metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

catena-Poly[silver(I)-μ-[1-(pyridin-2-ylmethyl-κN)-3-(3-sulfonato­prop­yl)imidazolin-2-yl­­idene]-κC2]

CROSSMARK_Color_square_no_text.svg

aUniversity of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80, 6020 Innsbruck, Austria, and bUniversity of Innsbruck, Institute of Mineralogy and Petrography, Innrain 52, 6020 Innsbruck, Austria
*Correspondence e-mail: herwig.schottenberger@uibk.ac.at

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 18 January 2016; accepted 9 February 2016; online 13 February 2016)

The title compound, [Ag(C12H14N3O3S)]n, was obtained by deprotonation and metalation of 1-(pyridin-2-ylmeth­yl)-3-(3-sulfoprop­yl)imidazolium, inner salt, using silver(I) oxide in methanol. The title compound is a one-dimensional helical coordination polymer. Several C—H⋯O hydrogen bonds and a short Ag—O contact are observed. The C—Ag—N angle is 168.3 (1)° and the N—C—N `carbene angle' is 103.8 (3)°.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

N-Heterocyclic carbene (NHC)–silver complexes are valuable transmetalation reagents or, in other words, carbene transfer agents for the conversion to other metal NHC systems (Lin et al., 2009[Lin, J. C. Y., Huang, R. T. W., Lee, C. S., Bhattacharyya, A., Hwang, W. S. & Lin, I. J. B. (2009). Chem. Rev. 109, 3561-3598.]). Recently, the structural diversity of AgI–NHC complexes with pyridyl-substituted imidazolium ligands was discussed in terms of different metal-to-ligand ratios. Increasing degrees of coordination completeness culminated in a polymeric structure (Cui et al., 2012[Cui, F., Yang, P., Huang, X., Yang, X.-J. & Wu, B. (2012). Organometallics, 31, 3512-3518.]).

In the crystal structure of the title compound, the central C1—Ag—N3i [symmetry code: (i) −x + [{1\over 2}], y + [{1\over 2}], −z + [{3\over 2}]] bonds deviate considerably from linearity with an angle of 168.3 (1)°, and the dihedral angle between the heterocyclic rings is 50.2 (2)°. The mol­ecular structure is shown in Fig. 1[link]. The N—C—N `carbene angle' is 103.8 (3)°, in accordance with the mean value of 104.0° in imidazol-2-yl­idene–Ag–pyridine complexes from the CSD (119 values from 20 entries). The carbene–metal C1—Ag and nitro­gen–metal N3—Ag bonds are 2.065 (4) and 2.144 (3) Å long, respectively, among the shortest in those complexes. The mol­ecules of the title compound form a one-dimensional, helical coordination polymer (Fig. 2[link]). Several C—H⋯O hydrogen bonds (Table 1[link]) and a short Ag—O contact [2.913 (3) Å] are observed (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O3iii 0.95 2.40 3.349 (4) 173
C6—H6A⋯O2iv 0.99 2.51 3.458 (5) 160
C7—H7B⋯O3v 0.99 2.38 3.367 (5) 175
C2—H2⋯O2vi 0.95 2.53 3.179 (5) 126
C12—H12⋯O1vii 0.95 2.47 3.143 (4) 128
C7—H7A⋯O3viii 0.99 2.41 3.257 (4) 143
Symmetry codes: (iii) x+1, y, z+1; (iv) -x, -y, -z; (v) -x, -y, -z+1; (vi) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (viii) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The asymmetric unit of the title compound, showing the atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2]
Figure 2
The mol­ecules of the title compound forming a one-dimensional, helical coordination polymer. H atoms have been omitted for clarity.
[Figure 3]
Figure 3
Short contacts in the crystal structure of the title compound. [Symmetry codes: (i) −x + [{1\over 2}], y + [{1\over 2}], −z + [{3\over 2}]; (ii) −x + [{1\over 2}], y − [{1\over 2}], −z + [{3\over 2}]. For other symmetry codes, see Table 1[link]].

For related structures, see: Catalano & Moore (2005[Catalano, V. J. & Moore, A. L. (2005). Inorg. Chem. 44, 6558-6566.]), Garrison et al. (2005[Garrison, J. C., Tessier, C. A. & Youngs, W. J. (2005). J. Organomet. Chem. 690, 6008-6020.]), Liu et al. (2007[Liu, B., Chen, W. & Jin, S. (2007). Organometallics, 26, 3660-3667.]), Ye et al. (2008[Ye, J., Chen, W. & Wang, D. (2008). Dalton Trans. pp. 4015-4022.]), Catalano et al. (2011[Catalano, V. J., Munro, L. B., Strasser, C. E. & Samin, A. F. (2011). Inorg. Chem. 50, 8465-8476.]) and Cui et al. (2012[Cui, F., Yang, P., Huang, X., Yang, X.-J. & Wu, B. (2012). Organometallics, 31, 3512-3518.]). These authors describe other structural motifs with polydentate ligands forming NHC–silver complexes.

