Download citation
Download citation
link to html
A new zirconium(IV) com­plex, di­aqua­bis­(8-hy­droxy­quinoline-2-carboxyl­ato-κ3N,O2,O8)zirconium(IV) di­methyl­formamide disolvate, [Zr(C10H5NO3)2(H2O)2]·2C3H7NO or [Zr(QCa)2(H2O)2]·2DMF (1) (HQCaH is 8-hy­droxy­quinoline-2-carb­oxy­lic acid and DMF is di­methyl­form­am­ide), was prepared and characterized by elemental analysis, IR spectroscopy and single-crystal X-ray structure analysis. Complex 1 is a mononuclear com­plex in which the ZrIV atoms sit on the twofold axis and they are octa­coordinated by two N and six O atoms of two tridentate anionic QCa2− ligands, and two aqua ligands. Outside the coordination sphere are two DMF mol­ecules bound to the com­plex unit by hydrogen bonds. The structure and stability of com­plex 1 in dimethyl sulfoxide were verified by NMR spectroscopy. The cytotoxic properties of 1 and HQCaH were studied in vitro against eight cancer cell lines, and their selectivity was tested on the BJ-5ta noncancerous cell line. Both the com­plex and HQCaH exhibited low activity, with IC50 > 200 µM. DNA and human serum albumin (HSA) binding studies showed that 1 binds to calf thymus (CT) DNA via inter­calation and is able to bind to the tryptophan binding site of HSA (Trp-214).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229623005971/dg3041sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229623005971/dg3041Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229623005971/dg3041sup3.pdf
IR and NMR spectra

CCDC reference: 2280560

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b) in WinGX (Farrugia, 2012); molecular graphics: DIAMOND (Brandenburg, 2014); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b) and PLATON (Spek, 2020).

Diaquabis(8-hydroxyquinoline-2-carboxylato-κ3N,O2,O8)zirconium(IV) dimethylformamide disolvate top
Crystal data top
[Zr(C10H5NO3)2(H2O)2]·2C3H7NOF(000) = 664
Mr = 647.74Dx = 1.576 Mg m3
Monoclinic, P2/nMo Kα radiation, λ = 0.71073 Å
a = 11.3873 (5) ÅCell parameters from 7970 reflections
b = 9.0517 (4) Åθ = 2.3–26.4°
c = 14.4136 (7) ŵ = 0.47 mm1
β = 113.225 (1)°T = 100 K
V = 1365.28 (11) Å3Block, yellow
Z = 20.18 × 0.17 × 0.15 mm
Data collection top
Bruker APEXII TXS Artemis
diffractometer
2802 independent reflections
Radiation source: Micro Focus Rotating Anode2554 reflections with I > 2σ(I)
Detector resolution: 7.9 pixels mm-1Rint = 0.027
ω and φ scansθmax = 26.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1412
Tmin = 0.619, Tmax = 0.647k = 1111
13542 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.022H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.055 w = 1/[σ2(Fo2) + (0.022P)2 + 0.9586P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2802 reflectionsΔρmax = 0.37 e Å3
196 parametersΔρmin = 0.24 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The data collection for 1 was performed using a Bruker APEX II diffractometer equipped with a Bruker APEXII CCD detector. Data were integrated using the Bruker SAINT V8.40B Software program and scaled using the SADABS software program (SADABS, 2016). The structure was solved with SHELXT (Sheldrick, 2015a) and refined by subsequent Fourier syntheses with SHELXL2018 (Sheldrick, 2015b), implemented in WinGX program suit (Farrugia, 2012). Geometric analysis was performed with SHELXL2018, PLATON (Spek, 2009) was used to analyze the ππ interaction, while DIAMOND (Brandenburg, 2014) was used for molecular graphics.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zr10.7500000.32719 (2)0.7500000.01198 (7)
O20.71344 (10)0.42621 (12)0.60036 (8)0.0153 (2)
O40.89979 (12)0.49079 (13)0.76534 (9)0.0183 (3)
O10.66547 (11)0.16143 (12)0.80984 (8)0.0174 (2)
O30.60148 (11)0.45120 (13)0.43466 (8)0.0190 (2)
O50.97262 (12)0.60919 (15)0.63249 (9)0.0271 (3)
N10.57147 (12)0.23096 (14)0.62244 (10)0.0150 (3)
C100.62027 (15)0.39356 (17)0.51694 (11)0.0151 (3)
N50.92669 (15)0.68600 (17)0.47237 (11)0.0248 (3)
C140.39775 (16)0.05558 (18)0.57564 (13)0.0214 (4)
C110.53278 (15)0.27651 (17)0.52780 (12)0.0159 (3)
C190.50732 (15)0.12427 (17)0.64791 (13)0.0173 (3)
C130.35762 (17)0.10721 (19)0.47538 (13)0.0230 (4)
H130.2841010.0653070.4241360.028*
C150.34366 (17)0.0610 (2)0.61059 (15)0.0274 (4)
H150.2699090.1108270.5652640.033*
C510.89798 (17)0.62167 (19)0.54316 (13)0.0223 (4)
H510.8143440.5823840.5240800.027*
C120.42340 (16)0.21698 (18)0.45110 (13)0.0199 (3)
H120.3956410.2522140.3837320.024*
C180.56296 (16)0.08473 (17)0.75187 (13)0.0185 (3)
C170.50635 (17)0.03032 (19)0.78212 (14)0.0238 (4)
H170.5399050.0610420.8506950.029*
C160.39787 (18)0.1023 (2)0.71023 (15)0.0281 (4)
H160.3612380.1825130.7320000.034*
C521.05252 (19)0.7488 (2)0.49536 (15)0.0315 (4)
H52A1.0472960.8568000.4964300.047*
H52B1.0832890.7184830.4436160.047*
H52C1.1118260.7134250.5615400.047*
C530.8346 (2)0.6942 (2)0.36867 (14)0.0357 (5)
H53A0.7543600.6479240.3632070.053*
H53B0.8683240.6421920.3247610.053*
H53C0.8190390.7978910.3479620.053*
H1O40.914 (2)0.527 (2)0.7183 (18)0.036 (6)*
H2O40.959 (2)0.512 (3)0.8176 (19)0.043 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zr10.01018 (12)0.01315 (11)0.01008 (11)0.0000.00130 (8)0.000
O20.0136 (6)0.0185 (5)0.0101 (5)0.0015 (4)0.0006 (5)0.0011 (4)
O40.0175 (7)0.0233 (6)0.0096 (6)0.0069 (5)0.0008 (5)0.0012 (5)
O10.0140 (6)0.0176 (6)0.0190 (6)0.0018 (4)0.0049 (5)0.0014 (4)
O30.0174 (6)0.0245 (6)0.0118 (5)0.0028 (5)0.0022 (5)0.0009 (4)
O50.0275 (7)0.0366 (7)0.0166 (6)0.0100 (6)0.0080 (5)0.0006 (5)
N10.0122 (7)0.0136 (6)0.0181 (7)0.0007 (5)0.0047 (6)0.0035 (5)
C100.0135 (8)0.0161 (7)0.0146 (8)0.0042 (6)0.0043 (7)0.0027 (6)
N50.0228 (8)0.0338 (8)0.0175 (7)0.0050 (6)0.0074 (6)0.0006 (6)
C140.0128 (8)0.0194 (8)0.0306 (9)0.0008 (6)0.0070 (8)0.0067 (7)
C110.0130 (8)0.0166 (7)0.0163 (8)0.0030 (6)0.0040 (7)0.0044 (6)
C190.0135 (8)0.0136 (7)0.0250 (9)0.0011 (6)0.0077 (7)0.0035 (6)
C130.0138 (9)0.0234 (9)0.0270 (9)0.0018 (7)0.0028 (7)0.0106 (7)
C150.0161 (9)0.0245 (9)0.0404 (11)0.0059 (7)0.0097 (8)0.0067 (8)
C510.0213 (9)0.0244 (9)0.0225 (9)0.0051 (7)0.0100 (8)0.0022 (7)
C120.0155 (9)0.0215 (8)0.0182 (8)0.0021 (7)0.0020 (7)0.0060 (6)
C180.0137 (8)0.0164 (8)0.0261 (9)0.0008 (6)0.0085 (7)0.0007 (6)
C170.0196 (9)0.0212 (8)0.0321 (10)0.0004 (7)0.0116 (8)0.0043 (7)
C160.0225 (10)0.0226 (9)0.0432 (11)0.0048 (7)0.0172 (9)0.0015 (8)
C520.0297 (11)0.0392 (11)0.0290 (10)0.0090 (9)0.0153 (9)0.0015 (8)
C530.0317 (11)0.0510 (13)0.0213 (10)0.0007 (9)0.0073 (9)0.0047 (9)
Geometric parameters (Å, º) top
Zr1—O1i2.1393 (11)C14—C131.412 (3)
Zr1—O12.1393 (11)C14—C191.415 (2)
Zr1—O4i2.2031 (12)C11—C121.406 (2)
Zr1—O42.2032 (12)C19—C181.423 (2)
Zr1—O22.2182 (10)C13—C121.370 (3)
Zr1—O2i2.2182 (10)C13—H130.9500
Zr1—N1i2.3074 (13)C15—C161.373 (3)
Zr1—N12.3074 (13)C15—H150.9500
O2—C101.2856 (19)C51—H510.9500
O4—H1O40.82 (2)C12—H120.9500
O4—H2O40.81 (3)C18—C171.383 (2)
O1—C181.332 (2)C17—C161.419 (3)
O3—C101.2347 (19)C17—H170.9500
O5—C511.237 (2)C16—H160.9500
N1—C111.323 (2)C52—H52A0.9800
N1—C191.346 (2)C52—H52B0.9800
C10—C111.504 (2)C52—H52C0.9800
N5—C511.323 (2)C53—H53A0.9800
N5—C531.450 (2)C53—H53B0.9800
N5—C521.453 (2)C53—H53C0.9800
C14—C151.411 (2)
O1i—Zr1—O190.93 (6)C15—C14—C13127.01 (16)
O1i—Zr1—O4i152.20 (4)C15—C14—C19116.62 (16)
O1—Zr1—O4i93.34 (4)C13—C14—C19116.31 (15)
O1i—Zr1—O493.34 (4)N1—C11—C12121.51 (15)
O1—Zr1—O4152.20 (4)N1—C11—C10111.21 (13)
O4i—Zr1—O495.53 (7)C12—C11—C10127.28 (15)
O1i—Zr1—O280.39 (4)N1—C19—C14122.01 (15)
O1—Zr1—O2137.20 (4)N1—C19—C18113.79 (14)
O4i—Zr1—O277.87 (4)C14—C19—C18124.16 (15)
O4—Zr1—O270.55 (4)C12—C13—C14120.82 (16)
O1i—Zr1—O2i137.20 (4)C12—C13—H13119.6
O1—Zr1—O2i80.39 (4)C14—C13—H13119.6
O4i—Zr1—O2i70.55 (4)C16—C15—C14119.84 (17)
O4—Zr1—O2i77.87 (4)C16—C15—H15120.1
O2—Zr1—O2i132.33 (6)C14—C15—H15120.1
O1i—Zr1—N1i70.21 (4)O5—C51—N5124.45 (17)
O1—Zr1—N1i78.99 (4)O5—C51—H51117.8
O4i—Zr1—N1i137.54 (5)N5—C51—H51117.8
O4—Zr1—N1i76.69 (5)C13—C12—C11118.75 (16)
O2—Zr1—N1i134.10 (4)C13—C12—H12120.6
O2i—Zr1—N1i67.00 (4)C11—C12—H12120.6
O1i—Zr1—N178.99 (4)O1—C18—C17126.67 (16)
O1—Zr1—N170.21 (4)O1—C18—C19116.46 (14)
O4i—Zr1—N176.69 (5)C17—C18—C19116.87 (15)
O4—Zr1—N1137.54 (5)C18—C17—C16119.70 (17)
O2—Zr1—N167.00 (4)C18—C17—H17120.2
O2i—Zr1—N1134.10 (4)C16—C17—H17120.2
N1i—Zr1—N1135.64 (7)C15—C16—C17122.79 (17)
C10—O2—Zr1125.85 (10)C15—C16—H16118.6
Zr1—O4—H1O4125.2 (16)C17—C16—H16118.6
Zr1—O4—H2O4125.2 (17)N5—C52—H52A109.5
H1O4—O4—H2O4108 (2)N5—C52—H52B109.5
C18—O1—Zr1122.35 (10)H52A—C52—H52B109.5
C11—N1—C19120.58 (14)N5—C52—H52C109.5
C11—N1—Zr1122.30 (11)H52A—C52—H52C109.5
C19—N1—Zr1117.12 (10)H52B—C52—H52C109.5
O3—C10—O2124.59 (15)N5—C53—H53A109.5
O3—C10—C11121.78 (14)N5—C53—H53B109.5
O2—C10—C11113.63 (13)H53A—C53—H53B109.5
C51—N5—C53121.29 (16)N5—C53—H53C109.5
C51—N5—C52121.18 (16)H53A—C53—H53C109.5
C53—N5—C52117.52 (15)H53B—C53—H53C109.5
Symmetry code: (i) x+3/2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C51—H51···O20.952.353.097 (2)135
C51—H51···O30.952.553.473 (2)165
O4—H1O4···O50.82 (2)1.79 (2)2.5991 (17)170 (2)
O4—H2O4···O3ii0.81 (3)1.85 (3)2.6619 (16)175 (2)
Symmetry code: (ii) x+1/2, y+1, z+1/2.
1H and 13C NMR data of free ligand and the complex 1 top
Atom numberFree ligandComplex 1*
δC (ppm)δH (ppm)δC (ppm)δH (ppm)
2144.3147.1
146.9
144.6
3120.08.14 (d, 8.5)119.68.04 (d, 8.4)
119.58.04 (overlapped)
118.97.84 (d, 8.3)
4138.48.56 (d, 8.5)140.28.68 (d, 8.4)
140.28.68 (overlapped)
140.08.65 (d, 8.3)
5117.67.53 (dd, 8.3, 1.2)112.67.27 (d, 8.0)
112.87.29 (d, 8.0))
111.97.31 (d, 8.3)
6130.37.63 (t, 8.4)132.07.43 (t, 8.0)
132.07.43 (overlapped)
132.57.66 (t, 8.0)
7112.07.21 (dd, 7.7, 1.2)111.36.47 (d, 7.8)
111.16.47 (overlapped)
111.76.86 (d, 7.8)
8153.8163.8
164.9
163.6
4a130.0130.0
130.0
130.7
8a136.5139.8
136.5139.6
136.5140.0
9165.1169.5
170.0
169.5
8-OH12.98 (br s)
Notes: (*) DMF: 7.95 (s, H), 2.89 (s, CH3), 2.73 (s, CH3) ppm.
Cg···Cg distance and angles (Å, °) characterizing ππ interactions in 1 top
Cg(I)···Cg(J)aCg···Cgαbβγ
Cgpy1···Cgpy1i3.5965 (10)0.00 (8)23.423.4
Symmetry code: (i) -x+1, -y, -z+1.

Notes: (a) Cgpy1 represents centroid of the pyridine ring containing the N1 atom; (b) α is the dihedral angle between planes I and J. β is the angle between the Cg(I)···Cg(J) vector and the normal to plane I. γ is the angle between the Cg(I)···Cg(J) vector and normal to plane J.
CT DNA and HSA binding parameters top
CT DNAHSA
KSV (M-1)F/F0 [% '[%' %]]KSV (M-1)F/F0 (%)
3.20 (16) × 10455.213.13 (11) × 10660.66
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds