Download citation
Download citation
link to html
Using a method developed by our group, we prepared, by a one-step reaction, the title N-acetyl­ated hydroxy­amino­androstane, C23H35NO5, from the corresponding 5β,6β-ep­oxy steroid. The stereoselective nucleophilic attack of acetonitrile to the α-face of the steroid nucleus at position 5 is unequivocally demonstrated by X-ray crystallographic analysis. Intermolecular O—H...O hydrogen bonds are present in the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807029893/bt2399sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807029893/bt2399Isup2.hkl
Contains datablock I

CCDC reference: 655042

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.034
  • wR factor = 0.098
  • Data-to-parameter ratio = 8.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C3A PLAT420_ALERT_2_C D-H Without Acceptor N5 - H5 ... ? PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 6
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 25.47 From the CIF: _reflns_number_total 2192 Count of symmetry unique reflns 2190 Completeness (_total/calc) 100.09% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 2 Fraction of Friedel pairs measured 0.001 Are heavy atom types Z>Si present no PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT791_ALERT_1_G Confirm the Absolute Configuration of C3 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C5 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C6 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C8 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C9 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C10 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C13 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C14 = . S PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 12 ALERT level G = General alerts; check 11 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Using a method developed by our group (Pinto et al., 2006) we prepared, by a one-step reaction, the N-acetylated-hydroxy-amino-androstane (I) from the corresponding 5β,6β-epoxysteroid. The steroselective nucleophilic attack of acetonitrile to the α-face of steroid nucleus at C5 is unequivocally demonstrated by X-ray crystallography.

The conformations of the six-membered rings are close to a chair form, as shown by the Cremer & Pople (1975) puckring parameters [ring A: Q= 0.586 (3) Å, θ = 7.9 (3)° and φ = 260 (2)°; ring B: Q= 0.562 (3) Å, θ = 2.7 (3)° and φ = 238 (6)°; ring C: Q= 0.580 (3) Å, θ = 5.4 (3)° and φ = 269 (3)°]. The D-ring has a C14 envelope conformation with puckering parameters q2 = 0.580 (3)Å and φ2 = 209.2 (4)°. All rings of the molecule are fused trans. The acetoxy group at C3 is equatorial to the A ring, and both substituents at the B ring are axial.

The molecules are hydrogen-bonded in infinite chains running parallel to the b axis through the hydroxyl group at C6, acting as donor towards the carbonyl O atom of the D ring.

The anistropic displacement tensor of the O3B atom is strongly anisotropic, suggesting a strong amplitude of vibration of this atom perpendicular to the mean plane of the acetoxy group.

Related literature top

For vicinal amino alcohols see Bergmeier (2000). For androstanes with 2-amino-3-ol functionality see Tuba et al. (2002) and Gyermek (2005). For compounds inhibiting the proliferation of leukemia cells see He & Jiang (1999) and He & Na (2001), and for the preparation of vic-hydroxyacylamino steroids see Vincze et al. (1996). For related literature, see: Cremer & Pople (1975); Pinto et al. (2006); Salvador et al. (1996).

Experimental top

5β,6β-Epoxy-17-oxoandrostan-3β-yl acetate was easily prepared from commercially available dehydroepiandrosterone acetate by epoxidation with KMnO4/Fe2(SO4)3nH2O (Salvador et al., 1996).

Synthesis of 5α-acetamido-6β-hydroxy-17-oxoandrostan-3β-yl acetate (I) was efficiently accomplished by nucleophilic ring opening of the 5β,6β-epoxysteroid catalysed by BiBr3 in acetonitrile (Pinto et al., 2006). The product of this reaction was isolated in 86% yield and identified as the title compound (I) from IR, 1H and 13C NMR spectroscopy data (Pinto et al., 2006). Recrystallization from ethyl acetate at room temperature gave colorless single crystals suitable for X-ray analysis.

Refinement top

All hydrogen atoms were refined as riding on their parent atoms using SHELXL97 defaults except for that of the hydroxyl group which had its coordinates freely refined with Uiso= 1.5 Ueq of the O atoms. In the absence of anomalous scatterers Friedel pairs had been merged. The absolute configuration was not determined from the X-ray data but was known from the synthetic route.

