Particle image velocimetry (PIV) has been gaining acceptance as a routine tool to evaluate the flow fields associated with fluid mechanical devices. We have developed algorithms to investigate the wall shear-rates within the 50cc Penn State artificial heart using low magnification, conventional particle image velocimetry (PIV). Wall shear has been implicated in clot formation, a major post-implant problem with artificial hearts. To address the issues of wall scattering and incomplete measurement volumes, associated with near wall measurements, we have introduced a zero masking and a fluid centroid shifting technique. Simulations using different velocity fields were conducted with the techniques to assess their viability. Subsequently, the techniques were applied to the experimental data collected. The results indicate that the size of the interrogation region should be chosen to be as small as possible to maximize resolution while large enough to ensure an adequate number of particles per region. In the current study, a 16×16 interrogation window performed well with good spatial resolution and particle density for the estimation of wall shear rate. The techniques developed with PIV allow wall shear-rate estimates to be obtained from a large number of sites at one time. Because a planar image of a flow field can be determined relatively rapidly, PIV may prove useful in any preliminary design procedure.

1.
DeVries
,
W. C.
,
Anderson
,
J. L.
,
Joyce
,
L. D.
,
Anderson
,
F. L.
,
Hammond
,
E. H.
,
Jarvik
,
R. K.
, and
Kolff
,
W. J.
,
1984
, “
Clinical Use of the Total Artificial Heart
,”
N. Engl. J. Med.
,
310
, pp.
273
278
.
2.
Bachmann
,
C.
,
Hugo
,
G.
,
Rosenberg
,
G.
,
Deutsch
,
S.
,
Fontaine
,
A.
, and
Tarbell
,
J. M.
,
2000
, “
Fluid Dynamics of a Pediatric Ventricular Assist Device
,”
Artif. Organs
,
24
, pp.
362
372
.
3.
Magovern
,
J. A.
,
Pennock
,
J. L.
,
Campbell
,
D. B.
,
Pae
, Jr.,
W. E.
,
Pierce
,
W. S.
, and
Waldhausen
,
J. A.
,
1986
, “
Bridge to Heart Transplantation: The Penn State Experience
,”
J. Heart Transplant
,
5
, pp.
196
202
.
4.
Orvim
,
U.
,
Barstad
,
R. M.
,
Orning
,
L.
,
Petersen
,
L. B.
,
Ezban
,
M.
,
Hedner
,
U.
, and
Sakariassen
,
K. S.
,
1997
, “
Antithrombotic Efficacy of Inactivated Active Site Recombinant Factor VIIa is Shear Dependent in Human Blood
,”
Arterioscler. Thromb. Vasc. Biol.
,
17
, pp.
3049
3056
.
5.
Holme
,
P. A.
,
Orvim
,
U.
,
Hamers
,
M. J.
,
Solum
,
N. O.
,
Brosstad
,
F. R.
,
Barstad
,
R. M.
, and
Sakariassen
,
K. S.
,
1997
, “
Shear-Induced Platelet Activation and Platelet Microparticle Formation at Blood Flow Conditions as in Arteries with a Severe Stenosis
,”
Arterioscler. Thromb. Vasc. Biol.
,
17
, pp.
646
653
.
6.
Badimon
,
L.
,
Badimon
,
J. J.
,
Galvez
,
A.
,
Chesebro
,
J. H.
, and
Fuster
,
V.
,
1986
, “
Influence of Arterial Damage and Wall Shear Rate on Platelet Deposition. Ex Vivo Study in a Swine Model
,”
Arteriosclerosis (Dallas)
,
6
, pp.
312
320
.
7.
Phillips
,
W. M.
,
Brighton
,
J. A.
, and
Pierce
,
W. S.
,
1972
, “
Artificial Heart Evaluation Using Flow Visualization Techniques
,”
Trans. ASAIO
,
18
, pp.
194
201
.
8.
