Skip to main content
Log in

Computational Flow Modeling of the Left Ventricle Based on In Vivo MRI Data: Initial Experience

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A combined computational fluid dynamics (CFD) and magnetic resonance imaging (MRI) methodology has been developed to simulate blood flow in heart chambers, with specific application in the present study to the human left ventricle. The proposed framework employs MRI scans of a human heart to obtain geometric data, which are then used for the CFD simulations. These latter are accomplished by geometrical modeling of the ventricle using time-resolved anatomical slices of the ventricular geometry and imposition of inflow/outflow conditions at orifices notionally representing the mitral and aortic valves. The predicted flow structure evolution and physiologically relevant flow characteristics were examined and compared to existing information. The CFD model convincingly captures the three-dimensional contraction and expansion phases of endocardial motion in the left ventricle, allowing simulation of dominant flow features, such as the vortices and swirling structures. These results were qualitatively consistent with previous physiological and clinical experiments on in vivo ventricular chambers, but the accuracy of the simulated velocities was limited largely by the anatomical shortcomings in the valve region. The study also indicated areas in which the methodology requires improvement and extension. © 2001 Biomedical Engineering Society.

PAC01: 8719Hh, 4711+j, 8761Lh, 8719Uv

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ehman, R. L., and J. P. Felmlee. Adaptive technique for high-definition MR imaging of moving structures. Radiology173:255–263, 1989.

    Google Scholar 

  2. Engeln-MÜllges, G., and F. Uhlig. Numerical Algorithms with Fortran. New York: Springer, 1996.

  3. Ferziger, J. H., and M. PeriĆ. Computational Methods for Fluid Dynamics. Berlin: Springer, 1997.

  4. Gorodkov, A., N. B. Dobrova, J. P. Dubernard, G. I. Kiknadze, I. A. Gatchetchiladze, V. G. Olienikov, N. B. Kuzmina, J. L. Barat, and C. Baquey. Anatomical structures determining blood flow in the heart left ventricle. J. Mater. Sci.7:153–160, 1996.

    Google Scholar 

  5. Issa, R. I.Solution of implicitly discretized fluid flow equations by operator splitting. J. Comput. Phys.62:40–65, 1986.

    Google Scholar 

  6. Jones, T. N., and D. N. Metaxas. Patient-specific analysis of left ventricular blood flow. In: Proceedings of MICCAI '98. Heidelberg: Springer LNCS, 1998.

  7. Kilner, P. J., G.-Z. Yang, R. H. Mohiaddin, D. N. Firmin, and M. H. Yacoub. Asymmetric redirection of flow through the heart. Nature (London)404:759–761, 2000.

    Google Scholar 

  8. Kim, W. Y., P. G. Walker, E. M. Pederson, J. K. Poulsen, S. Oyre, K. Houlind, and A. P. Yoganathan. Left ventricular blood flow patterns in normal subjects: a quantitative analysis by three-dimensional magnetic resonance velocity mapping. J. Am. Coll. Cardiol.26:224–238, 1995.

    Google Scholar 

  9. Levick, J. R. An Introduction to Cardiovascular Physiology, 2nd ed. Oxford: Butterworth-Heinemann, 1995.

  10. Long, Q., X. Y. Xu, M. W. Collins, T. M. Griffith, and M. Bourne. The combination of magnetic resonance angiography and computational fluid dynamics: a critical review. Crit. Rev. Biomed. Eng.26:227–274, 1998.

    Google Scholar 

  11. Lorenz, C. H., E. S. Walker, V. L. Morgan, S. S. Klein, and T. P. Graham, Jr.Normal human right and left ventricular mass, systolic function, and gender differences by cine magnetic resonance imaging. J. Cardiovasc. Magn. Reson.1:7–21, 1999.

    Google Scholar 

  12. Moore, J. A., B. K. Rutt, S. J. Karlik, K. Yin, and C. R. Ethier. Computational blood flow modelling based on in vivo measurements. Ann. Biomed. Eng.27:627–640, 1999.

    Google Scholar 

  13. Osman, N. F., W. S. Kerwin, E. R. McVeigh, and J. L. Prince. Cardiac motion tracking using CINE harmonic phase (HARP) magnetic resonance imaging. Magn. Reson. Med.42:1048–1060, 1999.

    Google Scholar 

  14. Park, J., D. Metaxas, A. A. Young, and L. Axel. Deformable models with parameter functions for cardiac motion analysis from tagged MRI data. IEEE Trans. Med. Imaging15:278–289, 1996.

    Google Scholar 

  15. Pasipoularides, A.Clinical assessment of ventricular ejection dynamics with and without outflow obstruction. J. Am. Coll. Cardiol.15:859–882, 1990.

    Google Scholar 

  16. Peskin, C. S., and D. M. McQueen. A three-dimensional computational method for blood flow in the heart-I. Immersed elastic fibers in a viscous incompressible flow. J. Comput. Phys.81:372–405, 1989.

    Google Scholar 

  17. Steinman, D. A., R. Frayne, X. D. Zhang, B. K. Rutt, and C. R. Ethier. MR measurement and numerical simulation of steady flow in an end-to-side anastomosis model. J. Biomech.29:537–542, 1996.

    Google Scholar 

  18. Stuber, M., S. E. Fischer, M. B. Scheidegger, and P. Boesiger. Slice following in cardiac imaging with optimized rf pulse-angles. In 12th Annual Conference of the Society of Magnetic Resonance in Medicine, New York, August 1993, p. 418.

  19. Stuber, M., E. Nagel, S. E. Fischer, M. A. Spiegel, M. B. Scheidegger, and P. Boesiger. Quantification of the local heart wall motion by magnetic resonance myocardial tagging. Comput. Med. Imaging Graphics22:217–228, 1998.

    Google Scholar 

  20. Taylor, C. A. A computational framework for investigating hemodynamic factors in vascular adaptation and disease. Thesis, Stanford University, 1996.

  21. Taylor, T. W., H. Suga, Y. Goto, H. Okino, and T. Yamaguchi. The effects of cardiac infarction on realistic three-dimensional left ventricular blood ejection. J. Biomech. Eng.118:106–110, 1996.

    Google Scholar 

  22. Van Leer, B.Towards the ultimate conservative difference scheme V: A second-order sequel to Godunov's method. J. Comput. Phys.32:361–370, 1979.

    Google Scholar 

  23. Weston, S. J., N. B. Wood, G. Tabor, A. D. Gosman, and D. N. Firmin. Combined MRI and CFD analysis of fully developed steady and pulsatile laminar flow through a bend. J. Magn. Reson. Imaging8:1158–1171, 1998.

    Google Scholar 

  24. Wood, N. B.Aspects of fluid dynamics applied to the larger arteries. J. Theor. Biol.199:137–161, 1999).

    Google Scholar 

  25. Yellin, E. L., S. Nikolic, and R. W. M. Frater. Left ventricular filling dynamics and diastolic function. Prog. Cardiovasc. Diseases32:247–271, 1990.

    Google Scholar 

  26. Young, A. A., and L. Axel. Three-dimensional motion and deformation of the heart wall: estimation with spatial modulation of magnetization—A model-based approach. Radiology185:241–247, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saber, N.R., Gosman, A.D., Wood, N.B. et al. Computational Flow Modeling of the Left Ventricle Based on In Vivo MRI Data: Initial Experience. Annals of Biomedical Engineering 29, 275–283 (2001). https://doi.org/10.1114/1.1359452

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1359452

Navigation