Synthesis and crystallization

A suspension of the imidazolium salt (0.40 g, 1.4 mmol) (Tomás-Mendivil et al., 2013[Tomás-Mendivil, E., Toullec, P. Y., Borge, J., Conejero, S., Michelet, V. & Cadierno, V. (2013). ACS Catal. 3, 3086-3098.]) and Ag2O (0.17 g, 0.7 mmol) in MeOH (15 ml) was stirred at room temperature for 18 h. The product was collected by filtration, washed with MeOH and Et2O and dried to yield colourless crystals (0.44 g, 80%). The PXRD (Cu Kα radiation) of the bulk material is identical to the one calculated from the single-crystal diffraction data (Fig. 4[link]), indicating phase purity.

[Figure 4]
Figure 4
The observed and calculated powder X-ray diffraction data.

Melting point: 247–252°C. 1H NMR (300 MHz, D2O): δ 2.24 (m, 2H), 2.84 (m, 2H), 4.30 (t, J = 6.7 Hz, 2H), 5.67 (s, 2H), 7.45 (s, 1H), 7.51–7.56 (m, 2H), 7.87 (d, J = 7.6 Hz, 1H), 8.12 (t, J = 7.7 Hz, 1H), 8.23 (m, 1H) p.p.m. 13C NMR (75 MHz, D2O): δ 26.8, 47.8, 50.4, 57.8, 123.8, 125.0, 125.8, 126.5, 141.2, 152.3, 154.1, 174.1 p.p.m. IR (neat, ATR): ν 1597 (w), 1439 (w), 1418 (w), 1205 (s), 1157 (s), 1135 (s), 1035 (m), 750 (m), 716 (s), 577 (m), 518 (s) cm−1.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Ag(C12H14N3O3S)]
Mr 388.19
Crystal system, space group Monoclinic, P21/n
Temperature (K) 173
a, b, c (Å) 11.1568 (6), 9.7852 (4), 12.5715 (6)
β (°) 107.055 (10)
V3) 1312.09 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.71
Crystal size (mm) 0.15 × 0.04 × 0.03
 
Data collection
Diffractometer Agilent Xcalibur Ruby Gemini ultra
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Santa Clara, California, USA.])
Tmin, Tmax 0.936, 1
No. of measured, independent and observed [I > 2σ(I)] reflections 8214, 2398, 1921
Rint 0.045
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.066, 1.02
No. of reflections 2398
No. of parameters 181
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.45, −0.38
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Santa Clara, California, USA.]), SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006).

catena-Poly[silver(I)-µ-[1-(pyridin-2-ylmethyl-κN)-3-(3-sulfonatopropyl)imidazolin-2-ylidene]-κC2] top
Crystal data top
[Ag(C12H14N3O3S)]F(000) = 776
Mr = 388.19Dx = 1.965 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2698 reflections
a = 11.1568 (6) Åθ = 3.6–27.2°
b = 9.7852 (4) ŵ = 1.71 mm1
c = 12.5715 (6) ÅT = 173 K
β = 107.055 (10)°Fragment, colourless
V = 1312.09 (12) Å30.15 × 0.04 × 0.03 mm
Z = 4
Data collection top
Agilent Xcalibur Ruby Gemini ultra
diffractometer
2398 independent reflections
Radiation source: Enhance (Mo) X-ray Source1921 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 10.3575 pixels mm-1θmax = 25.4°, θmin = 2.8°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 1110
Tmin = 0.936, Tmax = 1l = 1115
8214 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0243P)2 + 0.580P]
where P = (Fo2 + 2Fc2)/3
2398 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.38 e Å3
Special details top

