FABRICATION AND CHARACTERIZATION OF POLYVINYLIDENE FLUORIDE COMPOSITE NANOFIBER MEMBRANE FOR WATER FLUX PROPERTY

Authors

  • Azizul Mohd Zahari Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Abdull Rahim Mohd Yusoff Centre for Environmental Sustainability and Water Security (IPASA), Research Institute for Sustainable Environment (RISE), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Nor Aziah Buang Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Palanivel Satishkumar Centre for Environmental Sustainability and Water Security (IPASA), Research Institute for Sustainable Environment (RISE), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • M Jasmin Fathi Jasni Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Zulkifli Yusop Centre for Environmental Sustainability and Water Security (IPASA), Research Institute for Sustainable Environment (RISE), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v74.4854

Keywords:

Electrospinning, polyvinylidene fluoride, nanofibers

Abstract

This research is about the investigation of the pure water flux property of composite polyvinylidene fluoride (PVDF) nanofibers. Electrospinning technique was used to prepare the composite electrospun nanofibers. PVDF was dissolved in N,N-dimethylformamide (DMF) solvent and blended together with activated carbon (AC) and polyvinylpyrrolidone (PVP). The nanofibers were characterized to determine the morphologies, wettability property, and its tensile strength. The fabricated nanofibers diameter was found in the range between 20 to 180 nm. The presence of AC deteriorates the mechanical properties of the nanofibers as the size of AC is larger than the external diameter of the nanofibers. The results of contact angle confirmed that the fabricated nanofiber exhibit less hydrophobic in the presence of PVP and AC. The less hydrophobic nature of proposed nanofiber might be useful for the water treatment process.

References

Huang, Z. M., Zhang, Y. Z., Kotaki, M., Ramakrishna, S. 2003. A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites. Compos. Sci. Technol. 63: 2223-2253.

Sathishkumar, P., Kamala-Kannan, S., Cho, M., Kim, J. S., Hadibarata, T., Salim, M. R., Oh, B. T. 2014. Laccase Immobilization on Cellulose Nanofiber: The Catalytic Efficiency and Recyclic Application for Simulated Dye Effluent Treatment. J. Mol. Catal. B Enzym. 100: 111-120.

Sathishkumar, P., Chae, J. C., Unnithan, A. R., Palvannan, T., Kim, H. Y., Lee, K. J., Cho, M., Kamala-Kannan, S., Oh, B. T. 2012. Laccase-poly(lactic-co-glycolic acid) (PLGA) Nanofiber: Highly Stable, Reusable, and Efficacious for the Transformation of Diclofenac. Enzyme Microb. Technol. 51: 113-118.

Qin, X. H., Wang, S. Y. 2006. Filtration Properties of Electrospinning Nanofibers. J. Appl. Polym. Sci. 102: 1285-1290.

Feng, C., Khulbe, K. C., Matsuura, T., Tabe, S., Ismail, a. F. 2013. Preparation and Characterization of Electro-spun Nanofiber Membranes and Their Possible Applications in Water Treatment. Sep. Purif. Technol. 102: 118-135.

Kaur, S., Sundarrajan, S., Rana, D., Matsuura, T., Ramakrishna, S. 2012. Influence of Electrospun Fiber Size on the Separation Efficiency of Thin Film Nanofiltration Composite Membrane. J. Memb. Sci. 392-393: 101–111.

Nasreen, S., Sundarrajan, S., Nizar, S., Balamurugan, R., Ramakrishna, S. 2013. Advancement in Electrospun Nanofibrous Membranes Modification and Their Application in Water Treatment. Membranes (Basel). 3: 266-284.

Liu, F., Hashim, N. A., Liu, Y., Abed, M. R. M., Li, K. 2011. Progress in the Production and Modification of PVDF Membranes. J. Memb. Sci. 375: 1-27.

Kaur, S., Rana, D., Matsuura, T., Sundarrajan, S., Ramakrishna, S. 2012. Preparation and Characterization of Surface Modified Electrospun Membranes for Higher Filtration Flux. J. Memb. Sci. 390-391: 235–242.

Ahmad, A. L., Abdulkarim, A. A., Ooi, B. S., Ismail, S. 2013. Recent Development in Additives Modifications of Polyethersulfone Membrane For Flux Enhancement. Chem. Eng. J. 223: 246-267.

Sawicka, K. M., Gouma, P. 2006. Electrospun Composite Nanofibers for Functional Applications. J. Nanoparticle Res. 8: 769-781.

Kang, G., Cao, Y. 2014. Application and Modification of Poly(Vinylidene Fluoride) (PVDF) Membranes – A Review. J. Memb. Sci. 463: 145-165.

Nasir, M., Matsumoto, H., Minagawa, M., Tanioka, A., Danno, T., Horibe, H. 2007. Preparation of Porous PVDF Nanofiber from PVDF/PVP Blend by Electrospray Deposition. Polym. J. 39: 1060-1064.

Lee, K. J., Shiratori, N., Lee, G. H., Miyawaki, J., et al. 2010. Activated Carbon Nanofiber Produced from Electrospun Polyacrylonitrile Nanofiber as a Highly Efficient Formaldehyde Adsorbent. Carbon N. Y. 48: 4248-4255.

Kaur, S., Ma, Z., Gopal, R., Singh, G. 2007. Plasma-induced Graft Copolymerization of Poly(Methacrylic Acid) on Electrospun Poly(Vinylidene Fluoride) Nanofiber Membrane. Langmuir. 23: 13085-13092.

Feng, C., Khulbe, K. C., Matsuura, T., Gopal, R., et al. 2008. Production of Drinking Water from Saline Water by Air-Gap Membrane Distillation Using Polyvinylidene Fluoride Nanofiber Membrane. J. Memb. Sci. 311: 1-6.

Sethupathy, M., Sethuraman, V., Manisankar, P. 2013. Preparation of PVDF/SiO2 Composite Nanofiber Membrane Using Electrospinning for Polymer Electrolyte Analysis. Soft Nanosci. Lett. 03: 37-43.

Downloads

Published

2015-06-25

How to Cite

FABRICATION AND CHARACTERIZATION OF POLYVINYLIDENE FLUORIDE COMPOSITE NANOFIBER MEMBRANE FOR WATER FLUX PROPERTY. (2015). Jurnal Teknologi, 74(11). https://doi.org/10.11113/jt.v74.4854