Skip to main content
Log in

Biosynthetic Activity in Heart Valve Leaflets in Response to In Vitro Flow Environments

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The development of bioreactors for tissue engineered heart valves would be aided by a thorough understanding of how mechanical forces impact cells within valve leaflets. The hypothesis of the present study is that flow may influence the biosynthetic activity of aortic valve leaflet cells. Porcine leaflets were exposed to one of several conditions for 48 h, including steady or pulsatile flow in a tubular flow system at 10 or 20 l/min, and steady shear stress in a parallel plate flow system at 1, 6, or 22 dyne/cm2. Protein, glycosaminoglycan, and DNA synthesis increased during static incubation but remained at basal levels after exposure to flow. The modulation of synthetic activity was attributed to the presence of a shear stress on the leaflet surface, which may be transmitted to cells within the leaflet matrix through tensile forces. The α-smooth muscle (α-SM) actin distribution observed in fresh leaflets was proportionately decreased after exposure to antibiotics and not recovered by either static incubation or exposure to flow. These results indicate that exposure to flow maintains leaflet synthetic activity near normal levels, but that the inclusion of another force, such as bending or backpressure, may be necessary to preserve α-SM actin immunoreactive cells. © 2001 Biomedical Engineering Society.

PAC01: 8780Rb, 8719Hh, 8719Uv, 8715Rn, 8768+z, 8719Ff, 8714Gg, 8714Ee

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bairati, A., and S. DeBiasi. Presence of a smooth muscle system in aortic valve leaflets. Anat. Embryol.161:329–340, 1981.

    Google Scholar 

  2. Buckwalter, J. A., Articular cartilage. Part I. Tissue design and chondrocyte-matrix interactions.J. Bone Jt. Surg. 79:600–611, 1997.

    Google Scholar 

  3. Chen, A. C., and R. L. Sah. Effect of static compression on proteoglycan biosynthesis by chondrocytes transplanted to articular cartilage in vitro. J. Orthop. Res.16:542–550, 1998.

    Google Scholar 

  4. Crescenzo, D. G., S. L. Hilbert, R. H. Messier, P. W. Domkowski, M. K. Barrick, P. L. Lange, V. J. Ferrans, R. B. Wallace, and R. A. Hopkins. Human cryopreserved homografts: Electron microscopic analysis of cellular injury. Ann. Thorac. Surg.55:25–31, 1993.

    Google Scholar 

  5. Galea, J., J. Armstrong, S. E. Francis, G. Cooper, D. C. Grossman, and C. M. Holt. Alterations in c-fos expression, cell proliferation and apoptosis in pressure distended human saphenous vein. Cardiovasc. Res.44:436–448, 1999.

    Google Scholar 

  6. Galietta, L. J., S. Lantero, A. Gazzolo, O. Sacco, L. Romano, G. A. Rossi, and O. Zegarra-Moran. An improved method to obtain highly differentiated monolayers of human bronchial epithelial cells. In Vitro Cell. Dev. Biol. Anim.34:478–481, 1998.

    Google Scholar 

  7. Gray, M. L., A. M. Pizanelli, R. C. Lee, A. J. Grodzinsky, and D. A. Swann. Kinetics of the chondrocyte biosynthetic response to compressive load and release. Biochim. Biophys. Acta991:415–425, 1989.

    Google Scholar 

  8. Hoerstrup, S. P., R. Sodian, J. S. Sperling, D. P. Martin, F. J. Schoen, J. P. Vacanti, and J. E. Mayer. A trileaflet heart valve grown in vitro [abstract]. Circulation100suppl I:I527–528, 1999.

    Google Scholar 

  9. Hogg, N., J. Browning, T. Howard, C. Winterford, D. Fitzpatrick, and G. Gobe. Apoptosis in vascular endothelial cells caused by serum deprivation, oxidative stress and transforming growth factor-beta. Endothelium7:35–49, 1999.

    Google Scholar 

  10. Ingber, D. E.Tensegrity: The architectural basis of cellular mechanotransduction. Annu. Rev. Physiol.59:575–599, 1997.

    Google Scholar 

  11. Jouret, C. Effects of Matrix and Phenotype on Human Dermal Fibroblast Attachment Under Laminar Shear Stress: Implications for the Development of Tissue-Engineered Heart Valves. MS thesis. Atlanta, GA: Georgia Institute of Technology, 1997.

    Google Scholar 

  12. Leeson-Dietrich, J., D. Boughner, and I. Vesely. Porcine pulmonary and aortic valves: A comparison of their tensile viscoelastic properties at physiological strain rates. J. Heart Valve Dis.4:88–94, 1995.

    Google Scholar 

  13. Levesque, M. J., and R. M. Nerem. The elongation and orientation of cultured endothelial cells in response to shear stress. J. Biomech. Eng.107:341–347, 1985.

    Google Scholar 

  14. McGiffin, D. C., M. F. O'Brien, E. G. Stafford, M. A. Gardner, and P. G. Pohlner. Long-term results of the viable cryopreserved allograft aortic valve: Continuing evidence for superior valve durability. J. Card. Surg.3Suppl:289–296, 1988.

    Google Scholar 

  15. McIntire, L. V., Bioengineering and vascular biology. Ann. Biomed. Eng.22:2–13, 1994.

    Google Scholar 

  16. Messier, R. H., B. L. Bass, H. M. Aly, J. L. Jones, P. W. Domkowski, R. B. Wallace, and R. A. Hopkins. Dual structural and functional phenotypes of the porcine aortic valve interstitial population: Characteristics of the leaflet myofibroblast. J. Surg. Res.57:1–21, 1994.

    Google Scholar 

  17. Messier, R. H., P. W. Domkowski, H. M. Aly, A. S. Abd-Elfattah, D. G. Crescenzo, R. B. Wallace, and R. A. Hopkins. High energy phosphate depletion in leaflet matrix cells during processing of cryopreserved cardiac valves. J. Surg. Res.52:483–488, 1992.

    Google Scholar 

  18. Muller, G., A. Muller, H. Jonuleit, K. Steinbrink, C. Szalma, L. Paragnik, K. Lingnau, E. Schmidt, J. Knop, and A. H. Enk. Fetal calf serum-free generation of functionally active murine dendritic cells suitable for in vivo therapeutic approaches. J. Invest. Dermatol.114:142–149, 2000.

    Google Scholar 

  19. Niklason, L. E., J. Gao, W. M. Abbott, K. K. Hirschi, S. Houser, R. Marini, and R. Langer. Functional arteries grown in vitro. Science284:489–493, 1999.

    Google Scholar 

  20. O'Brien, M. F., G. Stafford, M. Gardner, P. Pohlner, D. McGiffin, N. Johnston, A. Brosnan, and P. Duffy. The viable cryopreserved allograft aortic valve. J. Card. Surg.2Suppl:153–167, 1987.

    Google Scholar 

  21. Ott, M. J., and B. J. Ballermann. Shear stress-conditioned, endothelial cell-seeded vascular grafts: Improved cell adherence in response to in vitro shear stress. Surgery (St. Louis)117:334–339, 1995.

    Google Scholar 

  22. Quick, D. W., K. S. Kunzelman, J. M. Kneebone, and R. P. Cochran. Collagen synthesis is upregulated in mitral valves subjected to altered stress. ASAIO J.43:181–186, 1997.

    Google Scholar 

  23. Reinhart, W. H.Shear dependence of endothelial functions. Experientia50:87–93, 1994.

    Google Scholar 

  24. Ross, D.Pulmonary valve autotransplantation (the Ross operation). J. Card. Surg.3Suppl:313–319, 1988.

    Google Scholar 

  25. Saini, S., and T. M. Wick. Bioreactor characterization and optimization for cartilage tissue engineering. In: Proceedings of the First Joint Meeting of BMES & EMBS, Abstract 1.4.2.6. Atlanta, GA, 1999 (CD ROM published by IEEE).

  26. Schneider, P. J., and J. D. Deck. Tissue and cell renewal in the natural aortic valve of rats: An autoradiographic study. Cardiovasc. Res.15:181–189, 1981.

    Google Scholar 

  27. Seliktar, D., R. A. Black, R. P. Vito, and R. M. Nerem. Dynamic mechanical conditioning of collagen-gel blood vessel constructs induces remodeling in vitro. Ann. Biomed. Eng.28:351–362, 2000.

    Google Scholar 

  28. Shinoka, T., P. X. Ma, D. Shum-Tim, C. K. Breuer, R. A. Cusick, G. Zund, R. Langer, J. P. Vacanti, and J. E. Mayer. Tissue engineered heart valves: Autologous valve replacement study in a lamb model. Circulation94suppl II:II164–168, 1996.

    Google Scholar 

  29. Thubrikar, M. J. The Aortic Valve. Boca Raton, FL: CRC, 1991.

    Google Scholar 

  30. Vanhee, C. Influence of Shear Stress on Cell Proliferation and on Protein Kinase C Localization in an Anchorage-Dependent Mammalian Cell Line. MS thesis. Atlanta, GA: Georgia Institute of Technology, 1991.

    Google Scholar 

  31. Vesely, I., and R. Noseworthy. Micromechanics of the fibrosa and the ventricularis in aortic valve leaflets. J. Biomech.25:101–113, 1992.

    Google Scholar 

  32. Weston, M. W. Characterization of the Shear Stress on the Aortic Valve Leaflet Surface and Its Effects on Cellular Biosynthetic Activity. PhD thesis. Atlanta, GA: Georgia Institute of Technology, 2000.

    Google Scholar 

  33. Weston, M. W., D. V. LaBorde, and A. P. Yoganathan. Estimation of the shear stress on the surface of an aortic valve leaflet. Ann. Biomed. Eng.27:572–579, 1999.

    Google Scholar 

  34. Weston, M. W., S. Goldstein, R. E. Epting, S. He, J. M. Mauldin, and A. P. Yoganathan. Establishing a protocol to quantify leaflet fibroblast responses to physiologic flow through a viable heart valve. ASAIO J.43:M377–382, 1997.

    Google Scholar 

  35. Willems, I. E. M. G., M. G. Havenith, J. F. M. Smits, and M. J. A. P. Daemen. Structural alterations in heart valves during left ventricular pressure overload in the rat. Lab. Invest.71:127–133, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weston, M.W., Yoganathan, A.P. Biosynthetic Activity in Heart Valve Leaflets in Response to In Vitro Flow Environments. Annals of Biomedical Engineering 29, 752–763 (2001). https://doi.org/10.1114/1.1397794

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1397794

Navigation