Skip to main content
Log in

Variability in conspecific predation among longnose lancetfish Alepisaurus ferox in the western Indian Ocean

  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

Conspecific predation among longnose lancetfish Alepisaurus ferox was investigated in four spatio-temporal strate of the western Indian Ocean. The cannibalism level varied from 0 to 45.5% by frequency of occurrence and was negatively related with abundance of non-evasive prey (such as crustaceans Charybdis smithii and Natosquilla investigatoris) and foraging success. Predation by lancetfish is often described as a non-selective process, constrained by local prey availability and by its feeding speed during an attack of prey. Our results show that lancetfish may adapt its opportunistic foraging behavior, feeding on non-conspecific abundant prey such as crustaceans when available, and switching to a high level of conspecific predation in poor waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beerkircher LR, Brown CJ, Abercrombie DL, Lee DW. SEFSC Pelagic Observer Program Data Summary for 1992–2002. NOAA Tech Memo NMFS-SEFSC-522, NOAA, Miami. 2004.

    Google Scholar 

  2. Ward P, Myers RA, Blanchard W. Fish lost at sea: the effect of soak time on pelagic longline catches. Fish. Bull. 2004; 102: 179–195.

    Google Scholar 

  3. Kubota T. Four links of food chains from the lancetfish, Alepisaurus ferox, to zooplankton in Suruga Bay, Japan. J. Fac. Mar. Sci. Technol. Tokai Univ. 1973; 7: 231–244.

    Google Scholar 

  4. Minchin D, Wheeler A. A new record for the lancetfish, Alepisaurus ferox Lowe (Osteichthys: Scopeliformes: Alepisauridae), in the north-eastern Atlantic. J. Fish. Biol. 1988; 32: 489–491.

    Article  Google Scholar 

  5. Orlov AM, Ul’chenko VA. A hypothesis to explain onshore records of long-nose lancetfish Alepisaurus ferox (Alepisauridae, Teleostei) in the North Pacific Ocean. Mar. Freshw. Res. 2002; 53: 303–306.

    Article  Google Scholar 

  6. Rofen RR. Family Paralepididae. In: Olsen YH, Atz JW (eds). Fishes of Western North Atlantic, pt. 5(1). Mem. Sears. Found. Mar. Rep. Sears Foundation for Marine Research, Yale University, New Haven. 1966; 205–461.

    Google Scholar 

  7. Potier M, Marsac F, Cherel Y, Lucas V, Sabatié R, Maury O, Ménard F. Forage fauna in the diet of three large pelagic fishes (lancetfish, swordfish and yellowfin tuna) in the western equatorial Indian Ocean. Fish. Res. 2007; 83: 60–72.

    Article  Google Scholar 

  8. Fourmanoir P. Liste des espèces de poissons contenus dans les estomacs de thons jaunes, Thunnus albacares (Bonnaterre) 1788 et de thons blancs, Thunnus alalunga (Bonnaterre) 1788. Cah. ORSTOM, Ser. Oceanogr. 1971; 9: 109–118.

    Google Scholar 

  9. Borodulina OD. [Feeding of bigeye tuna Thunnus obesus (Lowe) in Guinea Bay and its place in trophic system of pelagic zone]. Vopr. Ikhtiol. 1974; 14: 881–893 (in Russian).

    Google Scholar 

  10. Borodulina OD. [Food composition of the yellowfin tuna Thunnus albacares (Bonnaterre) (Scombridae) in some habitats]. Vopr. Ikhtiol. 1981; 21: 1006–1015 (in Russian).

    Google Scholar 

  11. Kornilova GN. [Trophic chains of predatory fishes from equatorial zone of the Indian Ocean foraging on lancetfishes (fam. Alepisauridae, Pisces)]. In: [Fishery resources of the high seas of the Indian Ocean and their utilization]. VNIRO, Moscow. 1979; 81–88 (in Russian).

    Google Scholar 

  12. Haedrich RL. Food habits and young stages on North Atlantic Alepisaurus (Pisces, Iniomi). Breviora 1964; 201: 1–15.

    Google Scholar 

  13. Matthews FD, Damkaer DM, Knapp LW, Collette BB. Food of Western North Atlantic Tunas (Thunnus) and Lancetfishes (Alepisaurus). NOAA. Tech. Rep. NMFS SSRF-706, NOAA. 1977.

  14. Parin NV, Nesis KN, Vinogradov ME. [Feeeding of Alepisaurus in the Indian Ocean]. Vopr. Ikhtiol. 1969; 9: 526–538 (in Russian).

    Google Scholar 

  15. Fujita K, Hattori J. Stomach content analysis of longnose lancetfish, Alepisaurus ferox in the eastern Indian Ocean and the Coral Sea. Jpn. J. Ichthyol. 1976; 23: 133–142.

    Google Scholar 

  16. Okutani T, Tsukada S. Squids eaten by lancetfish and tunas in the tropical Indo-Pacific oceans. J. Tokyo Univ. Fish. 1988; 75: 1–44.

    Google Scholar 

  17. Romanov EV, Zamorov VV. Regional feeding patterns of the longnose lancetfish (Alepisaurus ferox Lowe, 1833) of the western Indian Ocean. Western Indian Ocean J. Mar. Sci. 2007; 6: 37–56.

    Google Scholar 

  18. Potier M, Ménard F, Cherel Y, Lorrain A, Sabatie R, Marsac F. Role of pelagic crustaceans in the diet of the longnose lancetfish Alepisaurus ferox in the Seychelles waters. Afr. J. Mar. Sci. 2007; 29: 113–122.

    Article  Google Scholar 

  19. Haedrich RL, Nielsen JG. Fishes eaten by Alepisaurus (isces, Iniomi) in the southeastern Pacific Ocean. Deep-Sea Res. 1966; 13: 909–919.

    Google Scholar 

  20. Fourmanoir P. Contenus stomacaux d’Alepisaurus (Poissons) dans le Sud-ouest Pacifique. Cah. ORSTOM, Ser. Oceanogr. 1969; 7: 51–60.

    Google Scholar 

  21. Grandperrin R, Legand M. Contribution à la connaissance d’Alepisaurus dans le Pacifique Equatorial et sud Tropical. Cah. ORSTOM, Ser. Oceanogr. 1970; 8: 11–34.

    Google Scholar 

  22. Kubota T, Uyeno T. Food habits of lancetfish, Alepisaurus ferox (order Myctophiformes) in Suruga Bay, Japan. Jpn. J. Ichthyol. 1970; 17: 22–28.

    Google Scholar 

  23. Moteki M, Fujita K, Kohno H. Stomach contents of longnose lancetfish, Alepisaurus ferox, in Hawaiian and central equatorial Pacific waters. J. Tokyo Univ. Fish. 1993; 80: 121–137.

    Google Scholar 

  24. Moteki M, Arai M, Tsuchiya K, Okamoto H. Composition of piscine prey in the diet of large pelagic fish in the eastern tropical Pacific Ocean. Fish. Sci. 2001; 67: 1063–1074.

    Article  Google Scholar 

  25. IOC, IHO, BODC. Centenary Edition of the GEBCO Digital Atlas, Published on CD-ROM on Behalf of the Intergovernmental Oceanographic Commission and the International Hydrographic Organization as part of the General Bathymetric Chart of the Oceans. British Oceanographic Data Centre, Liverpool. 2003.

    Google Scholar 

  26. Pinkas L, Oliphant MS, Iverson ILK. Food habits of albacore, bluefin tuna and bonito in California waters. Fish. Bull. Calif. Dep. Fish Game 1971; 152: 105.

    Google Scholar 

  27. Smith C, Reay P. Cannibalism in teleost fish. Rev. Fish Biol. Fish. 1991; 1: 41–64.

    Article  Google Scholar 

  28. Jorgensen OA. Pelagic occurrence of Greenland halibut, Reinhardtius hippoglossoides (Walbaum), in West Greenland Waters. J. Northwest. Atl. Fish. Sci. 1997; 21: 39–50.

    Article  Google Scholar 

  29. Morohoshi Y, Sasaki K. Intensive cannibalism and feeding on bregmacerotids in Champsodon snyderi (Champsodontidae): evidence for pelagic predation. Ichthyol. Res. 2002; 50: 387–390.

    Article  Google Scholar 

  30. Takasuka A, Oozeki Y, Kimura R, Kubota H, Aoki I. Growth-selective predation hypothesis revisited for larval anchovy in offshore waters: cannibalism by juveniles versus predation by skipjack tunas. Mar. Ecol. Prog. Ser. 2004; 278: 297–302.

    Article  Google Scholar 

  31. Della Croce NB, Holthuis LB. Swarming of Charybdis (Goniohellenus) edwardsi Leene et Buitendijk in the Indian Ocean (Crustacea, Decapoda, Portunidae). Boll. Mus. Inst. Biol. Genova 1965; 33: 33–38.

    Google Scholar 

  32. Losse GF. Notes on the portunid crab Charybdis edwardsi Leene and Buitendijk, 1949, from the Western Indian Ocean. J. Nat. Hist. 1969; 3: 145–152.

    Article  Google Scholar 

  33. Rice AL. Swarming of swimming crabs. Mar. Obs. 1969; 223: 16–20.

    Google Scholar 

  34. Zamorov VV, Spiridonov VA, Rudnev GP. [On the mass migration to the pelagial and the distribution in the Indian Ocean swimming crab Charybdis smithi (Crustacea, Portunidae) during pelagic phase of its life-cycle]. Zool. Zh. 1991; 70: 39–42 (in Russian).

    Google Scholar 

  35. Van-Couwelaar M, Angel MV, Madin LP. the distribution and biology of the swimming crab Charybdis smithii McLeay, 1838 (Crustacea; Brachyura; Portunidae) in the NW Indian Ocean. Deep-Sea Res. Part II 1997; 44: 1251–1280.

    Article  Google Scholar 

  36. Losse GF, Merrett NR. The occurrence of Oratosquilla investigatoris (Crustacea: Stomatopoda) in the pelagic zone of the Gulf of Aden and the equatorial western Indian Ocean. Mar. Biol. 1971; 10: 244–253.

    Article  Google Scholar 

  37. Potier M, Marsac F, Lucas V, Sabatie R, Hallier J-P, Ménard F. Feeding partitioning among tuna taken in surface and mid-water layers: the case of yellowfin (Thunnus albacares) and bigeye (T. obesus) in the western tropical Indian Ocean. Western Indian Ocean J. Mar. Sci. 2004; 3: 51–62.

    Google Scholar 

  38. Longhurst A. Ecological Geography of the Sea. Academic Press, San Diego, CA. 1998.

    Google Scholar 

  39. Fréon P, Misund OA. Dynamics of Pelagic Fish Distribution and Behaviour: Effects on Fisheries and Stock Assessment. Fishing News Books, Oxford. 1999.

    Google Scholar 

  40. Christiansen B, Boetius A. Mass sedimentation of the swimming crab Charybdis smithii (Crustacea: Decapoda) in the deep Arabian Sea. Deep-Sea Res. II 2000; 47: 2673–2685.

    Article  Google Scholar 

  41. Romanov EV, Zamorov VV. First record of a yellowfin tuna (Thunnus albacares) from the stomach of a longnose lancetfish (Alepisaurus ferox). Fish. Bull. 2002; 100: 386–389.

    Google Scholar 

  42. Balanov AA, Radchenko VI. [New data on the feeding and feeding behavior of doggertooth Anotopterus pharao]. Vopr. Ikhtiol. 1998; 38: 492–498 (in Russian).

    Google Scholar 

  43. Radchenko VI, Semenchenko AY. Predation of doggertooth on immature Pacific salmon. J. Fish. Biol. 1996; 49: 1323–1325.

    Google Scholar 

  44. Juanes F. What determines prey size selectivity in piscivourous fishes? In: Stouder DJ, Fresh KL, Feller RJ (eds). Theory and Application in Fish Feeding Ecology. Vol. 18. Belle W. Baruch Library in Marine Science, University of South Carolina Press, Columbia, OH. 1994; 79–100.

    Google Scholar 

  45. Gill AB. The dynamics of prey choice in fish: the importance of prey size and satiation. J. Fish. Biol. 2003; 63: 105–116.

    Article  Google Scholar 

  46. Ménard F, Labrune C, Shin Y-J, Asine A-S, Bard F-X. Opportunistic predation in tuna: a size-based approach. Mar. Ecol. Progr. Ser. 2006; 323: 223–231.

    Article  Google Scholar 

  47. Sih A, Christensen B. Optimal diet theory: when does it work, and when and why does it fail? Anim. Behav. 2001; 61: 379–390.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny V Romanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romanov, E.V., Ménard, F., Zamorov, V.V. et al. Variability in conspecific predation among longnose lancetfish Alepisaurus ferox in the western Indian Ocean. Fish Sci 74, 62–68 (2008). https://doi.org/10.1111/j.1444-2906.2007.01496.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1444-2906.2007.01496.x

Key Words

Navigation