Structure description top

Using a method developed by our group (Pinto et al., 2006) we prepared, by a one-step reaction, the N-acetylated-hydroxy-amino-androstane (I) from the corresponding 5β,6β-epoxysteroid. The steroselective nucleophilic attack of acetonitrile to the α-face of steroid nucleus at C5 is unequivocally demonstrated by X-ray crystallography.

The conformations of the six-membered rings are close to a chair form, as shown by the Cremer & Pople (1975) puckring parameters [ring A: Q= 0.586 (3) Å, θ = 7.9 (3)° and φ = 260 (2)°; ring B: Q= 0.562 (3) Å, θ = 2.7 (3)° and φ = 238 (6)°; ring C: Q= 0.580 (3) Å, θ = 5.4 (3)° and φ = 269 (3)°]. The D-ring has a C14 envelope conformation with puckering parameters q2 = 0.580 (3)Å and φ2 = 209.2 (4)°. All rings of the molecule are fused trans. The acetoxy group at C3 is equatorial to the A ring, and both substituents at the B ring are axial.

The molecules are hydrogen-bonded in infinite chains running parallel to the b axis through the hydroxyl group at C6, acting as donor towards the carbonyl O atom of the D ring.

The anistropic displacement tensor of the O3B atom is strongly anisotropic, suggesting a strong amplitude of vibration of this atom perpendicular to the mean plane of the acetoxy group.

