
1076
.
5.
Moreland
,
M. S.
,
1980
, “
Morphological Effects of Torsion Applied to Growing Bone
,”
J. Bone Jt. Surg.
,
62B
, pp.
230
237
.
6.
Perdriolle
,
R.
,
Becchetti
,
S.
,
Vidal
,
J.
, and
Lopez
,
P.
,
1993
, “
Mechanical Process and Growth Cartilages—Essential Factors in the Progression of Scoliosis
,”
Spine
,
18
, pp.
343
349
.
7.
Aubin
,
C. E´.
,
Dansereau
,
J.
,
Petit
,
Y.
,
Parent
,
F.
,
De Guise
,
J. A.
, and
Labelle
,
H.
,
1998
, “
Three-Dimensional Measurement of Wedged Scoliotic Vertebrae and Intervetebral Disks
,”
Eur. Spine J.
,
7
, pp.
59
65
.
8.
Graf, H., and Mouilleseaux, B., 1990, Analyze Tridimensionnelle de la Scoliose, Safir, France.
9.
Burwell
,
R. G.
,
Cole
,
A. A.
,
Cook
,
T. A.
,
Grivas
,
T. B.
,
Kiel
,
A. W.
,
Moulton
,
A.
,
Thirlwall
,
A. S.
,
Upadhyay
,
S. S.
,
Webb
,
J. K.
,
Wernyss-Holden
,
S. A.
,
Whitwell
,
D. J.
,
Wojcik
,
A. S.
, and
Wythers
,
D. J.
,
1992
, “
Pathogenesis of Idiopathic Scoliosis: The Nottingham Concept
,”
Acta Orthop. Belg.
,
58
, pp.
33
58
.
10.
Stokes
,
I. A. F.
, and
Laible
,
J. P.
,
1990
, “
Three-Dimensional Osseo-Ligamentous Models of the Thorax Representing Initiation of Scoliosis by Asymmetric Growth
,”
J. Biomech.
,
23
, pp.
589
595
.
11.
Azegami
,
H.
,
Murachi
,
S.
,
Kitoh
,
J.
,
Ishida
,
Y.
,
Kawakami
,
N.
, and
Makino
,
M.
,
1999
, “
Etiology of Idiopathic Scoliosis
,”
Clin. Orthop. Relat. Res.
,
357
, pp.
229
236
.
12.
Tadano, S., Kanayama, M., and Ukai, T., 1995, “Computer-Simulation of Idiopathic Scoliosis Initiated by Asymmetric Growth Force in a Vertebral Body,” Third International Conference on Computer Simulations in Biomedicine, England, pp. 369–376.
13.
Hart
,
R. T.
,
Davy
,
D. T.
, and
Heiple
,
K. G.
,
1984
, “
A Computational Method for Stress Analysis of Adaptive Elastic Materials with a View Toward Applications in Strain-Induced Bone Remodeling
,”
J. Biomech. Eng.
,
106
, pp.
342
350
.
14.
Goel
,
V. K.
,
Ramirez
,
S. A.
,
Kong
,
W.
, and
Gilbertson
,
L. G.
,
1995
, “
Cancellous Bone Young’s Modulus Variation within the Vertebral Body of a Ligamentous Lumbar Spine—Application of Bone Adaptive Remodeling Concepts
,”
J. Biomech. Eng.
,
117
, pp.
266
271
.
15.
Vital
,
J. M.
,
Beguiristain
,
J. L.
,
Algara
,
C.
,
Villas
,
C.
,
Lavignolle
,
B.
,
Grenier
,
N.
, and
Senegas
,
J.
,
1989
, “
The Neurocentral Vertebral Cartilage: Anatomy, Physiology and Physiopathology
,”
Surg. Radiol. Anat.
,
11
, pp.
323
328
.
16.
Yamazaki
,
A.
,
Mason
,
D. E.
, and
Caro
,
P. A.
,
1998
, “
Age of Closure of the Neurocentral Cartilage in the Thoracic Spine
,”
J. Pediatr. Orthop.
,
18
, pp.
168
172
.
17.
Weinstein S. L., 1994, The Pediatric Spine, Principles and Practice, Raven Press, New York, pp. 421–556.
18.
Dansereau J., Beauchamp A., De Guise J. A., and Labelle H., 1990, “Three-Dimensional Reconstruction of the Spine and Rib Cage from Stereoradiographic and Imaging Techniques,” Proc. 16th Conference of the Canadian Society of Mechanical Engineering, 2, pp. 61–64.
19.
Gignac
,
D.
,
Aubin
,
C. E´.
,
Dansereau
,
J.
, and
Labelle
,
H.
,
2000
, “
Optimization Method for 3D Bracing Correction of Scoliosis using a Finite Element Model
,”
Eur. Spine J.
,
9
, pp.
185
190
.
20.
Aubin
,
C. E´.
,
Descrimes
,
J. L.
,
Dansereau
,
J.
,
Skall
,
W.
,
Lavaste
,
F.
, and
Labelle
,
H.
,
1995
, “
Geometrical Modeling of the Spine and Thorax for Biomechanical Analysis of Scoliotic Deformities using Finite Element Method,” [in French]
,
Ann. Chir.
,
49
, pp.
749
761
.
21.
Descrimes
,
J. L.
,
Aubin
,
C. E´.
,
Skalli
,
W.
,
Zeller
,
R.
,
Dansereau
,
J.
, and
Lavaste
,
F.
,
1995
, “
Introduction des Facettes Articulaires dans une Mode´lisation par E´le´ments Finis de la Colonne Verte´brale et du Thorax Scoliotique: Aspects Me´caniques
,”
Rachis
,
7
, pp.
301
314
.
22.
Dimeglio A., and Bonnel F., 1990, Le rachis en Croissance, Springer-Verlag, Paris.
23.
Taylor
,
J. R.
,
1975
, “
Growth of Human Intervetebral Discs and Vertebral Bodies
,”
J. Anat.
,
120
, pp.
49
68
.
24.
Frost
,
H. M.
,
1990
, “
Skeletal Structural Adaptations to Mechanical Usage (SATMU): 3. The Hyaline Cartilage Modeling Problem
,”
Anat. Rec.
,
226
, pp.
423
432
.
25.
Wilson-Macdonald
,
J.
,
Houghton
,
G. R.
,
Bradley
,
J.
, and
Morscher
,
E.
,
1990
, “
The Relationship between Periostal Division and Compression or Distraction of the Growth Plate
,”
J. Bone Jt. Surg.
,
72B
, pp.
303
308
.
26.
Schultz
,
A.
,
Andersson
,
G.
,
Ortengren
,
R.
,
Haderspeck
,
K.
, and
Nachemson
,
A.
,
1982
, “
Loads on the Lumbar Spine—Validation of a Biomechanical Analysis by Measurements of Intradiscal Pressures and Myoelectric Signals
,”
J. Bone Jt. Surg.
,
64A
, pp.
713
720
.
27.
Nachemson
,
A.
,
1964
, “
The Load on Lumbar Disks in Different Positions of the Body
,”
Clin. Orthop. Relat. Res.
,
45
, pp.
107
122
.
28.
Labelle
,
H.
,
Dansereau
,
J.
,
Bellefleur
,
C.
, and
Poitras
,
B.
,
1996
, “
Three-Dimensional Effect of the Boston Brace on the Thoracic Spine and Rib Cage
,”
Spine
,
21
, pp.
59
64
.
29.
Villeumure
,
I.
,
Aubin
,
C. E´.
,
Dansereau
,
J.
,
Petit
,
Y.
, and
Labelle
,
H.
,
1999
, “
A Correlation Study between Spinal Curvatures and Vertebral and Interertebral Deformaties in Idiopathic Scoliosis,” [in French]
,
Ann. Chir.
,
53
, pp.
798
807
.
30.
Villemure
,
I.
,
Aubin
,
C. E´.
,
Grimard
,
G.
,
Dansereau
,
J.
, and
Labelle
,
H.
,
2001
, “
Progression of Vertebral and Spinal Three-Dimensional Deformities in Adolescent Idiopathic Scoliosis: A Longitudinal Study
,”
Spine
,
26
, pp.
2244
2250
.
31.
Deacon
,
P.
,
Flood
,
B. M.
, and
Dickson
,
R. A.
,
1984
, “
Idiopathic Scoliosis in Three Dimensions. A Radiographic and Morphometric Analysis
,”
J. Bone Jt. Surg.
,
66B
, pp.
509
512
.
32.
Patwardhan
,
A. G.
,
Havey
,
R. M.
,
Meade
,
K. P.
,
Lee
,
B.
, and
Dunlap
,
B.
,
1999
, “
A Follower Load Increases the Load-Carrying Capacity of the Lumbar Spine in Compression
,”
Spine
,
24
, pp.
1003
1009
.
You do not currently have access to this content.