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag0.14608 (3)0.10604 (3)0.58234 (2)0.02486 (11)
S0.03575 (9)0.10338 (8)0.17887 (8)0.0211 (2)
N30.4721 (3)0.2244 (3)0.9083 (2)0.0166 (7)
C50.1801 (4)0.0473 (3)0.2667 (3)0.0206 (8)
H5A0.12130.10220.29480.025*
H5B0.23750.11130.2450.025*
N20.3417 (3)0.1303 (3)0.6187 (2)0.0180 (7)
O10.0012 (3)0.2093 (3)0.2626 (2)0.0376 (8)
O20.1035 (3)0.1553 (3)0.0696 (2)0.0340 (7)
C110.6205 (4)0.0030 (4)0.9122 (3)0.0251 (9)
H110.67110.08150.91360.03*
C80.4460 (3)0.1385 (3)0.8205 (3)0.0162 (8)
N10.3119 (3)0.0352 (3)0.4606 (2)0.0189 (7)
C10.2724 (4)0.0316 (3)0.5520 (3)0.0181 (8)
O30.0995 (3)0.0096 (2)0.2142 (2)0.0279 (6)
C30.4222 (3)0.1927 (3)0.5684 (3)0.0210 (9)
H30.47970.26420.59870.025*
C20.4038 (4)0.1338 (3)0.4695 (3)0.0200 (8)
H20.44550.15490.41560.024*
C100.6490 (4)0.0863 (3)1.0009 (3)0.0217 (8)
H100.72020.07211.06360.026*
C60.1058 (4)0.0317 (3)0.1644 (3)0.0210 (8)
H6A0.0850.03020.09930.025*
H6B0.15890.10630.14980.025*
C70.3302 (4)0.1690 (3)0.7271 (3)0.0195 (8)
H7A0.31210.26810.72690.023*
H7B0.25840.11950.74020.023*
C90.5710 (4)0.1964 (3)0.9958 (3)0.0219 (9)
H90.58830.2561.05810.026*
C120.5181 (4)0.0224 (3)0.8210 (3)0.0217 (9)
H120.49730.03870.75950.026*
C40.2562 (4)0.0444 (3)0.3597 (3)0.0237 (9)
H4A0.32350.08970.33590.028*
H4B0.20130.11620.37550.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag0.0250 (2)0.02315 (17)0.02429 (18)0.00894 (12)0.00389 (13)0.00441 (11)
S0.0181 (6)0.0196 (5)0.0245 (5)0.0014 (4)0.0046 (4)0.0012 (4)
N30.0172 (18)0.0154 (15)0.0164 (16)0.0015 (12)0.0039 (14)0.0006 (11)
C50.019 (2)0.0209 (18)0.022 (2)0.0016 (15)0.0071 (17)0.0008 (14)
N20.0176 (18)0.0200 (15)0.0159 (16)0.0023 (12)0.0043 (14)0.0007 (11)
O10.0311 (19)0.0303 (15)0.0457 (18)0.0044 (13)0.0028 (15)0.0195 (12)
O20.0238 (18)0.0409 (16)0.0336 (17)0.0025 (13)0.0028 (14)0.0114 (12)
C110.023 (2)0.0224 (19)0.034 (2)0.0083 (16)0.015 (2)0.0082 (16)
C80.017 (2)0.0171 (17)0.0159 (19)0.0039 (14)0.0067 (16)0.0023 (13)
N10.0181 (19)0.0205 (16)0.0162 (17)0.0020 (12)0.0022 (14)0.0008 (11)
C10.022 (2)0.0170 (18)0.0130 (19)0.0001 (15)0.0020 (16)0.0014 (13)
O30.0248 (17)0.0280 (14)0.0334 (16)0.0037 (12)0.0126 (13)0.0033 (11)
C30.015 (2)0.0190 (18)0.026 (2)0.0052 (15)0.0011 (17)0.0022 (15)
C20.016 (2)0.0243 (19)0.019 (2)0.0009 (15)0.0036 (17)0.0034 (14)
C100.014 (2)0.027 (2)0.022 (2)0.0007 (16)0.0033 (17)0.0062 (15)
C60.020 (2)0.0224 (19)0.021 (2)0.0006 (15)0.0058 (17)0.0002 (15)
C70.019 (2)0.0205 (18)0.019 (2)0.0006 (15)0.0052 (17)0.0000 (14)
C90.024 (2)0.0205 (19)0.019 (2)0.0052 (16)0.0027 (18)0.0005 (14)
C120.026 (2)0.0191 (19)0.023 (2)0.0027 (16)0.0127 (18)0.0008 (14)
C40.027 (3)0.0194 (18)0.021 (2)0.0036 (16)0.0016 (18)0.0039 (14)
Geometric parameters (Å, º) top
Ag—C12.065 (4)C8—C121.391 (5)
Ag—N3i2.144 (3)C8—C71.499 (5)
S—O11.448 (3)N1—C11.345 (5)
S—O21.452 (3)N1—C21.389 (5)
S—O31.453 (3)N1—C41.463 (4)
S—C61.785 (4)C3—C21.331 (5)
N3—C91.338 (5)C3—H30.95
N3—C81.350 (4)C2—H20.95
N3—Agii2.144 (3)C10—C91.375 (5)
C5—C41.520 (5)C10—H100.95