For vicinal amino alcohols see Bergmeier (2000). For androstanes with 2-amino-3-ol functionality see Tuba et al. (2002) and Gyermek (2005). For compounds inhibiting the proliferation of leukemia cells see He & Jiang (1999) and He & Na (2001), and for the preparation of vic-hydroxyacylamino steroids see Vincze et al. (1996). For related literature, see: Cremer & Pople (1975); Pinto et al. (2006); Salvador et al. (1996).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: PLATON (Spek, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) plot of the title compound. Displacement ellipsoids are drawn at the 50% level.
5α-Acetamido-6β-hydroxy-17-oxoandrostan-3β-yl acetate top
Crystal data top
C23H35NO5F(000) = 440
Mr = 405.52Dx = 1.216 Mg m3
Monoclinic, P21Melting point: 507 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 8.660 (3) ÅCell parameters from 25 reflections
b = 9.423 (3) Åθ = 7.9–13.3°
c = 13.973 (2) ŵ = 0.09 mm1
β = 104.00 (2)°T = 293 K
V = 1106.4 (5) Å3Prism, colourless
Z = 20.42 × 0.20 × 0.17 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.024
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 2.4°
Graphite monochromatorh = 1010
profile data from ω–2θ scansk = 011
3483 measured reflectionsl = 016
2192 independent reflections3 standard reflections every 300 min
1883 reflections with I > 2σ(I) intensity decay: 9.2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0652P)2 + 0.0914P]
where P = (Fo2 + 2Fc2)/3
2192 reflections(Δ/σ)max < 0.001
267 parametersΔρmax = 0.18 e Å3
1 restraintΔρmin = 0.18 e Å3
Crystal data top
C23H35NO5V = 1106.4 (5) Å3
Mr = 405.52Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.660 (3) ŵ = 0.09 mm1
b = 9.423 (3) ÅT = 293 K
c = 13.973 (2) Å0.42 × 0.20 × 0.17 mm
β = 104.00 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.024
3483 measured reflections3 standard reflections every 300 min
2192 independent reflections intensity decay: 9.2%
1883 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0341 restraint
wR(F2) = 0.098H-atom parameters constrained
S = 1.03Δρmax = 0.18 e Å3
2192 reflectionsΔρmin = 0.18 e Å3
267 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1925 (3)0.6556 (3)0.19050 (17)0.0422 (5)
H1A0.23690.73580.21820.051*
H1B0.17850.68370.12630.051*
C20.3100 (3)0.5315 (3)0.17750 (19)0.0496 (6)
H2A0.33730.51330.23970.059*
H2B0.40680.55750.12950.059*
C30.2429 (3)0.3969 (3)0.14364 (18)0.0461 (6)
H30.23790.40680.07460.055*
C40.0795 (3)0.3591 (3)0.20714 (17)0.0413 (5)
H4A0.03820.27710.17950.050*
H4B0.08800.33500.27320.050*
C50.0352 (3)0.4848 (2)0.21202 (16)0.0369 (5)
C60.2071 (3)0.4441 (2)0.26681 (16)0.0391 (5)
H60.24460.37030.22840.047*
C70.3188 (3)0.5697 (3)0.27595 (17)0.0407 (5)
H7A0.33060.59500.21080.049*
H7B0.42270.54200.31530.049*
C80.2619 (3)0.7002 (3)0.32298 (17)0.0364 (5)
H80.25910.67650.39080.044*
C90.0917 (3)0.7437 (2)0.26546 (16)0.0342 (5)
H90.09820.76470.19780.041*
C100.0284 (2)0.6185 (3)0.25829 (16)0.0367 (5)
C110.0374 (3)0.8822 (3)0.30685 (18)0.0412 (5)
H11A0.06400.91110.26480.049*
H11B0.02100.86340.37190.049*
C120.1558 (3)1.0047 (3)0.31421 (18)0.0442 (5)
H12A0.16261.03320.24860.053*
H12B0.11951.08560.34570.053*
C130.3196 (3)0.9583 (3)0.37413 (16)0.0394 (5)
C140.3717 (2)0.8260 (3)0.32554 (16)0.0373 (5)
H140.36510.85150.25670.045*
C150.5498 (3)0.8126 (3)0.37556 (19)0.0470 (6)
H15A0.56610.76930.44020.056*
H15B0.60500.75720.33560.056*
C160.6055 (3)0.9679 (3)0.3833 (2)0.0540 (7)
H16A0.68120.98470.44580.065*
H16B0.65580.99100.33030.065*
C170.4570 (3)1.0565 (3)0.37548 (16)0.0442 (6)
C190.0502 (3)0.5862 (3)0.36241 (17)0.0450 (6)
H19A0.10690.66280.38380.068*
H19B0.05220.57590.40740.068*
H19C0.10960.49990.36090.068*
C180.3203 (3)0.9363 (3)0.48361 (17)0.0516 (6)
H18A0.42660.91610.52060.077*
H18B0.25180.85830.48950.077*
H18C0.28271.02090.50890.077*
O170.4532 (2)1.1856 (2)0.37299 (15)0.0592 (5)
O60.2078 (2)0.3868 (2)0.36148 (12)0.0502 (4)
H6A0.27640.32510.37570.075*
N50.0466 (2)0.5232 (2)0.11079 (12)0.0375 (4)
H50.02890.61070.09430.045*
C5A0.0811 (3)0.4375 (3)0.04173 (17)0.0418 (5)
C5B0.1138 (4)0.5119 (3)0.04541 (19)0.0613 (8)
H5B10.18870.45770.07100.092*
H5B20.15740.60410.02590.092*
H5B30.01660.52190.09540.092*
O50.0876 (3)0.3078 (2)0.04790 (15)0.0663 (6)
O3A0.3466 (2)0.2780 (2)0.15344 (13)0.0534 (5)
O3B0.4874 (4)0.3024 (3)0.0007 (2)0.1098 (11)
C3A0.4650 (3)0.2446 (3)0.0767 (2)0.0562 (7)
C3B0.5640 (3)0.1271 (4)0.1004 (2)0.0636 (7)
H3B10.67100.13660.06120.095*
H3B20.56410.13110.16900.095*
H3B30.52090.03790.08630.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0371 (11)0.0423 (14)0.0472 (12)0.0075 (10)0.0101 (9)0.0009 (11)
C20.0364 (11)0.0528 (16)0.0584 (14)0.0017 (12)0.0093 (10)0.0014 (13)
C30.0449 (13)0.0456 (14)0.0477 (13)0.0075 (11)0.0111 (10)0.0015 (11)
C40.0470 (12)0.0346 (12)0.0430 (12)0.0013 (10)0.0124 (10)0.0009 (10)
C50.0404 (11)0.0334 (12)0.0369 (11)0.0031 (9)0.0094 (9)0.0004 (9)
C60.0436 (12)0.0317 (12)0.0418 (12)0.0110 (10)0.0098 (9)0.0015 (10)
C70.0345 (10)0.0403 (13)0.0456 (12)0.0092 (10)0.0067 (9)0.0027 (10)
C80.0361 (11)0.0353 (12)0.0372 (11)0.0084 (10)0.0077 (9)0.0003 (9)
C90.0357 (10)0.0325 (11)0.0347 (10)0.0062 (9)0.0088 (8)0.0009 (9)
C100.0357 (10)0.0355 (11)0.0391 (11)0.0055 (10)0.0095 (8)0.0004 (9)
C110.0360 (11)0.0379 (12)0.0485 (12)0.0101 (10)0.0078 (9)0.0065 (11)
C120.0418 (12)0.0369 (13)0.0507 (13)0.0089 (10)0.0053 (10)0.0062 (11)
C130.0407 (12)0.0363 (12)0.0380 (11)0.0094 (10)0.0035 (9)0.0046 (10)
C140.0381 (11)0.0382 (12)0.0343 (11)0.0046 (10)0.0062 (9)0.0034 (10)
C150.0370 (11)0.0471 (14)0.0542 (14)0.0098 (11)0.0056 (10)0.0055 (12)
C160.0397 (12)0.0499 (15)0.0676 (16)0.0000 (12)0.0036 (11)0.0063 (13)
C170.0467 (13)0.0432 (14)0.0382 (11)0.0015 (11)0.0015 (10)0.0061 (10)
C190.0480 (12)0.0454 (14)0.0457 (12)0.0032 (11)0.0191 (10)0.0005 (11)
C180.0584 (14)0.0527 (15)0.0427 (13)0.0046 (13)0.0104 (10)0.0105 (12)
O170.0611 (11)0.0375 (10)0.0738 (12)0.0001 (9)0.0063 (9)0.0050 (9)
O60.0572 (10)0.0440 (10)0.0459 (9)0.0116 (8)0.0057 (7)0.0097 (8)
N50.0450 (10)0.0308 (10)0.0371 (9)0.0045 (8)0.0109 (7)0.0009 (8)
C5A0.0461 (13)0.0361 (14)0.0447 (12)0.0014 (10)0.0134 (10)0.0055 (10)
C5B0.093 (2)0.0482 (16)0.0485 (14)0.0068 (15)0.0286 (14)0.0020 (13)
O50.1023 (15)0.0348 (11)0.0745 (13)0.0041 (10)0.0460 (11)0.0049 (9)
