Skip to main content

Advertisement

Log in

Increased levels of a particular phosphatidylcholine species in senescent human dermal fibroblasts in vitro

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Plasma membranes are essential components of living cells, and phospholipids are major components of cellular membranes. Here, we used liquid chromatography/mass spectrometry to investigate changes in the membrane phospholipid content that occur in association with aging. Our results indicate that the levels of a particular species of phosphatidylcholine comprised of stearic acid and arachidonic acid increased with age. To determine the reason forthe increased levels of this particular phosphatidylcholine, we examined the effect of highly unsaturated fatty acids, such as arachidonic acid and eicosapentaenoic acid, on cellular aging. Applied arachidonic acid was incorporated into phosphatidylcholine molecules, but neither arachidonic acid nor other related unsaturated fatty acids had any effect. We conclude that increased levels of this distinctive phosphatidylcholine are a result of in vitro senescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tyner SD, Venkatachalam S, Choi J et al. p53 mutant mice that display early ageing-associated phenotypes. Nature 2002; 415: 45–53.

    Article  PubMed  CAS  Google Scholar 

  2. Ma W, Hommel C, Brenneisen P et al. Long-term growth arrest of PUVA-treated fibroblasts in G2/M in the absence of p16INK4a, p21CIP1 or p53. ExpDermatol 2003; 12: 629–37.

    CAS  Google Scholar 

  3. Beauséjour CMCM, Krtolica A, Galimi F et al. Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J 2003; 22: 4212–22.

    Article  PubMed  Google Scholar 

  4. D’Andrilli G, Masciullo V, Bagella L et al. Frequent loss of pRb2/p130 in human ovarian carcinoma. Clin Cancer Res 2004; 10: 3098–103.

    Article  PubMed  Google Scholar 

  5. Bringold F, Serrano M. Tumor suppressors and oncogenes in cellular senescence. Exp Gerontol 2000; 35: 317–29.

    Article  PubMed  CAS  Google Scholar 

  6. Tombor B, Rundell K, Oltvai ZN. Bcl-2 promotes premature senescence induced by oncogenic Ras. Biochem Biophys Res Comm 2003; 303: 800–7.

    Article  PubMed  CAS  Google Scholar 

  7. Crescenzi E, Palumbo G, Brady HJM. Bcl-2 activates a programme of premature senescence in human carcinoma cells. Biochem J 2003; 375: 263–74.

    Article  PubMed  CAS  Google Scholar 

  8. Pearson M, Pelicci PG. PML interaction with p53 and its role in apoptosis and replicative senescence. Oncogene 2001; 20: 7250–6.

    Article  PubMed  CAS  Google Scholar 

  9. Mallette FA, Goumard S, Gaumont-Leclerc MF et al. Human fibroblasts require the Rb family of tumor suppressors, but not p53, for PML-induced senescence. Oncogene 2004; 23: 91–9.

    Article  PubMed  CAS  Google Scholar 

  10. Papazoglu C, Mills AA. p53. at the crossroad between cancer and ageing. J Pathol 2007; 211: 124–33.

    Article  PubMed  CAS  Google Scholar 

  11. Narita M, Nunez S, Heard E et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 2003; 113: 703–16.

    Article  PubMed  CAS  Google Scholar 

  12. Funayama R, Saito M, Tanobe H et al. Loss of linker histone H1 in cellular senescence. J Cell Biol 2006; 175: 869–80.

    Article  PubMed  CAS  Google Scholar 

  13. Naru E, Suzuki T, Moriyama M, Inomata K et al. Functional changes induced by chronic UVA irradiation to cultured human dermal fibroblasts. Br J Dermatol 2005; 153: 6–12.

    Article  PubMed  CAS  Google Scholar 

  14. Chen Q, Ames BN. Senescence-like growth arrest induced by hydrogen peroxide in human diploid fibroblast F65 cells. Proc Natl Acad Sci USA 1994; 91: 4130–4.

    Article  PubMed  CAS  Google Scholar 

  15. Frippiat C, Chen QM, Zdanov S et al. Subcytotoxic H2O2 stress triggers a release of transforming growth factor-β1, which induces biomarkers of cellular senescence of human diploid fibroblasts. J Biol Chem 2001; 276: 2531–7.

    Article  PubMed  CAS  Google Scholar 

  16. Debacq-Chainiaux F, Borlon C, Pascal T et al. Repeated exposure of human skin fibroblasts to UVB at subcytotoxic level triggers premature senescence through the TGF-β1 signaling pathway. J Cell Sci 2005; 118: 743–58.

    Article  PubMed  CAS  Google Scholar 

  17. Unterluggauer H, Hampel B, Zwerschke W et al. Senescence-associated cell death of human endothelial cells: the role of oxidative stress. Exp Gerontol 2003; 38: 1149–60.

    Article  PubMed  CAS  Google Scholar 

  18. Honda S, Hjelmeland LM, Handa JT. Oxidative stress-induced single-strand breaks in chromosomal telomeres of human retinal pigment epithelial cells in vitro. Invest Ophthalmol Vis Sci 2001; 42: 2139–44.

    PubMed  CAS  Google Scholar 

  19. Herrmann G, Brenneisen P, Wlaschek M et al. Psoralen photoactivation promotes morphological and functional changes in fibroblasts in vitro reminiscent of cellular senescence. J Cell Sci 1998; 111: 759–67.

    PubMed  CAS  Google Scholar 

  20. Carlin CR, Phillips PD, Knowles BB et al. Diminished in vitro tyrosine kinase activity of the EGF receptor of senescent human fibroblasts. Nature 1983; 306: 617–20.

    Article  PubMed  CAS  Google Scholar 

  21. Mori Y, Hatamochi A, Arakawa M et al. Reduced expression of mRNA for transforming growth factor β (TGFβ) and TGFβ receptors I and II and decreased TGFβ binding to the receptors in in vitro-aged fibroblasts. Arch Dermatol Res 1998; 290: 158–62.

    Article  PubMed  CAS  Google Scholar 

  22. Shiraha H, Gupta K, Drabik K et al. Aging fibroblasts present reduced epidermal growth factor (EGF) responsiveness due to preferential loss of EGF receptors. J Biol Chem 2000; 275: 19343–51.

    Article  PubMed  CAS  Google Scholar 

  23. Zeng G, McCue HM, Mastrangelo L et al. Endogenous TGF-β activity is modified during cellular aging: effects on metalloproteinase and TIMP-1 expression. Exp Cell Res 1996; 228: 271–6.

    Article  PubMed  CAS  Google Scholar 

  24. Hu Q, Moerman EJ, Goldstein S. Altered expression and regulation of the α5β1 integrin-fibronectin receptor lead to reduced amounts of functional α5β1 heterodimer on the plasma membrane of senescent human diploid fibroblasts. Exp Cell Res 1996; 224: 251–63.

    Article  PubMed  CAS  Google Scholar 

  25. Matuoka K, Mitsui Y. Changes in cell-surface glycosamino-glycans in human diploid fibroblasts during in vitro aging. Mech Ageing Dev 1981; 15: 153–63.

    Article  PubMed  CAS  Google Scholar 

  26. Barnett-Norris J, Lynch D, Reggio PH. Lipids, lipid rafts and caveolae: their importance for GPCR signaling and centrality to the endocannabinoid system. Life Sci 2005; 77: 1625–39.

    Article  PubMed  CAS  Google Scholar 

  27. Park WY, Park JS, Cho KA et al. Up-regulation of caveolin attenuates epidermal growth factor signaling in senescent cells. J Biol Chem 2000; 275: 20847–52.

    Article  PubMed  CAS  Google Scholar 

  28. Wheaton K, Sampsel K, Boisvert FM et al. Loss of functional caveolae during senescence of human fibroblasts. J Cell Physiol 2001; 187: 226–35.

    Article  PubMed  CAS  Google Scholar 

  29. Galbiati F, Volonté D, Liu J et al. Cavelolin-1 expression negatively regulates cell cycle progression by inducing G0/G1 arrest via a p53/p21WAF1/Cip1-dependent mechanism. Mol Biol Cell 2001; 12: 2229–44.

    PubMed  CAS  Google Scholar 

  30. Volonte D, Zhang K, Lisanti MP, Galbiati E Expression of caveolin-1 induces premature cellular senescence in primary cultures of murine fibroblasts: stress-induced premature senescence upregulates the expression of endogenous caveolin-1. Mol Biol Cell 2002; 13: 2502–17.

    Article  PubMed  CAS  Google Scholar 

  31. Park SC, Cho KA, Jang IS et al. Functional efficiency of the senescent cells: replace or restore? Ann NY Acad Sci 2004; 1019: 309–16.

    Article  PubMed  CAS  Google Scholar 

  32. Park SC. New molecular target for modulation of aging process. Antioxid Redox Signal 2006; 8: 620–7.

    Article  PubMed  CAS  Google Scholar 

  33. Alemany R, Perona JS, Sánchez-Dominguez JM et al. G protein-coupled receptor systems and their lipid environment in health disorders during aging. Biochim Biophys Acta 2007; 1768: 964–75.

    Article  PubMed  CAS  Google Scholar 

  34. Kaji K. The study of cell aging. Biomed Gerontol 2001; 25: 3–4.

    Google Scholar 

  35. Dimri GP, Lee X, Basile G et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 1995; 92: 9363–7.

    Article  PubMed  CAS  Google Scholar 

  36. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Meth 1983; 65: 55–63.

    Article  CAS  Google Scholar 

  37. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37: 911–17.

    Article  PubMed  CAS  Google Scholar 

  38. Bartlett GR. Phosphorous assay in column chromatography. J Biol Chem 1959; 234: 466–8.

    PubMed  CAS  Google Scholar 

  39. Taguchi R, Hayakawa J, Takeuchi Y, Ishida M. Two-dimensional analysis of phospholipids by capillary liquid chromatography/electrospray ionization mass spectrometry. J Mass Spectrom 2000; 35: 953–66.

    Article  PubMed  CAS  Google Scholar 

  40. Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 1965; 37: 614–36.

    Article  PubMed  CAS  Google Scholar 

  41. Readerstorff D, Loechleiter V, Moser U. Polyunsaturated fatty acid metabolism of human skin fibroblasts during cellular aging. Int J Vitam Nutr Res 1995; 65: 51–5.

    Google Scholar 

  42. Champoux M, Hibbeln JR, Shannon C et al. Fatty acid formula supplementation and neuromotor development in rhesus monkey neonates. Pediatr Res 2002; 51: 273–81.

    Article  PubMed  CAS  Google Scholar 

  43. McCann JC, Ames BN. Is docosahexaenoic acid, an n-3 long-chain polyunsaturated fatty acid, required for development of normal brain function? An overview of evidence from cognitive and behavioral tests in human and animals. Am J Clin Nutr 2005; 82: 281–95.

    PubMed  CAS  Google Scholar 

  44. Lorenzini A, Hrelia S, Bordoni A et al. Is increased arachidonic acid release a cause or a consequence of replicative senescence? Exp Gerontol 2001; 36: 65–78.

    Article  PubMed  CAS  Google Scholar 

  45. Lorenzini A, Bordoni A, Spanò C et al. Age-related changes in essential fatty acid metabolism in cultured rat heart myocytes. Prostaglandins Leukot Essent Fatty Acids 1997; 57: 143–7.

    Article  PubMed  CAS  Google Scholar 

  46. Hansford RG, Tsuchiya N, Pepe S. Mitochondria in heart ischaemia and aging. Biochem Soc Symp 1999; 66: 141–7.

    PubMed  CAS  Google Scholar 

  47. Pepe S, Tsuchiya N, Lakatta EG et al. PUFA and aging modulate cardiac mitochondrial membrane lipid composition and Ca2+ activation of PDH. Am J Physiol Heart Circ Physiol 1999; 276: 149–58.

    Google Scholar 

  48. Pepe S. Effect of dietary polyunsaturated fatty acids on age-related changes in cardiac mitochondrial membranes. Exp Gerontol 2005; 40: 751–8.

    Article  PubMed  Google Scholar 

  49. Barceló-Coblijn G, Hõgyes E, Kitajka K et al. Modification by docosahexaenoic acid of age-induced alterations in gene expression and molecular composition of rat brain phospholipids. Proc Natl Acad USA 2003; 100: 11321–6.

    Article  Google Scholar 

  50. Tomita Y, Miyake N, Yamanaka S. Phospholipid profiles in the salivary glands of rats of different ages. J Oleo Sci 2007; 56: 369–75.

    Article  PubMed  CAS  Google Scholar 

  51. Muramatsu M, eds. Collection of Articles on Experiments in Bio-Chemistry III Series, Vol 4 Lipids II, Phospholipids. Tokyo Kagaku Dozin, 1991; 539–40.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Naru.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naru, E., Takanezawa, Y., Kobayashi, M. et al. Increased levels of a particular phosphatidylcholine species in senescent human dermal fibroblasts in vitro . Hum Cell 21, 70–78 (2008). https://doi.org/10.1111/j.1749-0774.2008.00052.x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1749-0774.2008.00052.x

Key words

Navigation