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S1. Convolutional neural network  

The architecture of the convolutional neural network used in this study is shown in Figure S1. Binary 

cross-entropy and adaptive moment estimation (Adam) (Kingma & Ba, 2014) are used as a loss 

function and optimisation algorithm. Our program is established on the Keras framework with a 

Theano backend. 

Based on the architecture in Figure S1, the number of parameters in CNN can be calculated as below. 

Parameters in convolutional layers (Conv2D): 

5 × 5 × 5 + 3 × 3 × 3 + 2 × 3 × 3 = 170 

Output x and y dimensions of the last Max-polling layer:  

64 − (5 − 1)
2

− (3 − 1)

2
− (3 − 1)

2
= 6 

and parameters in Dense(2) layer:  

(2 × 6 × 6) × 2 = 144 

Parameters in Dense(1) layer:  

2 × 1 = 2 

As a result, CNN contains 170+144+2=316 parameters. 

S2. Graph cut model 

The construction of the sparse graph for the data and the computation of the adjacency matrix 𝑊 is 

the most time-consuming part of the implementation of the GC algorithm. We used the MATLAB 

software package VLFeat (Vedaldi & Fulkerson, 2010) to construct the k-nearest neighbour graph for 

the dataset (𝑘 = 5 in this application), and the adjacency matrix 𝑊 was computed accordingly. For 

simplicity, we refer to the gradient operator 𝛻𝑊 defined on the graph as the symbol 𝛻. More exactly, 

let 𝑢(𝑥) be a function defined on the vertices of the graph 𝐺. Given vertex 𝑥𝑖 and one of its 

neighbouring vertices 𝑥𝑗, the gradient of 𝑢 at 𝑥𝑖 in the direction of 𝑥𝑖 to 𝑥𝑗 is denoted by 

𝛻𝑢(𝑥𝑖)(𝑥𝑗) = 𝑤𝑖𝑗 (𝑢(𝑥𝑗) − 𝑢(𝑥𝑖)). 

Thus, 𝑢(𝑥𝑖) is a sparse 𝑁-dimensional vector with number of nonzero entries equal to the number of 

neighbours of 𝑥𝑖. By stacking all of the 𝛻𝑢(𝑥𝑖) in rows, we obtain 𝛻𝑢 as the 𝑁 × 𝑁 sparse matrix. 

Accordingly, we can define a “flow” variable 𝑞 on the graph in the same dimension of 𝛻𝑢, where a 

row, for example 𝑞(𝑥𝑖), denotes the flow from the vertex 𝑥𝑖 to every vertex in the graph. The 

divergence operator (𝑑𝑖𝑣) is defined as the adjoint operator to the gradient operator (𝛻), usually 

defined on a flow on the graph such that 𝑑𝑖𝑣𝑞 is an 𝑁-dimensional vector. The prior probability 𝑝(𝑥) 

for vertices 𝑥 of the graph models the conditional probability of 𝑥 belonging to the single-particle 
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patterns given the set 𝑆1 of the single-particle patterns and the set 𝑆0 of the non-single-particle 

patterns. We use the following definition for 𝑝(𝑥): 

𝑝(𝑥) =

1
|𝑆1|

∑ 𝑑(𝑥, 𝑥1) 
𝑥1∈𝑆1

1
|𝑆0|

∑ 𝑑(𝑥, 𝑥0) 
𝑥0∈𝑆0

+
1

|𝑆1|
∑ 𝑑(𝑥, 𝑥1) 

𝑥1∈𝑆1

, 

where 𝑑(𝑥𝑖, 𝑥𝑗) =
(𝑤𝑖𝑗

(2)
)2

𝑤
𝑖𝑖
(2)

𝑤
𝑗𝑗
(2).  Here 𝑤𝑖𝑗

(2)
 is the (𝑖, 𝑗) entry of the matrix 𝑊2 (𝑊 to the second power). 

The pseudo code for the GC algorithm is listed in Figure S2. In each iteration of the whole loop, there 

is one evaluation of the gradient of the labelling function 𝜑 and one evaluation of the divergence of 

the flow 𝑞, which take up most of the computation cost. In addition, there is one projection onto the 

infinity-norm ball (𝛱||𝑞||∞≤1) that restricts each row of 𝑞 to be unit vector and one projection onto the 

set ∆ where each entry is on the interval [0,1]. 

S3. Diffusion map manifold embedding 

Figure S3 shows the pseudo code of DM method, and the source code is available at 

https://github.com/haoyuanli93/DiffusionMap . For CXIDB 58, the first 3 components of the 

eigenvectors are used for clustering, where (𝛷1, 𝛷2, 𝛷3) = (−0.75,0,0) is recognised as the most 

ideal single-particle diffraction pattern. 

S4. Calculation method of orientation distributions 

The orientation distribution of the merged dataset is calculated as equation below, where 𝑃𝑟 is the total 

probability of the 𝑟th orientation and 𝑝𝑖𝑟 is the probability of the 𝑟th orientation for the 𝑖th pattern. In 

this study, we only used the top 10 orientations with the highest probabilities for every pattern. 

𝑃𝑟 = ∑ 𝑝𝑖𝑟

 

𝑖

 

S5. Orientation recovery using simulation data 

10,000 diffraction patterns were simulated from a solid icosahedron using randomly sampled Euler 

angles, shown in Figure S8a. The orientation recovery on this simulation data were carried out using 

the Dragonfly program, and the recovered orientation distribution is shown in Figure S8b. Although 

there are some fluctuations in the distributions, the is no belt-like distribution observed in Figure S4. 

Furthermore, the fluctuation levels are much smaller in the simulation dataset, compared to uneven 

distributions in the PR772 data. Simulation source code is available at https://github.com/LiuLab-

CSRC/spipy/blob/examples/spipy/simulate/sim_adu.py. 

 

https://github.com/haoyuanli93/DiffusionMap
https://github.com/LiuLab-CSRC/spipy/blob/examples/spipy/simulate/sim_adu.py
https://github.com/LiuLab-CSRC/spipy/blob/examples/spipy/simulate/sim_adu.py
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S6. Data and source code 

The raw dataset, training patterns, source code and classification results in this work are available at 

https://pr772-doc.readthedocs.io/en/latest/. 

 

 

 

Figure S1 CNN architecture. The parameters inside the bracket of the convolutional layer are the 

output channels, the kernel size in the x axis, and the kernel size in the y axis, respectively. The 

parameter inside the bracket of the dense layer is the number of neurons.  
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Figure S2 Pseudo code of graph cut (GC) model for image classification. 

 

 

Figure S3 Pseudo code of diffusion map (DM) manifold embedding. 
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Figure S4 Orientation distributions. Hammer-Aitoff projection of the orientation distribution for the 

datasets from the three classification methods, CNN (a), GC (b), DM (c) and common (d) datasets. 

The colour bar displays the values of the probabilities, which are proportional to the radius of the 

circles in the figure. (e) The reconstructed model from the merged data is superposed, revealing that 

the most preferred orientation is around a belt. Colour codes: CNN (red), GC (white), DM (green) and 

common (blue) datasets. 
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Figure S5 Representative examples of single scattering patterns compared against the slices from 

the merged model of CNN dataset. (a) two scattering patterns; (b) the best matched central slices to 

the patterns in (a). The same cross mask was applied to guide the visual comparison, the experimental 

patterns are down-sampled and the slices correspond to the same parameters. 
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(b) 
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(d) 

 

 

Figure S6 Phase retrieval results. Representative phase retrieval processes for (a) CNN, (b) GC, (c) 

DM methods, and (d) common datasets. The red dashed lines in the PRTF figure represent the 1/e cut-

off, which is used to calculate the model resolutions. The middle panels show slices in the YZ plane 

of the reciprocal space to compare the input and retrieved intensities. The pixel size is 0.00185 nm-1. 
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 (a) 

 

(b) 

 



 

 

IUCrJ (2019). 6,  doi:10.1107/S2052252519001854        Supporting information, sup-11 

(c) 

 

 

Figure S7 Randomly selected samples of single-particle patterns from classification method (a) CNN, (b) GC, and (c) DM. 
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Figure S8 Diffraction simulation of solid icosahedral and orientation recovery. (a) Simulated single-hit patterns from 

randomly sampled Euler angles; (b) Orientation distributions recovered by EMC algorithm using single-hit patterns; (c) 

Simulated multiple-hit patterns from randomly sampled Euler angles. 

 

Figure S9 The FSC curves between reconstructed models.  

 