O3A0.0525 (9)0.0529 (11)0.0524 (10)0.0122 (9)0.0081 (8)0.0028 (9)
O3B0.1223 (18)0.111 (2)0.0716 (13)0.0607 (19)0.0249 (13)0.0291 (16)
C3A0.0540 (14)0.0500 (16)0.0595 (16)0.0062 (13)0.0038 (12)0.0006 (14)
C3B0.0577 (15)0.0591 (18)0.0717 (18)0.0146 (15)0.0112 (13)0.0009 (15)
Geometric parameters (Å, º) top
C1—C21.532 (4)C12—H12B0.9700
C1—C101.545 (3)C13—C171.504 (4)
C1—H1A0.9700C13—C141.538 (3)
C1—H1B0.9700C13—C181.542 (3)
C2—C31.517 (4)C14—C151.537 (3)
C2—H2A0.9700C14—H140.9800
C2—H2B0.9700C15—C161.536 (4)
C3—O3A1.463 (3)C15—H15A0.9700
C3—C41.520 (3)C15—H15B0.9700
C3—H30.9800C16—C171.515 (4)
C4—C51.537 (3)C16—H16A0.9700
C4—H4A0.9700C16—H16B0.9700
C4—H4B0.9700C17—O171.217 (3)
C5—N51.486 (3)C19—H19A0.9600
C5—C61.548 (3)C19—H19B0.9600
C5—C101.575 (3)C19—H19C0.9600
C6—O61.427 (3)C18—H18A0.9600
C6—C71.515 (3)C18—H18B0.9600
C6—H60.9800C18—H18C0.9600
C7—C81.531 (3)O6—H6A0.8200
C7—H7A0.9700N5—C5A1.346 (3)
C7—H7B0.9700N5—H50.8600
C8—C141.515 (3)C5A—O51.226 (3)
C8—C91.554 (3)C5A—C5B1.490 (4)
C8—H80.9800C5B—H5B10.9600
C9—C111.546 (3)C5B—H5B20.9600
C9—C101.560 (3)C5B—H5B30.9600
C9—H90.9800O3A—C3A1.330 (3)
C10—C191.542 (3)O3B—C3A1.184 (4)
C11—C121.531 (3)C3A—C3B1.486 (4)
C11—H11A0.9700C3B—H3B10.9600
C11—H11B0.9700C3B—H3B20.9600
C12—C131.526 (3)C3B—H3B30.9600
C12—H12A0.9700
C2—C1—C10112.70 (19)C13—C12—H12A109.7
C2—C1—H1A109.1C11—C12—H12A109.7
C10—C1—H1A109.1C13—C12—H12B109.7
C2—C1—H1B109.1C11—C12—H12B109.7
C10—C1—H1B109.1H12A—C12—H12B108.2
H1A—C1—H1B107.8C17—C13—C12117.2 (2)
C3—C2—C1112.46 (18)C17—C13—C14100.86 (18)
C3—C2—H2A109.1C12—C13—C14108.86 (18)
C1—C2—H2A109.1C17—C13—C18104.90 (19)
C3—C2—H2B109.1C12—C13—C18111.24 (19)
C1—C2—H2B109.1C14—C13—C18113.5 (2)
H2A—C2—H2B107.8C8—C14—C15120.1 (2)
O3A—C3—C2108.76 (18)C8—C14—C13113.26 (17)
O3A—C3—C4105.8 (2)C15—C14—C13103.60 (18)
C2—C3—C4112.7 (2)C8—C14—H14106.3
O3A—C3—H3109.8C15—C14—H14106.3
C2—C3—H3109.8C13—C14—H14106.3
C4—C3—H3109.8C16—C15—C14102.54 (19)
C3—C4—C5110.2 (2)C16—C15—H15A111.3
C3—C4—H4A109.6C14—C15—H15A111.3
C5—C4—H4A109.6C16—C15—H15B111.3
C3—C4—H4B109.6C14—C15—H15B111.3
C5—C4—H4B109.6H15A—C15—H15B109.2
H4A—C4—H4B108.1C17—C16—C15105.8 (2)
N5—C5—C4109.63 (18)C17—C16—H16A110.6
N5—C5—C6104.71 (17)C15—C16—H16A110.6
C4—C5—C6111.37 (18)C17—C16—H16B110.6
N5—C5—C10107.85 (17)C15—C16—H16B110.6
C4—C5—C10110.37 (17)H16A—C16—H16B108.7
C6—C5—C10112.67 (17)O17—C17—C13126.8 (2)
O6—C6—C7110.97 (18)O17—C17—C16124.7 (3)
O6—C6—C5109.90 (17)C13—C17—C16108.5 (2)
C7—C6—C5111.45 (18)C10—C19—H19A109.5
O6—C6—H6108.1C10—C19—H19B109.5
C7—C6—H6108.1H19A—C19—H19B109.5
C5—C6—H6108.1C10—C19—H19C109.5
C6—C7—C8113.49 (17)H19A—C19—H19C109.5
C6—C7—H7A108.9H19B—C19—H19C109.5
C8—C7—H7A108.9C13—C18—H18A109.5
C6—C7—H7B108.9C13—C18—H18B109.5
C8—C7—H7B108.9H18A—C18—H18B109.5
H7A—C7—H7B107.7C13—C18—H18C109.5
C14—C8—C7111.91 (16)H18A—C18—H18C109.5
C14—C8—C9108.50 (18)H18B—C18—H18C109.5
C7—C8—C9110.71 (18)C6—O6—H6A109.5
C14—C8—H8108.5C5A—N5—C5127.9 (2)
C7—C8—H8108.5C5A—N5—H5116.1
C9—C8—H8108.5C5—N5—H5116.1
C11—C9—C8111.45 (17)O5—C5A—N5124.2 (2)
C11—C9—C10113.83 (17)O5—C5A—C5B120.8 (2)
C8—C9—C10111.59 (17)N5—C5A—C5B115.0 (2)
C11—C9—H9106.5C5A—C5B—H5B1109.5
C8—C9—H9106.5C5A—C5B—H5B2109.5
C10—C9—H9106.5H5B1—C5B—H5B2109.5
C19—C10—C1108.57 (18)C5A—C5B—H5B3109.5
C19—C10—C9108.71 (18)H5B1—C5B—H5B3109.5
C1—C10—C9111.61 (18)H5B2—C5B—H5B3109.5
C19—C10—C5111.37 (19)C3A—O3A—C3118.5 (2)
C1—C10—C5106.89 (17)O3B—C3A—O3A123.5 (3)
C9—C10—C5109.71 (16)O3B—C3A—C3B124.8 (3)
C12—C11—C9113.71 (17)O3A—C3A—C3B111.7 (2)
C12—C11—H11A108.8C3A—C3B—H3B1109.5
C9—C11—H11A108.8C3A—C3B—H3B2109.5
C12—C11—H11B108.8H3B1—C3B—H3B2109.5
C9—C11—H11B108.8C3A—C3B—H3B3109.5
H11A—C11—H11B107.7H3B1—C3B—H3B3109.5
C13—C12—C11109.83 (19)H3B2—C3B—H3B3109.5
C10—C1—C2—C353.3 (3)C4—C5—C10—C9178.40 (16)
C1—C2—C3—O3A168.00 (18)C6—C5—C10—C953.2 (2)
C1—C2—C3—C451.0 (3)C8—C9—C11—C1252.5 (3)
O3A—C3—C4—C5173.44 (17)C10—C9—C11—C12179.75 (18)
C2—C3—C4—C554.7 (3)C9—C11—C12—C1354.5 (3)
C3—C4—C5—N558.5 (2)C11—C12—C13—C17170.42 (19)
C3—C4—C5—C6173.89 (19)C11—C12—C13—C1456.8 (2)
C3—C4—C5—C1060.2 (2)C11—C12—C13—C1868.9 (3)
N5—C5—C6—O6172.27 (18)C7—C8—C14—C1555.9 (3)
C4—C5—C6—O653.9 (2)C9—C8—C14—C15178.35 (19)
C10—C5—C6—O670.8 (2)C7—C8—C14—C13178.94 (17)
N5—C5—C6—C764.3 (2)C9—C8—C14—C1358.6 (2)
C4—C5—C6—C7177.31 (18)C17—C13—C14—C8174.28 (17)
C10—C5—C6—C752.7 (2)C12—C13—C14—C861.8 (2)
O6—C6—C7—C869.0 (2)C18—C13—C14—C862.7 (3)
C5—C6—C7—C853.8 (3)C17—C13—C14—C1542.5 (2)
C6—C7—C8—C14176.75 (17)C12—C13—C14—C15166.5 (2)
C6—C7—C8—C955.6 (3)C18—C13—C14—C1569.1 (2)
C14—C8—C9—C1152.3 (2)C8—C14—C15—C16167.0 (2)
C7—C8—C9—C11175.51 (18)C13—C14—C15—C1639.4 (2)
C14—C8—C9—C10179.18 (17)C14—C15—C16—C1720.7 (3)
C7—C8—C9—C1056.0 (2)C12—C13—C17—O1733.8 (4)
C2—C1—C10—C1963.4 (3)C14—C13—C17—O17151.8 (3)
C2—C1—C10—C9176.77 (18)C18—C13—C17—O1790.1 (3)
C2—C1—C10—C556.8 (2)C12—C13—C17—C16147.7 (2)
C11—C9—C10—C1960.0 (2)C14—C13—C17—C1629.7 (2)
C8—C9—C10—C1967.3 (2)C18—C13—C17—C1688.4 (2)
C11—C9—C10—C159.8 (2)C15—C16—C17—O17175.6 (3)
C8—C9—C10—C1173.03 (17)C15—C16—C17—C135.8 (3)
C11—C9—C10—C5178.04 (16)C4—C5—N5—C5A53.0 (3)
C8—C9—C10—C554.8 (2)C6—C5—N5—C5A66.5 (3)
N5—C5—C10—C19177.75 (18)C10—C5—N5—C5A173.3 (2)
C4—C5—C10—C1958.0 (2)C5—N5—C5A—O510.5 (4)
C6—C5—C10—C1967.2 (2)C5—N5—C5A—C5B168.9 (2)
N5—C5—C10—C159.3 (2)C2—C3—O3A—C3A91.2 (3)
C4—C5—C10—C160.4 (2)C4—C3—O3A—C3A147.5 (2)
C6—C5—C10—C1174.38 (18)C3—O3A—C3A—O3B3.2 (5)
N5—C5—C10—C961.9 (2)C3—O3A—C3A—C3B176.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O17i0.822.032.823 (3)164
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC23H35NO5
Mr405.52
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)8.660 (3), 9.423 (3), 13.973 (2)
β (°) 104.00 (2)
V3)1106.4 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.42 × 0.20 × 0.17
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3483, 2192, 1883
Rint0.024
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.098, 1.03
No. of reflections2192
No. of parameters267
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.18

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CAD-4 Software, PLATON (Spek, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O17i0.822.032.823 (3)164.1
Symmetry code: (i) x, y1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds