COMPARATIVE STUDY OF CONFIGURATIONS FOR PHOTOVOLTAIC-THERMOELECTRIC GENERATOR COGENERATION SYSTEM

Authors

  • Razman Ayop Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310, Johor, Malaysia https://orcid.org/0000-0003-3721-2835
  • Chee Wei Tan Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310, Johor, Malaysia
  • Shahrin Md Ayob Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310, Johor, Malaysia
  • Lau Kwan Yiew Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310, Johor, Malaysia https://orcid.org/0000-0001-9979-9809
  • Ho Wai Shin Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v85.20222

Keywords:

PV, TEG, MPPT, P&O, boost converter

Abstract

Photovoltaic (PV) converts solar energy to electrical energy directly. During this process, the PV produce energy losses in the form of heat energy. To improve the system's efficiency, this heat energy is converted into electrical energy using the thermoelectric generator (TEG). The PV and TEG have a nonlinear current-voltage characteristic and it requires a power converter with maximum power point tracking (MPPT) to properly extract the energy. There are several configurations of power converters available for the PV-TEG cogeneration system (PTCS). Nonetheless, the literature that compares the performance of the configurations is unavailable. This paper compares 4 configurations for the PTCS, which include the separate boost full MPPT (SBFM), separate boost partial MPPT, series source boost MPPT, and PV boost MPPT with series TEG. The boost converter with perturb and observe MPPT method is used for all configurations to ensure a fair comparison. The results show that SBFM can efficiently extract the energy from both PV and TEG up to 98.5%. The other configurations can efficiently extract energy from the PV (more than 98.5%). However, the energy extracts from the TEG have a low efficiency down to 87%. Overall, the configuration chosen for the PTCS affects the efficiency of the system.

References

REN21. 2023. Renewables 2022 Global Status Report (GSR). Renewable Energy Policy Network for the 21st Century (REN21).

A. H. Mutlag, A. Mohamed, and H. Shareef. 2016. An Improved Perturbation and Observation Based Maximum Power Point Tracking Method for Photovoltaic Systems. Jurnal Teknologi. 78(6-2): 06/05. Doi: 10.11113/jt.v78.8887.

S. C. Wang, H. Y. Pai, G. J. Chen, and Y. H. Liu. 2020. A Fast and Efficient Maximum Power Tracking Combining Simplified State Estimation With Adaptive Perturb and Observe. IEEE Access. 8: 155319-155328. Doi: 10.1109/ACCESS.2020.3019197.

A. Ballaji, R. Dash, V. Subburaj, J. R. Kalvakurthi, D. Swain, and S. C. Swain. 2022. Design & Development of MPPT Using PSO With Predefined Search Space Based on Fuzzy Fokker Planck Solution. IEEE Access. 10: 80764-80783. Doi: 10.1109/ACCESS.2022.3195036.

N. Priyadarshi, S. Padmanaban, J. B. Holm-Nielsen, F. Blaabjerg, and M. S. Bhaskar. 2020. An Experimental Estimation of Hybrid ANFIS–PSO-Based MPPT for PV Grid Integration Under Fluctuating Sun Irradiance. IEEE Systems Journal. 14(1): 1218-1229. Doi: 10.1109/JSYST.2019.2949083.

J. H. Bae, D. Y. Kim, J. W. Shin, S. E. Lee, and K. C. Kim. 2020. Analysis on the Features of NOCT and NMOT Tests With Photovoltaic Module. IEEE Access. 8: 151546-151554. Doi: 10.1109/ACCESS.2020.3017372.

M. Sabry, A. Lashin, and M. Al Turkestani. 2021. Experimental and Simulation Investigations of CPV/TEG Hybrid System. Journal of King Saud University - Science. 33(2): 101321.

Doi: https://doi.org/10.1016/j.jksus.2020.101321.

C. Babu and P. Ponnambalam. 2018. The Theoretical Performance Evaluation of Hybrid PV-TEG System. Energy Conversion and Management. 173: 450-460.

Doi: https://doi.org/10.1016/j.enconman.2018.07.104.

M. R. Ariffin, S. Shafie, W. Z. W. Hassan, N. Azis, and M. E. Ya'acob. 2017. Conceptual Design of Hybrid Photovoltaic-thermoelectric Generator (PV/TEG) for Automated Greenhouse System. 2017 IEEE 15th Student Conference on Research and Development (SCOReD). 309-314. Doi: 10.1109/SCORED.2017.8305373.

S. Koushik, S. Das, V. Sharma, P. Walde, and N. Maji. 2018. PV and TEG Hybrid Power Generation for Enhancement of Efficiency. 2018 8th IEEE India International Conference on Power Electronics (IICPE). 1-6.

Doi: 10.1109/IICPE.2018.8709422.

V. Verma, A. Kane, and B. Singh. 2016. Complementary Performance Enhancement of PV Energy System through Thermoelectric Generation. Renewable and Sustainable Energy Reviews. 58: 1017-1026.

Doi: https://doi.org/10.1016/j.rser.2015.12.212.

B. A, C. I, K. K, B. R, and B. H. I. 2018. Maximum Power Extraction from a Photovoltaic Panel and a Thermoelectric Generator Constituting a Hybrid Electrical Generation System. 2018 International Conference on Smart Grid (icSmartGrid), 4-6 Dec. 2018. 276-282.

Doi: 10.1109/ISGWCP.2018.8634534.

T. H. Kwan and X. Wu. 2017. The Lock-On Mechanism MPPT Algorithm as Applied to the Hybrid Photovoltaic Cell and Thermoelectric Generator System. Applied Energy. 204: 873-886.

Doi: https://doi.org/10.1016/j.apenergy.2017.03.036.

K. N. 2021. Photovoltaic and Thermoelectric Generator Combined Hybrid Energy System with an Enhanced Maximum Power Point Tracking Technique for Higher Energy Conversion Efficiency.Sustainability. 13(6): 3144. https://www.mdpi.com/2071-1050/13/6/3144.

H. Rezk, Z. M. Ali, O. Abdalla, O. Younis, M. R. Gomaa, and M. Hashim. 2019. Hybrid Moth-Flame Optimization Algorithm and Incremental Conductance for Tracking Maximum Power of Solar PV/Thermoelectric System under Different Conditions. Mathematics. 7(10): 875. https://www.mdpi.com/2227-7390/7/10/875.

N. Kanagaraj and H. Rezk. 2021. Dynamic Voltage Restorer Integrated with Photovoltaic-Thermoelectric Generator for Voltage Disturbances Compensation and Energy Saving in Three-Phase System. Sustainability. 13(6): 3511. https://www.mdpi.com/2071-1050/13/6/3511.

R. Ayop and C. W. Tan. 2016. A Comparison Study of Interpolation and Circuit based Photovoltaic Mathematical Models. 2016 IEEE International Conference on Power and Energy (PECon), 28-29 Nov. 2016. 626-631. Doi: 10.1109/PECON.2016.7951636.

A. Fudholi, M. Zohri, I. Taslim, M. A. Indrianti, and I. N. Manyoe. 2020. Theoretical Approach Model of Building Integrated Photovoltaic Thermal Air Collector. International Journal of Power Electronics and Drive Systems. 2: 1002.

R. Ayop, C. W. Tan, A. L. Bukar, A. Jusoh, N. D. Muhamad, and S. N. S. Nasir. 2022. The Design of Energy Storage based on Thermoelectric Generator and bidirectional Converter. International Journal of Power Electronics and Drive Systems (IJPEDS). 13(3): 1605-1613. Doi: 10.11591/ijpeds.v13.i3.pp1605-1613

M. Alian Fini, D. Gharapetian, and M. Asgari. 2022. Efficiency Improvement of Hybrid PV-TEG System based on an Energy, Exergy, Energy-economic and Environmental Analysis; Experimental, Mathematical and Numerical Approaches. Energy Conversion and Management. 265: 115767.

Doi: https://doi.org/10.1016/j.enconman.2022.115767.

R. Ayop and C. W. Tan. 2018. Design of Boost Converter based on Maximum Power Point Resistance for Photovoltaic Applications. Solar Energy. 160: 322-335.

Doi: https://doi.org/10.1016/j.solener.2017.12.016.

H. Jedi and G. A. Hussain. 2022. A 1 MHz Soft-switching Boost DC-DC Converter with Matching Network. International Journal of Power Electronics and Drive Systems. 13(4): 2226.

D. W. Hart. 2011. Power Electronics. Valparaiso University, Indiana: Tata McGraw-Hill Education.

R. Ayop, M. F. I. Zaki, C. W. Tan, S. Md Ayob, and M. J. Abdul Aziz. 2022. Optimum Sizing of Components for Photovoltaic Maximum Power Point Tracking Buck Converter. Solar Energy. 243: 236-246.

Doi: https://doi.org/10.1016/j.solener.2022.07.032.

H. Attia and S. Ulusoy. 2021. A new Perturb and Observe MPPT Algorithm based on Two Steps Variable Voltage control. International Journal of Power Electronics and Drive Systems. 12(4): 2201.

Downloads

Published

2023-08-21

Issue

Section

Science and Engineering

How to Cite

COMPARATIVE STUDY OF CONFIGURATIONS FOR PHOTOVOLTAIC-THERMOELECTRIC GENERATOR COGENERATION SYSTEM. (2023). Jurnal Teknologi, 85(5), 73-79. https://doi.org/10.11113/jurnalteknologi.v85.20222