Download citation
Download citation
link to html
Three organoselenium and organotellurium com­pounds containing ortho substitutents, namely, bis­(2-nitro­phen­yl) selenide, C12H8N2O4Se, 2, bis­(2-amino­phen­yl) selenide, C12H12N2Se, 3, and bis­(2-amino­phen­yl) telluride, C12H12N2Te, 7, have been investigated by both structural and theoretical methods. In the structures of all three com­pounds, there are intra­molecular contacts between both Se and Te with the ortho substituents. In the case of 2, this is achieved by rotation of the nitro group from the arene plane. For 3, both amino groups exhibit pyramidal geometry and are involved in intra­molecular N—H...Se inter­actions, with one also participating in inter­molecular N—H...N hydrogen bonding. While 3 and 7 are structurally similar, there are some significant differences. In addition to both intra­molecular N—H...Te inter­actions and inter­molecular N—H...N hydrogen bonding, 7 also exhibits intra­molecular N—H...N hydrogen bonding. In the packing of these mol­ecules, for 2, there are weak inter­molecular C—H...O contacts and these, along with the O...N inter­actions mentioned above, link the mol­ecules into a three-dimensional array. For 3, in addition to the N—H...N and N—H...Se inter­actions, there are also weak inter­molecular C—H...Se inter­actions, which also link the mol­ecules into a three-dimensional array. On the other hand, 7 shows inter­molecular N—H...N inter­actions linking the mol­ecules into R22(16) centrosymmetric dimers. In the theoretical studies, for com­pound 2, AIM (atoms in mol­ecules) analysis revealed critical points in the Se...O inter­actions with values of 0.017 and 0.026 a.u. These values are suggestive of weak inter­actions present between Se and O atoms. For 3 and 7, the mol­ecular structures displayed intra­molecular, as well as inter­molecular, hydrogen-bond inter­actions of the N—H...N type. The strength of this hydrogen-bond inter­action was calculated by AIM analysis. Here, the inter­molecular (N—H...N) hydrogen bond is stronger than the intra­molecular hydrogen bond. This was confirmed by the electron densities for 3 and 7(r) = 0.015 and 0.011, respectively].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229621005015/zo3004sup1.cif
Contains datablocks 2, 3, 7, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229621005015/zo30042sup2.hkl
Contains datablock 2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229621005015/zo30043sup3.hkl
Contains datablock 3

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229621005015/zo30047sup4.hkl
Contains datablock 7

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229621005015/zo3004sup5.pdf
NMR and MS spectra

CCDC references: 2083079; 2083078; 2083077

Computing details top

For all structures, data collection: CrysAlis PRO (Rigaku OD, 2015\); cell refinement: CrysAlis PRO (Rigaku OD, 2015\); data reduction: CrysAlis PRO (Rigaku OD, 2015\); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a\); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b\); molecular graphics: SHELXTL (Sheldrick, 2008\); software used to prepare material for publication: SHELXTL (Sheldrick, 2008\).

Bis(2-nitrophenyl) selenide (2) top
Crystal data top
C12H8N2O4SeZ = 2
Mr = 323.16F(000) = 320
Triclinic, P1Dx = 1.825 Mg m3
a = 7.6530 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.8066 (5) ÅCell parameters from 5131 reflections
c = 11.5939 (5) Åθ = 3.1–31.1°
α = 76.603 (5)°µ = 3.21 mm1
β = 88.358 (5)°T = 100 K
γ = 61.263 (8)°Block, clear intense yellow
V = 588.04 (8) Å30.24 × 0.20 × 0.13 mm
Data collection top
Rigaku Saturn 724 Dual Source CCD
diffractometer
2886 independent reflections
Radiation source: fine-focus sealed X-ray tube2743 reflections with I > 2σ(I)
Detector resolution: 7.111 pixels mm-1Rint = 0.041
ω scansθmax = 28.3°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015\)
h = 1010
Tmin = 0.595, Tmax = 1.000k = 1010
5993 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: difference Fourier map
wR(F2) = 0.080All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0429P)2 + 0.6023P]
where P = (Fo2 + 2Fc2)/3
2886 reflections(Δ/σ)max = 0.001
204 parametersΔρmax = 1.18 e Å3
0 restraintsΔρmin = 0.52 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.66633 (3)0.56956 (3)0.21267 (2)0.01707 (9)
O11.1527 (3)0.0686 (3)0.46381 (18)0.0274 (4)
O20.9363 (3)0.1902 (3)0.31035 (16)0.0298 (4)
O30.3013 (3)0.6932 (3)0.06118 (16)0.0234 (4)
O40.0310 (3)0.8944 (3)0.12896 (15)0.0244 (4)
N10.9922 (3)0.1974 (3)0.40594 (18)0.0194 (4)
N20.2043 (3)0.8386 (3)0.10331 (16)0.0180 (4)
C10.8590 (3)0.3677 (3)0.4545 (2)0.0153 (4)
C20.8910 (3)0.3447 (4)0.5757 (2)0.0183 (4)
H20.991 (5)0.228 (5)0.619 (3)0.032 (8)*
C30.7654 (4)0.5001 (4)0.6261 (2)0.0196 (4)
H30.784 (4)0.482 (5)0.702 (3)0.021 (7)*
C40.6098 (4)0.6745 (4)0.5548 (2)0.0188 (4)
H40.519 (5)0.775 (5)0.585 (3)0.028 (8)*
C50.5795 (3)0.6959 (3)0.43393 (19)0.0153 (4)
H50.474 (5)0.814 (5)0.384 (3)0.020 (7)*
C60.7060 (3)0.5420 (3)0.38004 (18)0.0133 (4)
C70.5000 (3)0.8590 (3)0.16682 (18)0.0143 (4)
C80.5794 (3)0.9816 (4)0.1792 (2)0.0178 (4)
H80.715 (5)0.925 (4)0.211 (3)0.018 (7)*
C90.4628 (4)1.1896 (4)0.1500 (2)0.0199 (4)
H90.528 (5)1.268 (5)0.154 (3)0.027 (8)*
C100.2614 (4)1.2812 (4)0.1079 (2)0.0195 (4)
H100.181 (5)1.419 (5)0.089 (3)0.020 (7)*
C110.1778 (4)1.1630 (4)0.09536 (19)0.0192 (4)
H110.048 (5)1.221 (5)0.065 (3)0.025 (8)*
C120.2984 (3)0.9560 (3)0.12272 (18)0.0154 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.02034 (14)0.01286 (13)0.01461 (12)0.00518 (9)0.00327 (8)0.00431 (8)
O10.0151 (8)0.0152 (8)0.0413 (10)0.0017 (7)0.0046 (7)0.0015 (7)
O20.0398 (11)0.0160 (8)0.0216 (8)0.0039 (8)0.0078 (7)0.0062 (7)
O30.0292 (9)0.0180 (8)0.0251 (8)0.0125 (7)0.0007 (7)0.0065 (7)
O40.0210 (8)0.0320 (10)0.0231 (8)0.0169 (8)0.0014 (6)0.0026 (7)
N10.0171 (9)0.0108 (9)0.0259 (10)0.0045 (7)0.0093 (7)0.0027 (7)
N20.0226 (9)0.0193 (9)0.0139 (8)0.0134 (8)0.0006 (7)0.0002 (7)
C10.0122 (9)0.0124 (10)0.0214 (10)0.0055 (8)0.0070 (8)0.0057 (8)
C20.0160 (10)0.0154 (10)0.0218 (10)0.0082 (9)0.0000 (8)0.0001 (9)
C30.0230 (11)0.0204 (11)0.0161 (10)0.0113 (9)0.0015 (8)0.0040 (9)
C40.0207 (11)0.0167 (11)0.0186 (10)0.0083 (9)0.0073 (8)0.0066 (9)
C50.0129 (9)0.0133 (10)0.0170 (10)0.0045 (8)0.0041 (7)0.0035 (8)
C60.0117 (9)0.0150 (10)0.0147 (9)0.0074 (8)0.0047 (7)0.0050 (8)
C70.0167 (10)0.0122 (9)0.0137 (9)0.0073 (8)0.0035 (7)0.0025 (7)
C80.0180 (10)0.0201 (11)0.0169 (9)0.0110 (9)0.0023 (8)0.0038 (8)
C90.0288 (12)0.0202 (11)0.0174 (10)0.0166 (10)0.0057 (9)0.0062 (9)
C100.0275 (12)0.0133 (10)0.0164 (10)0.0088 (9)0.0025 (8)0.0042 (8)
C110.0200 (11)0.0194 (11)0.0146 (9)0.0069 (9)0.0004 (8)0.0041 (8)
C120.0199 (10)0.0163 (10)0.0127 (9)0.0112 (9)0.0023 (7)0.0031 (8)
Geometric parameters (Å, º) top
Se1—C61.919 (2)C3—H30.86 (3)
Se1—C71.930 (2)C4—C51.385 (3)
Se1—O22.6490 (19)C4—H40.90 (3)
Se1—O32.9534 (18)C5—C61.402 (3)
O1—N11.232 (3)C5—H50.95 (3)
O2—N11.222 (3)C7—C81.390 (3)
O3—N21.227 (3)C7—C121.399 (3)
O4—N21.232 (3)C8—C91.385 (3)
N1—C11.461 (3)C8—H80.95 (3)
N2—C121.466 (3)C9—C101.395 (3)
C1—C21.388 (3)C9—H90.97 (3)
C1—C61.396 (3)C10—C111.385 (3)
C2—C31.383 (3)C10—H100.92 (3)
C2—H20.90 (4)C11—C121.382 (3)
C3—C41.390 (3)C11—H110.91 (3)
C6—Se1—C797.38 (9)C3—C4—H4122 (2)
C6—Se1—O272.21 (7)C4—C5—C6120.8 (2)
C7—Se1—O2167.00 (8)C4—C5—H5122.3 (18)
C6—Se1—O3130.54 (7)C6—C5—H5116.9 (18)
C7—Se1—O368.23 (7)C1—C6—C5116.68 (19)
O2—Se1—O3124.39 (6)C1—C6—Se1122.05 (15)
N1—O2—Se1103.45 (13)C5—C6—Se1121.27 (16)
N2—O3—Se191.39 (12)C8—C7—C12116.8 (2)
O2—N1—O1123.8 (2)C8—C7—Se1119.70 (17)
O2—N1—C1117.76 (19)C12—C7—Se1123.47 (16)
O1—N1—C1118.5 (2)C9—C8—C7121.2 (2)
O3—N2—O4124.1 (2)C9—C8—H8117.6 (17)
O3—N2—C12118.21 (19)C7—C8—H8121.2 (17)
O4—N2—C12117.69 (19)C8—C9—C10120.5 (2)
C2—C1—C6123.04 (19)C8—C9—H9118 (2)
C2—C1—N1117.0 (2)C10—C9—H9122 (2)
C6—C1—N1119.98 (19)C11—C10—C9119.7 (2)
C3—C2—C1119.0 (2)C11—C10—H10118.7 (19)
C3—C2—H2122 (2)C9—C10—H10121.6 (19)
C1—C2—H2119 (2)C12—C11—C10118.7 (2)
C2—C3—C4119.4 (2)C12—C11—H11121 (2)
C2—C3—H3118 (2)C10—C11—H11121 (2)
C4—C3—H3123 (2)C11—C12—C7123.1 (2)
C5—C4—C3121.1 (2)C11—C12—N2116.4 (2)
C5—C4—H4117 (2)C7—C12—N2120.4 (2)
Se1—O2—N1—O1158.92 (19)C4—C5—C6—C11.1 (3)
Se1—O2—N1—C121.9 (2)C4—C5—C6—Se1179.89 (17)
Se1—O3—N2—O4139.31 (19)C12—C7—C8—C90.6 (3)
Se1—O3—N2—C1241.74 (18)Se1—C7—C8—C9178.33 (17)
O2—N1—C1—C2160.4 (2)C7—C8—C9—C100.4 (3)
O1—N1—C1—C218.8 (3)C8—C9—C10—C110.0 (3)
O2—N1—C1—C618.6 (3)C9—C10—C11—C121.4 (3)
O1—N1—C1—C6162.2 (2)C10—C11—C12—C72.4 (3)
C6—C1—C2—C30.5 (3)C10—C11—C12—N2177.64 (19)
N1—C1—C2—C3178.4 (2)C8—C7—C12—C112.0 (3)
C1—C2—C3—C40.4 (3)Se1—C7—C12—C11176.85 (17)
C2—C3—C4—C50.5 (4)C8—C7—C12—N2178.06 (19)
C3—C4—C5—C60.3 (4)Se1—C7—C12—N23.1 (3)
C2—C1—C6—C51.3 (3)O3—N2—C12—C11139.8 (2)
N1—C1—C6—C5177.61 (19)O4—N2—C12—C1139.2 (3)
C2—C1—C6—Se1179.76 (17)O3—N2—C12—C740.3 (3)
N1—C1—C6—Se11.4 (3)O4—N2—C12—C7140.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.95 (3)2.62 (3)3.243 (3)123 (2)
C8—H8···O4ii0.95 (3)2.50 (3)3.249 (3)136 (2)
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y, z.
Bis(2-aminophenyl) selenide (3) top
Crystal data top
C12H12N2SeF(000) = 528
Mr = 263.20Dx = 1.626 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.4557 (2) ÅCell parameters from 9148 reflections
b = 7.0530 (2) Åθ = 2.7–31.2°
c = 18.0521 (5) ŵ = 3.46 mm1
β = 92.643 (3)°T = 100 K
V = 1075.45 (5) Å3Prism, colorless
Z = 40.30 × 0.28 × 0.17 mm
Data collection top
Rigaku Saturn 724 Dual Source CCD
diffractometer
2695 reflections with I > 2σ(I)
Radiation source: fine-focus sealed X-ray tubeRint = 0.073
ω scansθmax = 31.2°, θmin = 2.3°
Absorption correction: numerical
(NUMABS; Rigaku, 1999\)
h = 1111
Tmin = 0.382, Tmax = 0.557k = 99
14393 measured reflectionsl = 2626
3168 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: mixed
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0718P)2 + 1.7514P]
where P = (Fo2 + 2Fc2)/3
3168 reflections(Δ/σ)max = 0.001
152 parametersΔρmax = 1.58 e Å3
4 restraintsΔρmin = 0.83 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.51147 (3)0.81805 (4)0.71295 (2)0.02687 (13)
N10.4090 (4)0.8113 (4)0.54406 (18)0.0342 (6)
H1A0.382 (11)0.807 (12)0.4971 (16)0.12 (3)*
H1B0.478 (5)0.885 (6)0.565 (2)0.047 (13)*
N20.6668 (4)1.1596 (4)0.62818 (18)0.0342 (6)
H2A0.726 (9)1.258 (8)0.626 (5)0.12 (3)*
H2B0.593 (4)1.169 (6)0.659 (2)0.037 (12)*
C10.4153 (3)0.6178 (5)0.65435 (17)0.0256 (6)
C20.3744 (4)0.4510 (5)0.6904 (2)0.0335 (7)
H20.3973110.4373620.7420900.040*
C30.3005 (4)0.3056 (5)0.6508 (3)0.0394 (9)
H30.2699820.1932130.6753580.047*
C40.2714 (4)0.3248 (5)0.5752 (3)0.0398 (9)
H40.2238600.2234700.5475980.048*
C50.3113 (4)0.4917 (5)0.5393 (2)0.0336 (7)
H50.2908830.5026540.4873350.040*
C60.3809 (3)0.6431 (5)0.57857 (18)0.0275 (6)
C70.7113 (3)0.8318 (4)0.66588 (17)0.0236 (6)
C80.8086 (4)0.6711 (5)0.6664 (2)0.0298 (6)
H80.7742170.5576290.6890270.036*
C90.9543 (4)0.6755 (5)0.6343 (2)0.0352 (7)
H91.0197740.5660000.6346250.042*
C101.0027 (4)0.8417 (6)0.6019 (2)0.0363 (8)
H101.1021990.8458020.5795490.044*
C110.9090 (4)1.0023 (5)0.60149 (18)0.0318 (7)
H110.9449851.1151750.5790320.038*
C120.7605 (4)1.0003 (5)0.63404 (16)0.0261 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.02233 (18)0.03051 (19)0.02851 (18)0.00105 (11)0.00909 (11)0.00240 (11)
N10.0369 (16)0.0339 (15)0.0319 (14)0.0017 (12)0.0028 (12)0.0053 (12)
N20.0331 (15)0.0315 (15)0.0387 (15)0.0069 (12)0.0082 (12)0.0026 (12)
C10.0178 (12)0.0259 (13)0.0336 (14)0.0019 (10)0.0077 (10)0.0042 (12)
C20.0251 (14)0.0286 (15)0.0478 (18)0.0055 (12)0.0135 (13)0.0097 (14)
C30.0322 (17)0.0245 (15)0.063 (2)0.0011 (12)0.0204 (16)0.0086 (15)
C40.0221 (15)0.0273 (16)0.071 (3)0.0032 (11)0.0129 (15)0.0099 (16)
C50.0245 (14)0.0335 (16)0.0432 (18)0.0019 (12)0.0067 (13)0.0040 (14)
C60.0187 (12)0.0290 (14)0.0356 (15)0.0007 (10)0.0079 (11)0.0023 (12)
C70.0173 (12)0.0272 (14)0.0268 (13)0.0013 (10)0.0064 (10)0.0001 (11)
C80.0246 (14)0.0301 (16)0.0346 (16)0.0051 (11)0.0018 (12)0.0026 (13)
C90.0261 (15)0.0412 (19)0.0386 (18)0.0095 (13)0.0054 (13)0.0024 (14)
C100.0235 (15)0.051 (2)0.0345 (16)0.0060 (13)0.0075 (12)0.0020 (15)
C110.0269 (14)0.0383 (17)0.0307 (15)0.0054 (12)0.0057 (11)0.0029 (13)
C120.0250 (13)0.0310 (15)0.0225 (12)0.0012 (11)0.0039 (10)0.0001 (11)
Geometric parameters (Å, º) top
Se1—C11.922 (3)C4—C51.393 (5)
Se1—C71.928 (3)C4—H40.9500
N1—C61.366 (4)C5—C61.397 (5)
N1—H1A0.87 (2)C5—H50.9500
N1—H1B0.856 (19)C7—C121.392 (4)
N2—C121.376 (4)C7—C81.400 (4)
N2—H2A0.85 (2)C8—C91.386 (5)
N2—H2B0.861 (19)C8—H80.9500
C1—C21.395 (4)C9—C101.381 (5)
C1—C61.397 (4)C9—H90.9500
C2—C31.383 (6)C10—C111.382 (5)
C2—H20.9500C10—H100.9500
C3—C41.381 (7)C11—C121.411 (4)
C3—H30.9500C11—H110.9500
C1—Se1—C798.72 (12)N1—C6—C5120.7 (3)
C6—N1—H1A112 (6)N1—C6—C1121.7 (3)
C6—N1—H1B117 (3)C5—C6—C1117.6 (3)
H1A—N1—H1B126 (7)C12—C7—C8120.5 (3)
C12—N2—H2A109 (6)C12—C7—Se1120.6 (2)
C12—N2—H2B116 (3)C8—C7—Se1118.9 (2)
H2A—N2—H2B114 (7)C9—C8—C7120.8 (3)
C2—C1—C6121.3 (3)C9—C8—H8119.6
C2—C1—Se1118.1 (2)C7—C8—H8119.6
C6—C1—Se1120.6 (2)C10—C9—C8118.9 (3)
C3—C2—C1120.0 (3)C10—C9—H9120.6
C3—C2—H2120.0C8—C9—H9120.6
C1—C2—H2120.0C9—C10—C11121.1 (3)
C4—C3—C2119.6 (3)C9—C10—H10119.4
C4—C3—H3120.2C11—C10—H10119.4
C2—C3—H3120.2C10—C11—C12120.7 (3)
C3—C4—C5120.4 (3)C10—C11—H11119.6
C3—C4—H4119.8C12—C11—H11119.6
C5—C4—H4119.8N2—C12—C7123.2 (3)
C4—C5—C6121.1 (4)N2—C12—C11118.7 (3)
C4—C5—H5119.5C7—C12—C11118.0 (3)
C6—C5—H5119.5
C6—C1—C2—C31.0 (4)C12—C7—C8—C91.0 (5)
Se1—C1—C2—C3178.0 (2)Se1—C7—C8—C9178.9 (3)
C1—C2—C3—C41.7 (5)C7—C8—C9—C100.2 (5)
C2—C3—C4—C52.1 (5)C8—C9—C10—C110.4 (6)
C3—C4—C5—C60.2 (5)C9—C10—C11—C120.2 (5)
C4—C5—C6—N1175.1 (3)C8—C7—C12—N2176.3 (3)
C4—C5—C6—C12.8 (4)Se1—C7—C12—N25.8 (4)
C2—C1—C6—N1174.7 (3)C8—C7—C12—C111.1 (5)
Se1—C1—C6—N12.3 (4)Se1—C7—C12—C11179.0 (2)
C2—C1—C6—C53.2 (4)C10—C11—C12—N2175.9 (3)
Se1—C1—C6—C5179.9 (2)C10—C11—C12—C70.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.87 (2)2.29 (2)3.152 (5)171 (8)
N1—H1B···Se10.86 (2)2.72 (5)3.131 (3)111 (4)
N2—H2B···Se10.86 (2)2.76 (4)3.171 (3)111 (3)
C8—H8···Se1ii0.953.003.599 (3)123
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+3/2, y1/2, z+3/2.
Bis(2-aminophenyl) telluride (7) top
Crystal data top
C12H12N2TeZ = 2
Mr = 311.84F(000) = 300
Triclinic, P1Dx = 1.853 Mg m3
a = 7.0048 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.6062 (3) ÅCell parameters from 6288 reflections
c = 10.1392 (3) Åθ = 2.2–30.9°
α = 66.164 (3)°µ = 2.63 mm1
β = 88.628 (2)°T = 150 K
γ = 88.780 (2)°Prism, pale yellow
V = 558.90 (3) Å30.21 × 0.16 × 0.12 mm
Data collection top
Rigaku Saturn 724 Dual Source CCD
diffractometer
2890 reflections with I > 2σ(I)
Radiation source: fine-focus sealed X-ray tubeRint = 0.038
ω scansθmax = 29.1°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015\)
h = 99
Tmin = 0.567, Tmax = 0.714k = 1111
13367 measured reflectionsl = 1313
2976 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: mixed
wR(F2) = 0.049H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0215P)2 + 0.5277P]
where P = (Fo2 + 2Fc2)/3
2976 reflections(Δ/σ)max = 0.001
152 parametersΔρmax = 1.27 e Å3
4 restraintsΔρmin = 1.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Te10.79904 (2)0.71267 (2)0.05875 (2)0.02352 (5)
N11.1524 (3)0.4620 (3)0.2470 (2)0.0332 (4)
H1N11.151 (5)0.570 (2)0.185 (3)0.044 (8)*
H1N21.260 (4)0.408 (4)0.254 (4)0.066 (11)*
N20.8161 (3)0.6373 (3)0.4087 (2)0.0288 (4)
H2N10.893 (4)0.598 (4)0.364 (3)0.032 (7)*
H2N20.821 (4)0.588 (4)0.5008 (19)0.041 (8)*
C10.8319 (3)0.4444 (2)0.1672 (2)0.0230 (4)
C21.0018 (3)0.3687 (3)0.2356 (2)0.0244 (4)
C31.0123 (3)0.1897 (3)0.3027 (2)0.0306 (4)
H31.1265080.1360940.3491960.037*
C40.8600 (4)0.0911 (3)0.3021 (2)0.0342 (5)
H40.8707390.0291190.3480670.041*
C50.6920 (4)0.1654 (3)0.2352 (3)0.0341 (5)
H50.5869940.0972380.2354560.041*
C60.6791 (3)0.3409 (3)0.1679 (2)0.0295 (4)
H60.5642250.3924550.1210320.035*
C70.5972 (3)0.7416 (2)0.2063 (2)0.0210 (3)
C80.6391 (3)0.6977 (2)0.3521 (2)0.0228 (4)
C90.4957 (3)0.7238 (3)0.4406 (2)0.0282 (4)
H90.5199780.6924850.5399470.034*
C100.3199 (3)0.7938 (3)0.3865 (2)0.0296 (4)
H100.2253470.8098970.4487660.035*
C110.2809 (3)0.8409 (3)0.2414 (3)0.0287 (4)
H110.1614790.8916680.2035280.034*
C120.4188 (3)0.8127 (2)0.1531 (2)0.0250 (4)
H120.3917510.8422370.0544460.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Te10.02854 (8)0.01968 (7)0.02071 (8)0.00115 (5)0.00508 (5)0.00683 (5)
N10.0311 (9)0.0326 (10)0.0356 (10)0.0015 (8)0.0011 (8)0.0132 (8)
N20.0280 (9)0.0359 (9)0.0217 (8)0.0065 (7)0.0018 (7)0.0110 (7)
C10.0278 (9)0.0207 (8)0.0207 (9)0.0016 (7)0.0052 (7)0.0090 (7)
C20.0297 (9)0.0257 (9)0.0196 (9)0.0033 (7)0.0036 (7)0.0113 (7)
C30.0385 (11)0.0296 (10)0.0242 (10)0.0098 (8)0.0013 (8)0.0119 (8)
C40.0520 (14)0.0222 (9)0.0279 (11)0.0013 (9)0.0088 (9)0.0102 (8)
C50.0419 (12)0.0278 (10)0.0340 (11)0.0075 (9)0.0096 (9)0.0142 (9)
C60.0301 (10)0.0283 (10)0.0315 (11)0.0012 (8)0.0051 (8)0.0137 (9)
C70.0237 (8)0.0170 (8)0.0229 (9)0.0000 (6)0.0036 (7)0.0088 (7)
C80.0269 (9)0.0181 (8)0.0230 (9)0.0002 (7)0.0020 (7)0.0080 (7)
C90.0334 (10)0.0274 (10)0.0230 (9)0.0009 (8)0.0053 (8)0.0096 (8)
C100.0288 (10)0.0271 (10)0.0343 (11)0.0002 (8)0.0088 (8)0.0144 (9)
C110.0231 (9)0.0257 (9)0.0382 (11)0.0021 (7)0.0012 (8)0.0139 (9)
C120.0270 (9)0.0227 (9)0.0265 (10)0.0008 (7)0.0008 (7)0.0110 (8)
Geometric parameters (Å, º) top
Te1—C72.1180 (18)C4—C51.382 (4)
Te1—C12.1286 (19)C4—H40.9500
Te1—H1N12.83 (3)C5—C61.385 (3)
Te1—H2N12.93 (3)C5—H50.9500
N1—C21.373 (3)C6—H60.9500
N1—N23.490 (3)C7—C121.400 (3)
N1—H1N10.883 (18)C7—C81.406 (3)
N1—H1N20.868 (18)C8—C91.406 (3)
N2—C81.379 (3)C9—C101.384 (3)
N2—H2N10.848 (17)C9—H90.9500
N2—H2N20.857 (17)C10—C111.391 (3)
C1—C21.401 (3)C10—H100.9500
C1—C61.405 (3)C11—C121.385 (3)
C2—C31.411 (3)C11—H110.9500
C3—C41.379 (3)C12—H120.9500
C3—H30.9500
C7—Te1—C196.36 (7)C3—C4—C5120.7 (2)
C7—Te1—H1N1113.5 (6)C3—C4—H4119.7
C1—Te1—H1N159.9 (5)C5—C4—H4119.7
C7—Te1—H2N159.9 (4)C4—C5—C6119.0 (2)
C1—Te1—H2N166.3 (5)C4—C5—H5120.5
H1N1—Te1—H2N153.7 (7)C6—C5—H5120.5
C2—N1—N284.56 (12)C5—C6—C1121.5 (2)
C2—N1—H1N1115 (2)C5—C6—H6119.2
N2—N1—H1N178 (2)C1—C6—H6119.2
C2—N1—H1N2111 (3)C12—C7—C8119.93 (18)
N2—N1—H1N2148 (3)C12—C7—Te1117.65 (14)
H1N1—N1—H1N2116 (3)C8—C7—Te1122.39 (14)
C8—N2—N1123.77 (13)N2—C8—C9119.47 (19)
C8—N2—H2N1120 (2)N2—C8—C7122.63 (18)
N1—N2—H2N14 (2)C9—C8—C7117.86 (18)
C8—N2—H2N2116 (2)C10—C9—C8121.5 (2)
N1—N2—H2N2111 (2)C10—C9—H9119.2
H2N1—N2—H2N2115 (3)C8—C9—H9119.2
C2—C1—C6119.40 (18)C9—C10—C11120.33 (19)
C2—C1—Te1121.91 (15)C9—C10—H10119.8
C6—C1—Te1118.68 (15)C11—C10—H10119.8
N1—C2—C1122.51 (19)C12—C11—C10119.02 (19)
N1—C2—C3119.3 (2)C12—C11—H11120.5
C1—C2—C3118.08 (19)C10—C11—H11120.5
C4—C3—C2121.4 (2)C11—C12—C7121.29 (19)
C4—C3—H3119.3C11—C12—H12119.4
C2—C3—H3119.3C7—C12—H12119.4
N2—N1—C2—C155.43 (18)N1—N2—C8—C9163.18 (15)
N2—N1—C2—C3120.52 (17)N1—N2—C8—C719.5 (3)
C6—C1—C2—N1175.84 (19)C12—C7—C8—N2175.81 (19)
Te1—C1—C2—N15.1 (3)Te1—C7—C8—N21.9 (3)
C6—C1—C2—C30.2 (3)C12—C7—C8—C91.6 (3)
Te1—C1—C2—C3178.87 (14)Te1—C7—C8—C9179.30 (14)
N1—C2—C3—C4175.8 (2)N2—C8—C9—C10176.0 (2)
C1—C2—C3—C40.3 (3)C7—C8—C9—C101.5 (3)
C2—C3—C4—C50.0 (3)C8—C9—C10—C110.1 (3)
C3—C4—C5—C60.4 (3)C9—C10—C11—C121.6 (3)
C4—C5—C6—C10.6 (3)C10—C11—C12—C71.5 (3)
C2—C1—C6—C50.3 (3)C8—C7—C12—C110.1 (3)
Te1—C1—C6—C5179.34 (16)Te1—C7—C12—C11177.97 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N1···N10.85 (2)2.65 (2)3.490 (3)175 (3)
N2—H2N2···N1i0.86 (2)2.43 (2)3.253 (3)162 (3)
Symmetry code: (i) x+2, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds