Download citation
Download citation
link to html
The title Schiff base compound, C19H20N2O4, was synthesized by the reaction of o-phenyl­enediamine with 6-methoxy­salicylaldehyde. The central benzene ring makes dihedral angles of 2.78 (5) and 73.98 (5)° with the two terminal phenol rings. Each meth­oxy group is coplanar with the attached phenol ring. The crystal structure is stabilized by intra­molecular O—H...N and inter­molecular C—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680704826X/xu2333sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680704826X/xu2333Isup2.hkl
Contains datablock I

CCDC reference: 667462

Key indicators

  • Single-crystal X-ray study
  • T = 150 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.039
  • wR factor = 0.111
  • Data-to-parameter ratio = 16.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 100 Deg. PLAT180_ALERT_3_C Check Cell Rounding: # of Values Ending with 0 = 3
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Schiff bases rank among the most versatile synthetic organic intermediates. They are reported to show a variety of biological activities including antifungal (Singh & Dash, 1988; More et al., 2001), antibacterial (Baseer et al., 2000; El-Masry et al., 2000; Kabeer et al., 2001) and anticancer (Kuzmin et al., 2000; Desai et al., 2001) among others. Recently we reported the structure of a copper(II) and nickel(II) complexes with the N,N'-bis(6-methoxysalicylidene)-1,3-diaminopropane ligand (Habibi et al., 2007a,b)·As an extension of our investigations of Schiff base ligands and complexes, the title compound (Fig. 1) was synthesized by the reaction of o-phenylenediamine with 6-methoxysalicylaldehyde, and its crystal structure is reported here.

The orientations of the C2–C7 and C16–C21 benzene rings respect to the o-phenylenediamine unit are indicated by the dihedral angles of 73.98 (5)and 2.78 (5)°, respectively. The C2–C7 and C16–C21 benzene rings makes the dihedral angle of 73.14 (5)°. The two methoxy groups are planarly attached to the C2–C7 and C16–C21 benzene rings·The intramolecular O—H···N interactions generate S(6) ring motifs (Table 1 and Fig. 2).

Related literature top

For general background, see: Baseer et al. (2000); Desai et al. (2001); El-Masry et al. (2000); Kabeer et al. (2001); Kuzmin et al. (2000); More et al. (2001); Singh & Dash (1988). For related structures, see: Habibi et al. (2007a,b).

Experimental top

The title compound was synthesized by adding 6-methoxysalicylaldehyde (0.304 g, 2 mmol) into a solution of o-phenylenediamine (0.108 g, 1 mmol) in ethanol (10 ml). The mixture was refluxed with stirring for 30 min. The resultant red solution was filtered. Orange block-shaped single crystals of (I) suitable for X-ray structure determination were formed after 3 days of slow evaporation of the solvent at room temperature.

Refinement top

Hydroxy H atoms were located in a difference Fourier map and refined isotropically. Methyl H atoms were placed in calculated positions with C—H = 0.98 Å and torsion angles were refined with Uiso(H) = 1.5Ueq(C). Aromatic H atoms were positioned geometrically and allowed to ride on their parent atoms with C—H = 0.95 Å, Uiso(H) = 1.2Ueq(C).

Structure description top

Schiff bases rank among the most versatile synthetic organic intermediates. They are reported to show a variety of biological activities including antifungal (Singh & Dash, 1988; More et al., 2001), antibacterial (Baseer et al., 2000; El-Masry et al., 2000; Kabeer et al., 2001) and anticancer (Kuzmin et al., 2000; Desai et al., 2001) among others. Recently we reported the structure of a copper(II) and nickel(II) complexes with the N,N'-bis(6-methoxysalicylidene)-1,3-diaminopropane ligand (Habibi et al., 2007a,b)·As an extension of our investigations of Schiff base ligands and complexes, the title compound (Fig. 1) was synthesized by the reaction of o-phenylenediamine with 6-methoxysalicylaldehyde, and its crystal structure is reported here.

The orientations of the C2–C7 and C16–C21 benzene rings respect to the o-phenylenediamine unit are indicated by the dihedral angles of 73.98 (5)and 2.78 (5)°, respectively. The C2–C7 and C16–C21 benzene rings makes the dihedral angle of 73.14 (5)°. The two methoxy groups are planarly attached to the C2–C7 and C16–C21 benzene rings·The intramolecular O—H···N interactions generate S(6) ring motifs (Table 1 and Fig. 2).

For general background, see: Baseer et al. (2000); Desai et al. (2001); El-Masry et al. (2000); Kabeer et al. (2001); Kuzmin et al. (2000); More et al. (2001); Singh & Dash (1988). For related structures, see: Habibi et al. (2007a,b).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2005); program(s) used to refine structure: SHELXTL (Sheldrick, 2005); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: SHELXTL and local programs.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering.
[Figure 2] Fig. 2. The crystal packing of (I), hydrogen bonds were drawn as dash lines.
3,3'-Dimethoxy-2,2'-[1,2-phenylenebis(nitrilomethylidyne)]diphenol top
Crystal data top
C22H20N2O4Z = 2
Mr = 376.40F(000) = 396
Triclinic, P1Dx = 1.387 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3766 (9) ÅCell parameters from 5073 reflections
b = 11.1515 (11) Åθ = 2.3–28.3°
c = 11.2575 (12) ŵ = 0.10 mm1
α = 101.848 (1)°T = 150 K
β = 108.359 (1)°Block, orange
γ = 107.077 (1)°0.32 × 0.30 × 0.20 mm
V = 901.19 (16) Å3
Data collection top
Bruker SMART 1K CCD
diffractometer
4197 independent reflections
Radiation source: sealed tube3504 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
thin–slice ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 1111
Tmin = 0.970, Tmax = 0.981k = 1414
8089 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0546P)2 + 0.2872P]
where P = (Fo2 + 2Fc2)/3
4197 reflections(Δ/σ)max < 0.001
263 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C22H20N2O4γ = 107.077 (1)°
Mr = 376.40V = 901.19 (16) Å3
Triclinic, P1Z = 2
a = 8.3766 (9) ÅMo Kα radiation
b = 11.1515 (11) ŵ = 0.10 mm1
c = 11.2575 (12) ÅT = 150 K
α = 101.848 (1)°0.32 × 0.30 × 0.20 mm
β = 108.359 (1)°
Data collection top
Bruker SMART 1K CCD
diffractometer
4197 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
3504 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.981Rint = 0.015
8089 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.31 e Å3
4197 reflectionsΔρmin = 0.18 e Å3
263 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.13493 (13)0.19435 (9)0.03338 (10)0.0361 (2)
O20.41326 (13)0.32229 (10)0.03430 (10)0.0335 (2)
H20.432 (3)0.397 (2)0.042 (2)0.069 (6)*
O30.55943 (13)0.25477 (9)0.26963 (9)0.0335 (2)
H30.547 (3)0.332 (2)0.284 (2)0.070 (6)*
O41.01314 (12)0.49961 (8)0.70540 (8)0.0257 (2)
N10.36681 (13)0.46636 (10)0.15216 (10)0.0225 (2)
N20.61616 (14)0.49466 (9)0.38789 (10)0.0229 (2)
C10.31728 (19)0.10418 (15)0.00296 (16)0.0402 (4)
H1A0.36650.13840.05860.060*
H1B0.31690.01720.00080.060*
H1C0.39330.09510.09320.060*
C20.24429 (17)0.23396 (12)0.06730 (12)0.0260 (3)
C30.1757 (2)0.11749 (14)0.17425 (13)0.0333 (3)
H3A0.24700.10200.22210.040*
C40.0033 (2)0.02529 (13)0.20961 (14)0.0370 (3)
H4A0.04140.05460.28120.044*
C50.10797 (19)0.04491 (13)0.14405 (14)0.0342 (3)
H5A0.22670.02000.17080.041*
C60.04092 (17)0.16164 (12)0.03873 (13)0.0273 (3)
C70.13665 (16)0.25797 (11)0.00215 (11)0.0231 (2)
C80.20536 (16)0.37949 (11)0.11280 (11)0.0218 (2)
H8A0.12940.39460.15650.026*
C90.43040 (15)0.58591 (11)0.25858 (11)0.0198 (2)
C100.36779 (17)0.68650 (12)0.24104 (12)0.0249 (3)
H10A0.27580.67350.15880.030*
C110.44001 (18)0.80535 (12)0.34372 (13)0.0266 (3)
H11A0.39690.87370.33190.032*
C120.57513 (17)0.82492 (12)0.46385 (13)0.0268 (3)
H12A0.62500.90690.53370.032*
C130.63754 (17)0.72499 (12)0.48213 (12)0.0259 (3)
H13A0.72930.73870.56480.031*
C140.56646 (15)0.60432 (11)0.37985 (11)0.0201 (2)
C150.74570 (15)0.49796 (11)0.48910 (11)0.0204 (2)
H15A0.81250.57680.56360.024*
C160.78987 (16)0.38175 (11)0.48972 (12)0.0208 (2)
C170.92887 (16)0.38330 (12)0.60199 (12)0.0219 (2)
C180.97267 (17)0.27272 (13)0.60344 (13)0.0276 (3)
H18A1.06560.27430.67930.033*
C190.87784 (19)0.15936 (13)0.49159 (14)0.0318 (3)
H19A0.90810.08370.49190.038*
C200.74174 (19)0.15375 (13)0.38064 (14)0.0320 (3)
H20A0.67930.07510.30570.038*
C210.69577 (17)0.26434 (12)0.37869 (12)0.0254 (3)
C221.14988 (18)0.50459 (14)0.82323 (13)0.0320 (3)
H22A1.20300.59370.88850.048*
H22B1.24560.48410.80190.048*
H22C1.09460.43940.86000.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0267 (5)0.0295 (5)0.0411 (6)0.0010 (4)0.0136 (4)0.0044 (4)
O20.0281 (5)0.0360 (5)0.0310 (5)0.0104 (4)0.0130 (4)0.0009 (4)
O30.0389 (5)0.0245 (5)0.0262 (5)0.0141 (4)0.0025 (4)0.0009 (4)
O40.0261 (4)0.0257 (4)0.0222 (4)0.0112 (4)0.0052 (3)0.0073 (3)
N10.0227 (5)0.0216 (5)0.0197 (5)0.0082 (4)0.0066 (4)0.0034 (4)
N20.0259 (5)0.0189 (5)0.0229 (5)0.0100 (4)0.0079 (4)0.0057 (4)
C10.0258 (7)0.0371 (8)0.0475 (9)0.0011 (6)0.0104 (6)0.0168 (7)
C20.0265 (6)0.0259 (6)0.0226 (6)0.0130 (5)0.0050 (5)0.0057 (5)
C30.0387 (7)0.0321 (7)0.0255 (6)0.0203 (6)0.0070 (5)0.0019 (5)
C40.0428 (8)0.0250 (6)0.0280 (7)0.0150 (6)0.0002 (6)0.0018 (5)
C50.0304 (7)0.0221 (6)0.0331 (7)0.0048 (5)0.0008 (5)0.0046 (5)
C60.0265 (6)0.0229 (6)0.0267 (6)0.0082 (5)0.0047 (5)0.0081 (5)
C70.0242 (6)0.0203 (5)0.0213 (5)0.0091 (5)0.0047 (5)0.0066 (4)
C80.0222 (5)0.0229 (6)0.0202 (5)0.0099 (4)0.0070 (4)0.0077 (4)
C90.0190 (5)0.0190 (5)0.0204 (5)0.0057 (4)0.0091 (4)0.0047 (4)
C100.0254 (6)0.0276 (6)0.0241 (6)0.0130 (5)0.0092 (5)0.0101 (5)
C110.0313 (6)0.0216 (6)0.0336 (7)0.0141 (5)0.0163 (5)0.0114 (5)
C120.0286 (6)0.0174 (5)0.0296 (6)0.0071 (5)0.0109 (5)0.0021 (5)
C130.0248 (6)0.0212 (6)0.0235 (6)0.0073 (5)0.0040 (5)0.0021 (5)
C140.0206 (5)0.0167 (5)0.0221 (5)0.0068 (4)0.0086 (4)0.0052 (4)
C150.0215 (5)0.0183 (5)0.0209 (5)0.0069 (4)0.0094 (4)0.0052 (4)
C160.0224 (5)0.0196 (5)0.0234 (6)0.0089 (4)0.0117 (5)0.0079 (4)
C170.0214 (5)0.0225 (6)0.0248 (6)0.0085 (4)0.0118 (5)0.0095 (5)
C180.0268 (6)0.0301 (6)0.0334 (7)0.0157 (5)0.0136 (5)0.0158 (5)
C190.0371 (7)0.0253 (6)0.0429 (8)0.0194 (5)0.0200 (6)0.0137 (6)
C200.0384 (7)0.0212 (6)0.0344 (7)0.0137 (5)0.0134 (6)0.0039 (5)
C210.0280 (6)0.0219 (6)0.0254 (6)0.0105 (5)0.0100 (5)0.0061 (5)
C220.0303 (7)0.0388 (7)0.0244 (6)0.0165 (6)0.0052 (5)0.0098 (5)
Geometric parameters (Å, º) top
O1—C11.4307 (16)C8—H8A0.9500
O1—C61.3646 (17)C9—C101.3941 (16)
O2—H21.00 (2)C9—C141.4043 (16)
O2—C21.3458 (16)C10—H10A0.9500
O3—H30.89 (2)C10—C111.3850 (17)
O3—C211.3470 (15)C11—H11A0.9500
O4—C171.3639 (14)C11—C121.3882 (18)
O4—C221.4318 (15)C12—H12A0.9500
N1—C81.2809 (15)C12—C131.3878 (17)
N1—C91.4218 (14)C13—H13A0.9500
N2—C141.4133 (14)C13—C141.3973 (16)
N2—C151.2874 (15)C15—H15A0.9500
C1—H1A0.9800C15—C161.4491 (15)
C1—H1B0.9800C16—C171.4162 (16)
C1—H1C0.9800C16—C211.4140 (16)
C2—C31.3965 (17)C17—C181.3877 (16)
C2—C71.4127 (18)C18—H18A0.9500
C3—H3A0.9500C18—C191.3932 (19)
C3—C41.378 (2)C19—H19A0.9500
C4—H4A0.9500C19—C201.376 (2)
C4—C51.396 (2)C20—H20A0.9500
C5—H5A0.9500C20—C211.3979 (17)
C5—C61.3903 (18)C22—H22A0.9800
C6—C71.4162 (17)C22—H22B0.9800
C7—C81.4548 (16)C22—H22C0.9800
C1—O1—C6118.19 (11)C10—C11—H11A119.9
H2—O2—C2104.6 (12)C10—C11—C12120.24 (11)
H3—O3—C21107.0 (14)H11A—C11—C12119.9
C17—O4—C22117.29 (10)C11—C12—H12A119.9
C8—N1—C9120.25 (10)C11—C12—C13120.15 (11)
C14—N2—C15123.35 (10)H12A—C12—C13119.9
O1—C1—H1A109.5C12—C13—H13A119.7
O1—C1—H1B109.5C12—C13—C14120.52 (11)
O1—C1—H1C109.5H13A—C13—C14119.7
H1A—C1—H1B109.5N2—C14—C9115.63 (10)
H1A—C1—H1C109.5N2—C14—C13125.54 (10)
H1B—C1—H1C109.5C9—C14—C13118.80 (10)
O2—C2—C3118.18 (12)N2—C15—H15A119.9
O2—C2—C7121.52 (11)N2—C15—C16120.21 (10)
C3—C2—C7120.29 (12)H15A—C15—C16119.9
C2—C3—H3A120.4C15—C16—C17120.61 (10)
C2—C3—C4119.26 (13)C15—C16—C21121.00 (11)
H3A—C3—C4120.4C17—C16—C21118.39 (10)
C3—C4—H4A118.8O4—C17—C16115.11 (10)
C3—C4—C5122.41 (12)O4—C17—C18123.82 (11)
H4A—C4—C5118.8C16—C17—C18121.07 (11)
C4—C5—H5A120.8C17—C18—H18A120.6
C4—C5—C6118.42 (13)C17—C18—C19118.77 (12)
H5A—C5—C6120.8H18A—C18—C19120.6
O1—C6—C5124.72 (12)C18—C19—H19A119.0
O1—C6—C7114.34 (11)C18—C19—C20121.96 (12)
C5—C6—C7120.94 (13)H19A—C19—C20119.0
C2—C7—C6118.66 (11)C19—C20—H20A120.2
C2—C7—C8120.96 (11)C19—C20—C21119.66 (12)
C6—C7—C8120.38 (11)H20A—C20—C21120.2
N1—C8—C7120.98 (11)O3—C21—C16121.63 (11)
N1—C8—H8A119.5O3—C21—C20118.22 (11)
C7—C8—H8A119.5C16—C21—C20120.15 (11)
N1—C9—C10120.92 (10)O4—C22—H22A109.5
N1—C9—C14118.57 (10)O4—C22—H22B109.5
C10—C9—C14120.40 (10)O4—C22—H22C109.5
C9—C10—H10A120.1H22A—C22—H22B109.5
C9—C10—C11119.88 (11)H22A—C22—H22C109.5
H10A—C10—C11120.1H22B—C22—H22C109.5
O2—C2—C3—C4179.74 (12)C12—C13—C14—C90.25 (18)
C7—C2—C3—C41.21 (19)N1—C9—C14—N25.56 (15)
C2—C3—C4—C51.4 (2)N1—C9—C14—C13176.05 (10)
C3—C4—C5—C60.4 (2)C10—C9—C14—N2178.37 (10)
C1—O1—C6—C51.49 (19)C10—C9—C14—C130.01 (17)
C1—O1—C6—C7178.56 (11)C15—N2—C14—C9175.83 (11)
C4—C5—C6—O1179.44 (12)C15—N2—C14—C135.91 (19)
C4—C5—C6—C70.61 (19)C14—N2—C15—C16179.49 (10)
O2—C2—C7—C6179.21 (11)N2—C15—C16—C17178.30 (11)
O2—C2—C7—C80.27 (18)N2—C15—C16—C211.73 (17)
C3—C2—C7—C60.20 (18)C22—O4—C17—C16177.64 (10)
C3—C2—C7—C8179.29 (11)C22—O4—C17—C182.32 (17)
O1—C6—C7—C2179.32 (11)C15—C16—C17—O40.26 (16)
O1—C6—C7—C80.17 (16)C15—C16—C17—C18179.77 (11)
C5—C6—C7—C20.72 (18)C21—C16—C17—O4179.77 (10)
C5—C6—C7—C8179.79 (11)C21—C16—C17—C180.20 (17)
C9—N1—C8—C7178.62 (10)O4—C17—C18—C19179.67 (11)
C2—C7—C8—N11.70 (17)C16—C17—C18—C190.37 (18)
C6—C7—C8—N1178.82 (11)C17—C18—C19—C200.5 (2)
C8—N1—C9—C1073.58 (15)C18—C19—C20—C210.0 (2)
C8—N1—C9—C14110.38 (13)C19—C20—C21—O3178.67 (12)
N1—C9—C10—C11175.99 (11)C19—C20—C21—C160.6 (2)
C14—C9—C10—C110.02 (17)C15—C16—C21—O31.47 (18)
C9—C10—C11—C120.30 (18)C15—C16—C21—C20179.29 (11)
C10—C11—C12—C130.56 (19)C17—C16—C21—O3178.56 (11)
C11—C12—C13—C140.53 (19)C17—C16—C21—C200.68 (18)
C12—C13—C14—N2178.45 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N11.00 (2)1.65 (2)2.5759 (14)151.8 (19)
O3—H3···N20.89 (2)1.75 (2)2.5587 (13)150 (2)
C8—H8A···O4i0.952.553.4687 (17)164
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC22H20N2O4
Mr376.40
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)8.3766 (9), 11.1515 (11), 11.2575 (12)
α, β, γ (°)101.848 (1), 108.359 (1), 107.077 (1)
V3)901.19 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.32 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART 1K CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.970, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
8089, 4197, 3504
Rint0.015
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.111, 1.04
No. of reflections4197
No. of parameters263
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.18

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2005), DIAMOND (Brandenburg, 2007), SHELXTL and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N11.00 (2)1.65 (2)2.5759 (14)151.8 (19)
O3—H3···N20.89 (2)1.75 (2)2.5587 (13)150 (2)
C8—H8A···O4i0.952.553.4687 (17)164
Symmetry code: (i) x+1, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds