Skip to main content
Log in

In Vitro Cell Shearing Device to Investigate the Dynamic Response of Cells in a Controlled Hydrodynamic Environment

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Mechanical stresses and strains play important roles in the normal growth and development of biological tissues, yet the cellular mechanisms of mechanotransduction have not been identified. A variety of in vitro systems for applying mechanical loads to cell populations have been developed to gain insight into these mechanisms. However, limitations in the ability to control precisely relevant aspects of the mechanical stimuli have obscured the physical relationships between mechanical loading and the biochemical signals that mediate the cellular response. We present a novel in vitro cell shearing device based on the principles of a cone and plate viscometer that utilizes microstepper motor technology to control independently the dynamic and steady components of a hydrodynamic shear-stress environment. Physical measurements of the cone velocity demonstrated faithful reproduction of user-defined input wave forms. Computational modeling of the fluid environment for the unsteady startup confirmed small inertial contributions and negligible secondary flows. Finally, we present experimental results demonstrating the onset rate dependence of functional and structural responses of endothelial cell cultures to dynamically applied shear stress. The controlled cell shearing device is a novel tool for elucidating mechanisms by which mechanical forces give rise to the biological signals that modulate cellular morphology and metabolism. © 2000 Biomedical Engineering Society.

PAC00: 8780Rb, 8717-d

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • 1_ Ando, J., A. Ohtsuka, R. Korenaga, and A. Kamiya. Effect of extracellular ATP level on flow-induced Ca++ response in cultured vascular endothelial cells. Biochem. Biophys. Res. Commun.179:1192-1199, 1991.

    Google Scholar 

  • 2_ Bao, X., C. Lu, and J. Frangos. Temporal gradient in shear but not steady shear stress induces PDGF-A and MCP-1 expression in endothelial cells; Role of NO, NFκB, and egr-1. Arterioscler., Thromb., Vasc. Biol.19:996-1003, 1999.

    Google Scholar 

  • 3_ Barbee, K. A., C. M. Ford, B. R. Blackman, and L. E. Thibault. Neural cell injury: Characterization and treatment strategy. Proceedings of the 10th Annual CDC/Wayne State Symposium on Biomedical Research, Detroit, MI, May 1998.

  • 4_ Barbee, K. A., E. J. Macarak, and L. E. Thibault. Strain measurements in cultured vascular smooth muscle cells subjected to mechanical deformation. Ann. Biomed. Eng.22:14-22, 1994.

    Google Scholar 

  • 5_ Blackman, B. R., L. E. Thibault, and K. A. Barbee. Calcium response of endothelial cells to shear stress: A new insight to an old controversy. Ann. Biomed. Eng.25:S38, 1997.

    Google Scholar 

  • 6_ Bussolari, S. R., C. F. Dewey, Jr., and M. A. Gimbrone, Jr.Apparatus for subjecting living cells to fluid shear stress. Rev. Sci. Instrum.53:1851-1854, 1982.

    Google Scholar 

  • 7_ Clarke, M. S., and P. L. McNeil. Syringe loading introduces macromolecules into living mammalian cell cytosol. J. Cell. Sci.102:533-541, 1992.

    Google Scholar 

  • 8_ Davies, P. F.Flow-mediated endothelial mechanotransduction. Physiol. Rev.75:519-560, 1995.

    Google Scholar 

  • 9_ Davies, P. F., A. Remuzzi, E. J. Gordon, C. F. Dewey, Jr., and M. A. Gimbrone, Jr.Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc. Natl. Acad. Sci. USA83:2114-2117, 1986.

    Google Scholar 

  • 10_ DePaola, N., M. A. Gimbrone, Jr., P. F. Davies, and C. F. Dewey, Jr.Vascular endothelium responds to fluid shear stress gradients. Arterioscler. Thromb.12:1254-1257, 1992.

    Google Scholar 

  • 11_ Dewey, Jr., C. F., S. R. Bussolari, M. A. Gimbrone, Jr., and P. F. Davies. The dynamic response of vascular endothelial cells to fluid shear stress. J. Biomech. Eng.103:177-185, 1981.

    Google Scholar 

  • 12_ Dolmetsch, R. E., R. S. Lewis, C. C. Goodnow, and J. I. Healy. Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature (London)386:855-858, 1997.

    Google Scholar 

  • 13_ Dulles, R. O., and P. F. Davies. Flow modulation of agonist (ATP)-response (Ca2+) coupling in vascular endothelial cells. Am. J. Physiol.261:H149-H154, 1991.

    Google Scholar 

  • 14_ Fewell, M. E., and J. D. Hellums. The secondary flow of Newtonian fluids in a cone-and-plate viscometer. Trans. Soc. Rheol.21:535-565, 1977.

    Google Scholar 

  • 15_ Gimbrone, Jr., M. A., N. Resnick, T. Nagel, L. Khachigian, T. Collin, and J. Topper. Hemodynamics, endothelial gene expression, and atherogenesis. Ann. (N.Y.) Acad. Sci.811:1-11, 1996.

    Google Scholar 

  • 16_ Grynkiewicz, G., M. Poenie, and R. Y. Tsien. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem.260:3440-3450, 1985.

    Google Scholar 

  • 17_Hwang, N. H. C., and N. A. Normann, Eds. In: Cardiovascular Flow Dynamics and Measurements. Baltimore, MD: University Park, 1977.

    Google Scholar 

  • 18_ James, N. L., D. G. Harrison, and R. M. Nerem. Effects of shear on endothelial cell calcium in the presence and absence of ATP. FASEB J.9:968-973, 1995.

    Google Scholar 

  • 19_ Kuchan, M. J., and J. A. Frangos. Role of calcium and calmodulin in flow-induced nitric oxide production in endothelial cells. Am. J. Physiol.266:C628-636, 1994.

    Google Scholar 

  • 20_ LaPlaca, M., and L. Thibault. An in vitro traumatic injury model to examine the response of neurons to a hydrodynamically induced deformation. Ann. Biomed. Eng.25:665-677, 1997.

    Google Scholar 

  • 21_ Levesque, M. J., and R. M. Nerem. The elongation and orientation of cultured endothelial cells in response to shear stress. J. Biomech. Eng.107:341-347, 1985.

    Google Scholar 

  • 22_ Mo, M., S. G. Eskin, and W. P. Schilling. Flow-induced changes in Ca2+ signaling of vascular endothelial cells: Effect of shear stress and ATP. Am. J. Physiol.260:H1698-1707, 1991.

    Google Scholar 

  • 23_ Resnick, N., and M. A. Gimbrone, Jr.Hemodynamic forces are complex regulators of endothelial gene expression. FASEB J.9:874-882, 1995.

    Google Scholar 

  • 24_ Schnittler, H. J., R. P. Franke, U. Akbay, C. Mrowietz, and D. Drenckhahn. Improved in vitro rheological system for studying the effect of fluid shear stress on cultured cells. Am. J. Physiol.265:C289-298, 1993.

    Google Scholar 

  • 25_ Sdougos, H. P., S. R. Bussolari, and C. F. Dewey. Secondary flow and turbulence in a cone-and-plate device. J. Fluid Mech.138:379-404, 1984.

    Google Scholar 

  • 26_ Shen, J., F. W. Luscinskas, A. Connolly, C. F. Dewey, Jr., and M. A. Gimbrone, Jr.Fluid shear stress modulates cytosolic free calcium in vascular endothelial cells. Am. J. Physiol.262:C384-390, 1992.

    Google Scholar 

  • 27_ Topper, J., J. Cai, D. Falb, and M. A. Gimbrone, Jr.Identification of vascular endothelial genes differentially responsive to fluid mechanical stimuli: Cyclooxygenase-2, manganese superoxide dismutase, and endothelial cell nitric oxide synthase are selectively up-regulated by steady laminar shear stress. Proc. Natl. Acad. Sci. USA98:10417-10422, 1996.

    Google Scholar 

  • 28_ Tran-Son-Tay, R. Techniques for studying the effects of physical forces on mammalian cells and measuring cell mechanical properties. In: Physical Forces and the Mammalian Cell, edited by J. A. Frangos. San Diego, CA: Academic, 1993.

    Google Scholar 

  • 29_ Winston, F. K., L. E. Thibault, and E. J. Macarak. An analysis of the time-dependent changes in intracellular calcium concentration in endothelial cells in culture induced by mechanical stimulation. J. Biomech. Eng.115:160-168, 1993.

    Google Scholar 

  • 30_ Yeagle, P. L. Lipid regulation of cell membrane structure and function. FASEB J.3:1833-1842, 1989.

    Google Scholar 

  • 31_ Yu, Q. C., and P. L. McNeil. Transient disruptions of aortic endothelial cell plasma membranes. Am. J. Pathol.141:1349-1360, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blackman, B.R., Barbee, K.A. & Thibault, L.E. In Vitro Cell Shearing Device to Investigate the Dynamic Response of Cells in a Controlled Hydrodynamic Environment. Annals of Biomedical Engineering 28, 363–372 (2000). https://doi.org/10.1114/1.286

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.286

Navigation