Skip to main content
Log in

Kinetic Model for Integrin-mediated Adhesion Release During Cell Migration

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Under many circumstances, cell migration speed is limited by the rate of cell-substratum detachment at the cell rear. We have constructed a mathematical model to integrate how the biophysical and biochemical interactions between integrins, the cytoskeleton, and the matrix affect rear retraction and linkage dissociation mechanisms. Our model also examines how applied forces and integrin clustering affect retraction kinetics. The model predicts two distinct detachment phenotypes. In the first, detachment is extremely rapid, dominated by integrin extracellular-matrix dissociation, and it occurs at high forces or low adhesiveness. In the second, detachment is much slower, dominated by integrin-cytoskeleton dissociation, and it occurs at low forces or high adhesiveness. The amount of integrin extracted from the rear of the cell is an assay for the detachment phenotype. During rapid detachment cells leave little integrin on the substratum whereas during slow detachment a large fraction of integrin rips from the membrane. This model delineates parameters which can be exploited to regulate cell speed in each detachment regime. The model also offers an explanation as to why some cell types, such as leukocytes or keratocytes, are able to detach easily and move very quickly while other cell types, such as fibroblasts, tend to migrate more slowly and release many more integrins during detachment. © 1999 Biomedical Engineering Society.

PAC99: 8717Jj, 8717Aa, 8715Rn, 8716Dg

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Akiyama, S. K., and K. M. Yamada. Interaction of plasma fibronectin with fibroblastic cells in suspension. J. Biol. Chem. 260:4492–4500, 1985.

    Google Scholar 

  2. Alon, R., S. Chen, K. D. Puri, E. B. Finger, and T. A. Springer. The kinetics of L-selection tethers and mechanics of selection-mediated rolling. J. Cell Biol. 138:1169–1180, 1997.

    Google Scholar 

  3. Bard, J. B. L., and E. D. Hay. The behavior of fibroblasts from the developing avian cornea. J. Cell Biol. 67:400–418, 1975.

    Google Scholar 

  4. Beckerle, M. C., K. Burridge, G. N. DeMartino, and D. E. Croall. Colocalization of calcium-dependent protease II and one of its substrates at sites of cell adhesion. Cell 51:569–577, 1987.

    Google Scholar 

  5. Bell, G. I. Models for the specific adhesion of cells to cells. Science 200:618–627, 1978.

    Google Scholar 

  6. Chen, W.-T. Mechanism of retraction of the trailing edge during fibroblast movement. J. Cell Biol. 90:187–200, 1981.

    Google Scholar 

  7. Crowley, E., and A. F. Horwitz. Tyrosine phosphorylation and cytoskeletal tension regulate the relase of fibroblast adhesions. J. Cell Biol. 131:525–537, 1995.

    Google Scholar 

  8. de Beus, E., A. de Beus, and K. Jacobson. The role of β1-integrin mediated adhseions in Xenopus laevis keratocyte locomotion. Mol. Biol. Cell Suppl. 8:264a, 1997.

    Google Scholar 

  9. DiMilla, P. A., K. Barbee, and D. A. Lauffenburger. Mathematical model for the effects of adhesion and mechanics on cell migration speed. Biophys. J. 60:15–37, 1991.

    Google Scholar 

  10. Evans, E. A., D. Berk, and A. Leung. Detachment of agglutinin-bonded red blood cells. I. Forces to rupture molecular-point attachments. Biophys. J. 59:838–848, 1991.

    Google Scholar 

  11. Evans, E., and K. Ritchie. Dynamic strength of molecular adhesion bonds. Biophys. J. 72:1541–1555, 1997.

    Google Scholar 

  12. Fath, K. R., C. J. Edgell, and K. Burridge. The distribution of integrins in focal contacts is determined by the substratum composition. J. Cell. Sci. 92:67–75, 1989.

    Google Scholar 

  13. Feltkamp, C. A., M. A. Pijnenburg, and E. Roos. Organization of talin and vinculin in adhesion plaques of wet-cleaved chicken embryo fibroblasts. J. Cell. Sci. 100:579–587, 1991.

    Google Scholar 

  14. Galbraith, C. G., and M. P. Sheetz. A micromachined device provides a new bend on fibroblast traction forces. Proc. Natl. Acad. Sci. USA 94:9114–9118, 1997.

    Google Scholar 

  15. Goodman, S. L., G. Risse, and K. von der Mark. The E8 subfragment of laminin promotes locomotion of myoblasts over extracellular matrix. J. Cell Biol. 109:799–809, 1989.

    Google Scholar 

  16. Hay, E. D. Interaction of migrating embryonic cells with extracellular matrix. Exp. Biol. Bed. 10:174–193, 1985.

    Google Scholar 

  17. Hendey, B., C. B. Klee, and F. R. Maxfield. Inhibition of neutrophil chemotaxis on vitronectin by inhibitors of calcineurin. Science 258:296–299, 1992.

    Google Scholar 

  18. Hughes, P. E., F. Diaz-Gonzalez, L. Leong, C. Wu, J. A. McDonald, S. Shattil, and M. H. Ginsberg. Breaking the integrin hinge: A defined structural constraint regulates integrin signaling. J. Biol. Chem. 271:6571–6574, 1996.

    Google Scholar 

  19. Huttenlocher, A., S. P. Palecek, Q. Lu, W. Zhang, R. L. Mellgren, D. A. Lauffenburger, M. H. Ginsberg, and A. F. Horwitz. Regulation of cell migration by the calciumdependent protease calpain. J. Biol. Chem. 272:32719–32722, 1997.

    Google Scholar 

  20. Hynes, R. O. Integrins: Versatility, modulation, and signaling in cell adhesion. Cell 69:11–25, 1992.

    Google Scholar 

  21. Inomata, M., M. Hayashi, Y. Ohno-Iwashita, S. Tsubuki, T. C. Saido, and S. Kawahima. Involvement of calpain in integrin-mediated signal transduction. Arch. Biochem. Biophys. 328:129–134, 1996.

    Google Scholar 

  22. Jacobson, K., A. Ishihara, and R. Inman. Lateral diffusion of proteins in membranes. Annu. Rev. Physiol. 49:163–175, 1987.

    Google Scholar 

  23. Jenkins, A. L., L. Nannizzi-Alaimo, D. Silver, J. R. Sellers, M. H. Ginsberg, D. A. Law, and D. R. Phillips. Tyrosine phosphorylation of the β3 cytoplasmic domain mediates integrin-cytoskeletal interactions. J. Biol. Chem. 273:13878–13885, 1998.

    Google Scholar 

  24. Kuntz, R. M., and W. M. Saltzman. Neutrophil motility in extracellular matrix gels: Mesh size and adhesion affect speed of migration. Biophys. J. 72:1472–1480, 1997.

    Google Scholar 

  25. Lane, R. D., D. M. Allan, and R. L. Mellgren. A comparison of the intracellular distribution of μ-calpain, m-calpain, and calpistatin in proliferating human A431 cells. Exp. Cell Res. 203:5–16, 1992.

    Google Scholar 

  26. Lauffenburger, D. A., and A. F. Horwitz. Cell migration: A physically integrated molecular process. Cell 84:359–369, 1996.

    Google Scholar 

  27. Lawson, M. A., and F. R. Maxfield. Ca2+-and calcineurin-dependent recycling of an integrin to the front of migrating neutrophils. Nature (London) 377:75–79, 1995.

    Google Scholar 

  28. Leckband, D., W. Mueller, F. J. Schmitt, and H. Ringsdorf. Molecular mechanisms determining the strength of receptor-mediated intermembrane adhesion. Biophys. J. 69:1162–1169, 1995.

    Google Scholar 

  29. Lee, J., M. Leonard, T. Oliver, A. Ishihara, and K. Jacobson. Traction forces generated by locomoting keratocytes. J. Cell Biol. 127:1957–1964, 1994.

    Google Scholar 

  30. Mandeville, J. T., and F. R. Maxfield. Effects of buffering intracellular free calcium on neutrophil migration through three-dimensional matrices. J. Cell Physiol. 171:168–178, 1997.

    Google Scholar 

  31. Marks, P. W., B. Hendey, and F. R. Maxfield. Attachment to fibronectin or vitronectin makes human neutrophil migration sensitive to alterations in cytosolic free calcium concentration. J. Cell Biol. 112:149–158, 1991.

    Google Scholar 

  32. Niggimann, B., K. Maaser, H. Lu, R. Kroczek, K. S. Zanker, and P. Friedl. Locomotory phenotypes of human tumor cell lines and T lymphocytes in a three-dimensional collagen lattice. Cancer Lett. (Shannon, Ireland) 118:173–180, 1997.

    Google Scholar 

  33. Palecek, S. P., A. Huttenlocher, A. F. Horwitz, and D. A. Lauffenburger. Physical and biochemical regulation of integrin release during rear detachment of migrating cells. J. Cell. Sci. 111:929–940, 1998.

    Google Scholar 

  34. Palecek, S. P., J. C. Loftus, M. H. Ginsberg, D. A. Lauffenburger, and A. F. Horwitz. Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature (London) 385:537–540, 1997.

    Google Scholar 

  35. Palecek, S. P., C. E. Schmidt, D. A. Lauffenburger, and A. F. Horwitz. Integrin dynamics on the tail region of migrating fibroblasts. J. Cell. Sci. 109:941–952, 1996.

    Google Scholar 

  36. Saterbak, A., and D. A. Lauffenburger. Adhesion mediated by bonds in series. Biotechnol. Prog. 12:682–699, 1996.

    Google Scholar 

  37. Schmidt, C., A. F. Horwitz, D. A. Lauffenburger, and M. P. Sheetz. Integrin/cytoskeleton interactions in migrating fibroblasts are dynamic, asymmetric, and regulated. J. Cell Biol. 123:977–991, 1993.

    Google Scholar 

  38. Schmidt, C., H. Pommerenke, F. Durr, B. Nebe, and J. Rychly. Mechanical stressing of integrin receptors induces enhanced tyrosine phosphorylation of cytoskeletally anchored proteins. J. Biol. Chem. 273:5081–5085, 1998.

    Google Scholar 

  39. Sczekan, M. M., and R. L. Juliano. Internalization of the fibronectin receptor is a constitutive process. J. Cell. Physiol. 142:575–580, 1990.

    Google Scholar 

  40. Spudich, J. A. S. Motor molecules in motion. Nature (London) 348:284–285, 1990.

    Google Scholar 

  41. Suzuki, K., T. C. Saido, and S. Hirai. Modulation of cellular signals by calpain. Ann. (N.Y.) Acad. Sci. 674:218–227, 1992.

    Google Scholar 

  42. Tranqui, L., and M. R. Block. Intracellular processing of talin occurs within focal adhesions. Exp. Cell Res. 217:149–156, 1995.

    Google Scholar 

  43. Wang, N., and D. E. Ingber. Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension. Biophys. J. 66:2181–2189, 1994.

    Google Scholar 

  44. Ward, M. D., and D. A. Hammer. A theoretical analysis for the effect of focal contact formation on cell-substrate attachment strength. Biophys. J. 64:936–959, 1993.

    Google Scholar 

  45. Ward, M. D., and D. A. Hammer. Focal contact assembly through cytoskeletal polymerization: Steady state analysis. J. Math. Biol. 32:677–704, 1994.

    Google Scholar 

  46. Wessels, D., H. Vawter-Hugart, J. Murray, and D. R. Soll. Three-dimensional dynamics of pseudopod formation and the regulation of turning during the motility cycle of Dictyostelium. Cell Motil. Cytoskeleton 27:1–12, 1994.

    Google Scholar 

  47. Wilson, A. K., G. Gorgas, W. D. Claypool, and P. de Lanerolle. An increase or decrease in myosin II phosphorylation inhibits macrophage motility. J. Cell Biol. 114:277–283, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palecek, S.P., Horwitz, A.F. & Lauffenburger, D.A. Kinetic Model for Integrin-mediated Adhesion Release During Cell Migration. Annals of Biomedical Engineering 27, 219–235 (1999). https://doi.org/10.1114/1.176

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.176

Navigation