Skip to main content
Log in

Kinetic Measurements of Cell Surface E-Selectin/Carbohydrate Ligand Interactions

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Selectin/ligand interactions initiate the multistep adhesion and signaling cascades in the recruitment of leukocytes from circulation to inflamed tissues and may also play a role in tumor metastasis. Kinetic properties of these interactions are essential determinants governing blood-borne cells' tethering to and rolling on the vessel wall. Extending our recently developed micropipette method, we have measured the kinetic rates of E-selectin/ligand interactions. Red cells coated with an E-selectin construct were allowed to bind HL-60 or Colo-205 cells bearing carbohydrate ligands. Specific adhesions were observed to occur at isolated points, the frequency of which followed a Poisson distribution. These point attachments were formed at the same rate with both the HL-60 and Colo-205 cells (0.14 ± 0.04 and 0.13 ± 0.03 µ m2s-1 per unit density of E-selectin, respectively) but dissociated from the former at a rate twice as fast as did from the latter (0.92 ± 0.23 and 0.44 ± 0.10s-1, respectively). The reverse rates agree well with those measured by the flow chamber. The forward rates are orders of magnitude higher than those of Fcγ receptors interacting with IgG measured under similar conditions, consistent with the rapid kinetics requirement for the function of E-selectin/ligand binding, which is to capture leukocytes on endothelial surfaces from flow. © 2001 Biomedical Engineering Society.

PAC2001: 8717-d, 8719Tt

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Alon, R., D. A. Hammer, and T. A. Springer. Lifetime of the P-selectin–carbohydrate bond and its response to tensile force in hydrodynamic flow. Nature (London)374:539–542, 1995.

    Google Scholar 

  2. Alon, R., S. Chen, K. D. Puri, E. B. Finger, and T. A. Springer. The kinetics of L-selectin tethers and the mechanics of selectin-mediated rolling. J. Cell Biol.138:1169–1180, 1997.

    Google Scholar 

  3. Araki, M., K. Araki, L. Biancone, I. Stamenkovic, S. Izui, K. Yamamura, and P. Vassalli. The role of E-selectin for neutrophil activation and tumor metastasis in vivo. Leukemia11Suppl. 3:209–212, 1997.

    Google Scholar 

  4. Asa, D., L. Raycroft, L. Ma, P. A. Aeed, P. S. Kaytes, A. P. Elhammer, and J. G. Geng. The P-selectin glycoprotein ligand functions as a common human leukocyte ligand for P-and E-selectins. J. Biol. Chem.270:11662–11670, 1995.

    Google Scholar 

  5. Bell, G. I.Models for the specific adhesion of cells to cells. Science200:618–627, 1978.

    Google Scholar 

  6. Bell, G. I., M. Dembo, and P. Bongrand. Cell adhesion: Competition between nonspecific repulsion and specific bonding. Biophys. J.45:1051–1064, 1984.

    Google Scholar 

  7. Biancone, L., M. Araki, K. Araki, P. Vassalli, and I. Stamenkovic. Redirection of tumor metastasis by expression of E-selectin in vivo. J. Exp. Med.183:581–587, 1996.

    Google Scholar 

  8. Capo, C., F. Garrouste, A.-M. Benoliel, P. Bongrand, A. Ryter, and G. Bell. Concanavalin-A-mediated thymocte agglutination: A model for a quantitative study of cell adhesion. J. Cell. Sci.56:21–48, 1982.

    Google Scholar 

  9. Chen, S., R. Alon, R. C. Fuhlbrigge, and T. A. Springer. Rolling and transient tethering of leukocytes on antibodies reveal specializations of selectins. Proc. Natl. Acad. Sci. U.S.A.94:3172–3177, 1997.

    Google Scholar 

  10. Chen, S., and T. A. Springer. An automatic braking system that stabilizes leukocyte rolling by an increase in selectin bond number with shear. J. Cell Biol.94:185–200, 1999.

    Google Scholar 

  11. Chesla, S. E., and C. Zhu. Validation and accuracy assessment of the micropipet piconewton force transducer. In: 1996 Advances in Bioengineering, edited by S. Rastegar. New York: ASME, 1996, BED-Vol. 30, pp. 77 and 78.

    Google Scholar 

  12. Chesla, S. E., P. Selvaraj, and C. Zhu. Measuring two-dimensional receptor-ligand binding kinetics with micropipette. Biophys. J.75:1553–1572, 1998.

    Google Scholar 

  13. Chesla, S. E., P. Li, S. Nagarajan, P. Selvaraj, and C. Zhu. The membrane anchor influences ligand binding 2D kinetics rates and 3D affinity of FcγRIII (CD16). J. Biol. Chem.275:10235–10246, 2000.

    Google Scholar 

  14. Dumaswala, U. J., M. J. Wilson, T. Jose, and D. L. Daleke. Glutamine-and phosphate-containing hypotonic storage media better maintain erythrocyte membrane physical properties. Blood88:697–704, 1996.

    Google Scholar 

  15. Erbe, D. V., B. A. Wolitzky, L. G. Presta, C. R. Norton, R. J. Ramos, D. K. Burns, J. M. Rumberger, B. N. N. Rao, C. Foxall, B. K. Brandley, and L. A. Lasky. Identification of an E-selectin region critical for carbohydrate recognition and cell adhesion. J. Cell Biol.119:215–227, 1992.

    Google Scholar 

  16. Jones, W. M., G. M. Watts, M. K. Robinson, D. Vestweber, and M. A. Jutila. Comparison of E-selectin-binding glycoprotein ligands on human lymphocytes, neutrophils, and bovine gamma delta T cells. J. Immunol.159:3574–3583, 1997.

    Google Scholar 

  17. Kansas, G. S. Selectins and their ligands: Current concepts and controversies. Blood88:3259–3287, 1996.

    Google Scholar 

  18. Kaplanski, G., C. Farnarier, O. Tissot, A. Pierres, A.-M. Benoliel, M.-C. Alessi, S. Kaplanski, and P. Bongrand. Granulocyte-endothelium initial adhesion: Analysis of transient binding events mediated by E-selectin in a laminar show flow. Biophys. J.64:1922–1933, 1993.

    Google Scholar 

  19. Lasky, L. A. Selectin–carbohydrate interactions and the initiation of the inflammatory response. Annu. Rev. Biochem.64:113–139, 1995.

    Google Scholar 

  20. Lawrence, M. B., and T. A. Springer. Leukocytes roll on a selectin at physiological flow rates: Distinction from and prerequisite for adhesion through integrins. Cell65:859–873, 1991.

    Article  PubMed  Google Scholar 

  21. Li, S.-H., D. K. Burns, J. M. Rumberger, D. H. Presky, V. L. Wilkinson, M. Anostario, Jr., B. A. Wolitzky, C. R. Norton, P. C. Familletti, K. J. Kim, A. L. Goldstein, D. C. Cox, and K.-S. Huang. Consensus repeat domains of E-selectin enhance ligand binding. J. Biol. Chem.269:4431–4437, 1994.

    Google Scholar 

  22. Liu, W.-J., V. Ramachandran, J. Kang, T. K. Kishimoto, R. D. Cummings, and R. P. McEver. Identification of N-terminal residues on P-selectin glycoprotein ligand-1 required for binding to P-selectin. J. Biol. Chem.2733:7078–7087, 1998.

    Google Scholar 

  23. Long, M., H. L. Goldsmith, D. F. J. Tees, and C. Zhu. Probabilistic modeling of shear-induced formation and breakage of doublets cross linked by receptor–ligand bonds. Biophys. J.76:1112–1128, 1998.

    Google Scholar 

  24. Majuri, M.-L., P. Mattila, and R. Renkonen. Recombinant E-selectin-protein mediates tumor cells adhesion via sialyl-Lea and sialyl-Lex. Biochem. Biophys. Res. Commun.182:1376–1382, 1992.

    Google Scholar 

  25. McEver, R. P., K. L. Moore, and R. D. Cummings. Leukocyte trafficking mediated by selectin–carbohydrate interactions. J. Biol. Chem.270:11025–11028, 1995.

    Google Scholar 

  26. McQuarrie, D. A. Kinetics of small systems. I. J. Phys. Chem.38:433–436, 1963.

    Google Scholar 

  27. Mehta, P., R. D. Cummings, and R. P. McEver. Affinity and kinetic analysis of P-selectin binding to P-selectin glycoprotein ligand-1. J. Biol. Chem.273:32506–32513, 1998.

    Google Scholar 

  28. Mehta, P., K. D. Patel, T. M. Laue, H. P. Erickson, and R. P. McEver. Soluble monomeric P-selectin containing only the lectin and epidermal growth factor domains binds to P-selectin glycoprotein ligand-1 on leukocytes. Blood90:2381–2389, 1997.

    PubMed  Google Scholar 

  29. Merkel, R., P. Nassoy, A. Leung, K. Ritchie, and E. Evans. Energy landscapes of receptor–ligand bonds explored with dynamic force spectroscopy. Nature (London)397:50–53, 1999.

    Google Scholar 

  30. Moore, K. L., K. D. Patel, R. E. Bruehl, L. Fugang, D. A. Johnson, H. S. Lichenstein, R. D. Cummings, D. F. Bainton, and R. P. McEver. P-selectin glycoprotein ligand-1 mediates rolling of human netrophils on P-selectin. J. Cell Biol.128:661–671, 1995.

    Google Scholar 

  31. Nicholson, M. W., A. N. Barclay, M. S. Singer, S. D. Rosen, and P. A. van der Merwe. Affinity and kinetic analysis of L-selectin (CD62L) binding to glycosylation-dependent cell-adhesion molecule-1. J. Biol. Chem.273:763–770, 1998.

    Google Scholar 

  32. Nelson, R. M., A. Venot, M. P. Bevilacqua, R. J. Linhardt, and I. Stamenkovic. Carbohydrate–protein interactions in vascular biology. Annu. Rev. Cell Dev. Biol.11:601–631, 1995.

    Google Scholar 

  33. Patel, K. D., K. L. Moore, M. U. Nollert, and R. P. McEver. Neutrophils use both shared and distinct mechanisms to adhere to selectins under static and flow conditions. J. Clin. Invest.96:1887–1896, 1995.

    Google Scholar 

  34. Pierres, A., A. M. Benoliel, P. Bongrand, and P. A. van der Merwe. Determination of the lifetime and force dependence of interactions of single bonds between surface-attached CD2 and CD48 adhesion molecules. Proc. Natl. Acad. Sci. U.S.A.93:15114–15118, 1996.

    Google Scholar 

  35. Pierres, A., A.-M. Benoliel, P. Bongrad, and P. A. van der Merwe. The dependence of the association rate of surface-attached adhesion molecules CD2 and CD48 on separation distance. FEBS Lett.403:239–244, 1997.

    Google Scholar 

  36. Pierres, A., H. Feracci, V. Delmas, A. M. Benoliel, J. P. Thiery, and P. Bongrand. Experimental study of the interaction range and association rate of surface-attached cadherin 11. Proc. Natl. Acad. Sci. U.S.A.95:9256–9261, 1998.

    Google Scholar 

  37. Pierres, A., A.-M. Benoliel, and P. Bongrad. Studying receptor-mediated cell adhesion at the single molecule level. Cell Adhes. Commun.5:375–395, 1998.

    Google Scholar 

  38. Piper, J. W., R. A. Swerlick, and C. Zhu. Determining force dependence of two-dimensional receptor–ligand binding affinity by centrifugation. Biophys. J.74:492–513, 1998.

    Google Scholar 

  39. Ramachandran, V., M. U. Nollert, H.-Y. Qiu, W.-J. Liu, R. D. Cummings, C. Zhu, and R. D. McEver. Tyrosine replacement in P-selectin glycoprotein ligand-1 affects distinct kinetic and mechanical properties of bonds with P-and L-selectin. Proc. Natl. Acad. Sci. U.S.A.96:13771–13776, 1999.

    Google Scholar 

  40. Selvaraj, P., M. L. Dustin, R. Mitnacht, T. Hunig, T. A. Springer, and M. L. Plunkett. Rosetting of human T lymphocytes with sheep and human erythrocytes. Comparison of human and sheep ligand binding using purified E receptor. J. Immunol.139:2690–2695, 1987.

    Google Scholar 

  41. Selvaraj, P., W. F. Rosse, R. Silber, and T. A. Springer. The major Fc receptor in blood has a phosphatidylinositol anchor and is deficient in paroxysmal nocturnal haemoglobinuria. Nature (London)333:565–567, 1988.

    Google Scholar 

  42. Smith, M. J., E. L. Berg, and M. B. Lawrence. A direct comparison of selectin-mediated transient, adhesive events using high temporal resolution. Biophys. J.77:3371–3383, 1999.

    Google Scholar 

  43. Springer, T. A. Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration. Annu. Rev. Physiol.57:827–872, 1995.

    PubMed  Google Scholar 

  44. Steegmaier, M., A. Levionovitz, S. Isenmann, E. Borges, M. Lenter, H. P. Kocher, B. Kleuser, and D. Vestweber. The E-selectin–ligand ESL-1 is a variant of a receptor for fibroblast growth factor. Nature (London)373:615–620, 1995.

    Google Scholar 

  45. Swift, D. G., R. G. Posner, and D. A. Hammer. Kinetics of adhesion of IgE-sensitized rat basophilic leukemia cells to surface-immobilized antigen in Couette flow. Biophys. J.75:2597–2611, 1998.

    Google Scholar 

  46. Takada, A., K. Ohmori, T. Yoneda, K. Tsuyuoka, A. Hasegawa, M. Kiso, and R. Kannagi. Contribution of carbohydrate antigens sialyl Lewis A and sialyl Lewis X to adhesion of human cancer cells to vascular endothelium. Cancer Res.53:354–361, 1993.

    PubMed  Google Scholar 

  47. Tees, D. F., R. E. Waugh, and D. A. Hammer. A microcantilever device to assess the effect of force on the lifetime of selectin–carbohydrate bonds. Biophys. J.80:668–682, 2001.

    Google Scholar 

  48. Ting-Beall, P., D. Needham, and R. M. Hochmuth. Volume and osmotic properties of human neutrophils. Blood81:2774–2780, 1993.

    Google Scholar 

  49. Tomlinson, J., J. L. Wang, S. H. Barsky, M. C. Lee, J. Bischoff, and M. Nguyen. Human colon cancer cells express multiple glycoprotein ligands for E-selectin. Int. J. Oncol.16:347–353, 2000.

    Google Scholar 

  50. Ushiyama, S., T. M. Laue, K. L. Moore, H. P. Erickon, and R. D. McEver. Structural and functional characterization of monomeric soluble P-selectin and comparison with membrane P-selectin. J. Biol. Chem.268:15229–15237, 1993.

    Google Scholar 

  51. Varki, A. Selectin ligands. Proc. Natl. Acad. Sci. U.S.A.91:7390–7397, 1994.

    Google Scholar 

  52. Varki, A. Selectin ligands: Will the real ones please stand up?J. Clin. Invest.99:158–162, 1997.

    Google Scholar 

  53. von Andrian, U. H., J. D. Chambers, L. M. McEvoy, R. F. Bargatze, K. E. Arfors, and E. C. Butcher. Two-step model of leukocyte–endothelial cell interactions in inflammation: Distinct roles for LECAM-1 and the leukocyte β2–integrins in vivo. Proc. Natl. Acad. Sci. U.S.A.88:7538–7542, 1991.

    PubMed  Google Scholar 

  54. Williams, T. E., P. Selvaraj, and C. Zhu. Concurrent binding to multiple ligands: Kinetic rates of CD16b for membrane-bound IgG1 and IgG2. Biophys. J.79:1858–1866, 2000.

    Google Scholar 

  55. Williams, T. E., S. Nagarajan, P. Selvaraj, and C. Zhu. Concurrent and independent binding of Fcγ receptors IIa and IIIb to surface-bound IgG. Biophys. J.79:1867–1875, 2000.

    Google Scholar 

  56. Williams, T. E., S. Nagarajan, P. Selvaraj, and C. Zhu. Quantifying the impact of membrane microtopology on effective two-dimensional affinity. J. Biol. Chem.276:13283–13288, 2001.

    Google Scholar 

  57. Zaifert, K., and M. C. Cohen. Colo-205 utilizes E-selectin to adhere to human endothelium. Clin. Immun. Immunopath.68:51–56, 1993.

    Google Scholar 

  58. Zhu, C., and T. E. Williams. Modeling concurrent binding of multiple molecular species in cell adhesion. Biophys. J.79:1850–1857, 2000.

    Google Scholar 

  59. Zhu, C., M. Long, and P. Bongrand. Measuring receptor/ligand interaction at the single bond level: Experimental and interpretative issues. Ann. Biomed. Eng. (in press).

  60. Zöllner, O., M. C. Lenter, J. E. Blanks, E. Borges, M. Steegmaier, H. G. Zerwes, and D. Vestweber. L-selectin from human, but not from mouse neutrophils binds directly to E-selectin. J. Cell Biol.136:707–716, 1997.

    Google Scholar 

  61. See AIP Document No. E-PAPS: ABMECF-029–010111 for a movie file showing the distinction between point and area attachments in separation processes. EPAPS document files may be retrieved free of charge from AIP's FTP server (http://www.AIP.org/pubservs/paps.html) or from ftp.aip.org in the directory /epaps/. For further information, e-mail: paps@aip.org or fax 516–576–2223.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Long, M., Zhao, H., Huang, KS. et al. Kinetic Measurements of Cell Surface E-Selectin/Carbohydrate Ligand Interactions. Annals of Biomedical Engineering 29, 935–946 (2001). https://doi.org/10.1114/1.1415529

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1415529

Navigation