Mann, K. A., 1985, “Fluid Dynamic Analysis of Newtonian and Non-Newtonian Fluids in a Penn State Ventricular Assist Device,” M.S. thesis, The Pennsylvania State University, University Park, PA.
9.
Affeld, A., 1979, “The State of the Art of the Berlin Total Artificial Heart-Technical Aspects,” Assisted Circulation, F. Unger, ed., Springer-Verlag, New York, pp. 307–333.
10.
Tarbell
,
J. M.
,
Gunshinan
,
J. P.
,
Geselowitz
,
D. B.
,
Rosenberg
,
G.
,
Shung
,
K. K.
, and
Pierce
,
W. S.
,
1986
, “
Pulsed Ultrasonic Doppler Velocity Measurements Inside a Left Ventricular Assist Device
,”
ASME J. Biomech. Eng.
,
108
, pp.
232
238
.
11.
Phillips
,
W. M.
,
Furkay
,
S. S.
, and
Pierce
,
W. S.
,
1979
, “
Laser Doppler Anemometer Studies in Unsteady Ventricular Flows
,”
Trans. ASAIO
,
25
, pp.
56
60
.
12.
Baldwin
,
J. T.
,
Tarbell
,
J. M.
,
Deutsch
,
S.
,
Geselowitz
,
D. B.
, and
Rosenberg
,
G.
,
1988
, “
Hot-Film Wall Shear Probe Measurements Inside a Ventricular Assist Device
,”
ASME J. Biomech. Eng.
,
110
, pp.
326
333
.
13.
Baldwin, J. T., 1987, “Wall Shear Stress Measurements in the Penn State Ventricular Assist Device Using Hot-Film Anemometry,” M.S. thesis, The Pennsylvania State University, University Park, PA.
14.
Baldwin
,
J. T.
,
Deutsch
,
S.
,
Geselowitz
,
D. B.
, and
Tarbell
,
J. M.
,
1994
, “
LDA Measurements of Mean Velocity and Reynolds Stress Fields within an Artificial Heart Ventricle
,”
ASME J. Biomech. Eng.
,
116
, pp.
190
200
.
15.
Kertzscher, U., Debaene, P., and Affeld, K., 2001, “New Method to Visualize and to Measure the Wall Shear Rate in Blood Pumps,” 4th International Symposium on Particle Image Velocimetry, Gottingen, Germany.
16.
Raffel, M., Willert, C. E., and Kompenhans, J., 1998, Particle Image Velocimetry: A Practical Guide. Springer-Verlag, Berlin.
17.
Keane
,
R. D.
, and
Adrian
,
R. J.
,
1992
, “
Theory of Cross-Correlation Analysis of PIV Images
,”
Appl. Sci. Res.
,
49
, pp.
191
215
.
18.
Adrian
,
R. J.
,
1991
, “
Particle-Imaging Techniques for Experimental Fluid-Mechanics
,”
Annu. Rev. Fluid Mech.
,
23
, pp.
261
304
.
19.
Crowe, C. T., Sommerfeld, M., and Tsuji, Y., 1998, Multiphase flows with droplets and particles. CRC Press, Boca Raton, FL.
20.
Scarano
,
F.
,
2002
, “
Iterative Image Deformation Methods in PIV
,”
Meas. Sci. Technol.
,
13
, pp.
R1–R19
R1–R19
.
21.
Scarano
,
F.
, and
Riethmuller
,
M. L.
,
1999
, “
Iterative Multigrid Approach in PIV Image Processing with Discrete Window Offset
,”
Exp. Fluids
,
26
, pp.
513
523
.
22.
Roth
,
G. I.
, and
Katz
,
J.
,
2001
, “
Five Techniques for Increasing the Speed and Accuracy of PIV Interrogation
,”
Meas. Sci. Technol.
,
12
, pp.
238
245
.
23.
Hart
,
D. P.
,
2000
, “
PIV Error Correction
,”
Exp. Fluids
,
29
, pp.
13
22
.
24.
Cox
,
R. G.
, and
Mason
,
S. G.
,
1971
, “
Suspended Particles in Fluid Flow through Tubes
,”
Annu. Rev. Fluid Mech.
,
3
, pp.
291
318
.
25.
Forliti
,
D. J.
,
Strykowski
,
P. J.
, and
Debatin
,
K.
,
2000
, “
Bias and Precision Errors of Digital Particle Image Velocimetry
,”
Exp. Fluids
,
28
, pp.
436
447
.
26.
Huang
,
H. T.
,
Fiedler
,
H. E.
, and
Wang
,
J. J.
,
1993
, “
Limitation and Improvement of PIV-1. Limitation of Conventional Techniques Due to Deformation of Particle Image Patterns
,”
Exp. Fluids
,
15
, pp.
168
174
.
27.
Abrahamson
,
S.
, and
Lonnes
,
S.
,
1995
, “
Uncertainty in Calculating Vorticity from 2D Velocity Fields Using Circulation and Least-Squares Approaches
,”
Exp. Fluids
,
20
, pp.
10
20
.
28.
Lourenco
,
L.
, and
Krothapalli
,
A.
,
1995
, “
On the Accuracy of Velocity and Vorticity Measurements with PIV
,”
Exp. Fluids
,
18
, pp.
421
428
.
29.
Hochareon, P., 2003, “Development of Particle Imaging Velocimetry (PIV) for Wall Shear Stress Estimation within a 50cc Penn State Artificial Heart Ventricular Chamber,” PhD thesis, The Pennsylvania State University, University Park, PA.
30.
Wernet
,
M. P.
,
2000
, “
Application of DPIV to study both steady state and transient turbomachinery flows
,”
Opt. Laser Technol.
,
32
, pp.
497
525
.
31.
Christensen
,
K. T.
, and
Adrian
,
R. J.
,
2002
, “
The velocity and acceleration signatures of small-scale vortices in turbulent channel flow
,”
J. Turbulence
,
3
,
023
023
.
32.
Kiesow
,
R. O.
, and
Plesniak
,
M. W.
,
2003
, “
Near-wall physics of a shear-driven three-dimensional turbulent boundary layer with varying crossflow
,”
J. Fluid Mech.
,
484
, pp.
1
39
.
33.
Hart
,
D. P.
,
1998
, “
High-Speed PIV Analysis Using Compressed Image Correlation
,”
ASME J. Fluids Eng.
,
120
, pp.
463
470
.
34.
Hart
,
D. P.
,
1999
, “
Super-Resolution PIV by Recursive Local-Correlation
,”
J. Visualization
,
10
, pp.
1
10
.
35.
Hart, D. P., 1998, “The Elimination of Correlation Errors in PIV Processing,” 9th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 1998.
36.
Westerweel
,
J.
,
1994
, “
Efficient Detection of Spurious Vectors in Particle Image Velocimetry Data
,”
Exp. Fluids
,
16
, pp.
236
247
.
37.
Fikse, T. H., Rosenberg, G., Snyder, A. J., Landis, D. L., Hanson, K. L., Kern, S. E., Geselowitz, D. B., and Pierce, W. S., 1984, “Development and Verification of EVAD/Mock Loop System Model,” Frontiers of Engineering and Computing in Health Care-1984, Proceedings, Sixth Annual Conference-IEEE Engineering in Medicine and Biology Society, Los Angeles, CA.
38.
Hochareon, P., Manning, K. B., Fontaine, A. A., Deutsch, S., and Tarbell, J. M., 2002, “Development of High Resolution Particle Image Velocimetry (PIV) for Use in Artificial Heart Research,” Proc. Second Joint Meeting of the IEEE-EMBS and BMES, Houston, TX, p. 276.
You do not currently have access to this content.