C5—C61.521 (5)C6—H6A0.99
C5—H5A0.99C6—H6B0.99
C5—H5B0.99C7—H7A0.99
N2—C11.361 (4)C7—H7B0.99
N2—C31.383 (5)C9—H90.95
N2—C71.456 (4)C12—H120.95
C11—C101.379 (5)C4—H4A0.99
C11—C121.383 (5)C4—H4B0.99
C11—H110.95
C1—Ag—N3i168.31 (12)C2—C3—H3126.5
O1—S—O2113.30 (16)N2—C3—H3126.5
O1—S—O3112.50 (17)C3—C2—N1106.4 (3)
O2—S—O3112.94 (17)C3—C2—H2126.8
O1—S—C6106.45 (17)N1—C2—H2126.8
O2—S—C6105.77 (17)C9—C10—C11117.8 (3)
O3—S—C6105.04 (16)C9—C10—H10121.1
C9—N3—C8118.2 (3)C11—C10—H10121.1
C9—N3—Agii119.1 (2)C5—C6—S113.1 (3)
C8—N3—Agii122.5 (2)C5—C6—H6A109
C4—C5—C6113.1 (3)S—C6—H6A109
C4—C5—H5A108.9C5—C6—H6B109
C6—C5—H5A108.9S—C6—H6B109
C4—C5—H5B108.9H6A—C6—H6B107.8
C6—C5—H5B108.9N2—C7—C8112.8 (3)
H5A—C5—H5B107.8N2—C7—H7A109
C1—N2—C3111.0 (3)C8—C7—H7A109
C1—N2—C7124.8 (3)N2—C7—H7B109
C3—N2—C7124.1 (3)C8—C7—H7B109
C10—C11—C12119.7 (3)H7A—C7—H7B107.8
C10—C11—H11120.1N3—C9—C10123.9 (3)
C12—C11—H11120.1N3—C9—H9118.1
N3—C8—C12121.3 (3)C10—C9—H9118.1
N3—C8—C7116.5 (3)C11—C12—C8119.1 (3)
C12—C8—C7122.1 (3)C11—C12—H12120.5
C1—N1—C2111.7 (3)C8—C12—H12120.5
C1—N1—C4124.4 (3)N1—C4—C5110.6 (3)
C2—N1—C4123.7 (3)N1—C4—H4A109.5
N1—C1—N2103.8 (3)C5—C4—H4A109.5
N1—C1—Ag125.9 (2)N1—C4—H4B109.5
N2—C1—Ag130.1 (3)C5—C4—H4B109.5
C2—C3—N2107.1 (3)H4A—C4—H4B108.1
C9—N3—C8—C121.1 (5)C12—C11—C10—C91.7 (5)
Agii—N3—C8—C12174.2 (3)C4—C5—C6—S79.6 (4)
C9—N3—C8—C7176.5 (3)O1—S—C6—C568.0 (3)
Agii—N3—C8—C71.3 (4)O2—S—C6—C5171.2 (2)
C2—N1—C1—N20.0 (4)O3—S—C6—C551.5 (3)
C4—N1—C1—N2174.1 (3)C1—N2—C7—C8115.2 (4)
C2—N1—C1—Ag175.6 (2)C3—N2—C7—C867.1 (4)
C4—N1—C1—Ag10.3 (5)N3—C8—C7—N2147.7 (3)
C3—N2—C1—N10.1 (4)C12—C8—C7—N236.9 (5)
C7—N2—C1—N1177.9 (3)C8—N3—C9—C101.1 (5)
C3—N2—C1—Ag175.3 (3)Agii—N3—C9—C10176.6 (3)
C7—N2—C1—Ag6.8 (5)C11—C10—C9—N32.5 (6)
N3i—Ag—C1—N126.1 (8)C10—C11—C12—C80.4 (5)
N3i—Ag—C1—N2148.3 (5)N3—C8—C12—C111.8 (5)
C1—N2—C3—C20.1 (4)C7—C8—C12—C11177.0 (3)
C7—N2—C3—C2177.9 (3)C1—N1—C4—C5106.9 (4)
N2—C3—C2—N10.1 (4)C2—N1—C4—C566.5 (5)
C1—N1—C2—C30.0 (4)C6—C5—C4—N1172.4 (3)
C4—N1—C2—C3174.2 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+1/2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O3iii0.952.403.349 (4)173
C6—H6A···O2iv0.992.513.458 (5)160
C7—H7B···O3v0.992.383.367 (5)175
C2—H2···O2vi0.952.533.179 (5)126
C12—H12···O1vii0.952.473.143 (4)128
C7—H7A···O3viii0.992.413.257 (4)143
Symmetry codes: (iii) x+1, y, z+1; (iv) x, y, z; (v) x, y, z+1; (vi) x+1/2, y1/2, z+1/2; (vii) x+1/2, y+1/2, z+1/2; (viii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

We are grateful to Christoph Langes for the PXRD measurement.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Santa Clara, California, USA.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationCatalano, V. J. & Moore, A. L. (2005). Inorg. Chem. 44, 6558–6566.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCatalano, V. J., Munro, L. B., Strasser, C. E. & Samin, A. F. (2011). Inorg. Chem. 50, 8465–8476.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationCui, F., Yang, P., Huang, X., Yang, X.-J. & Wu, B. (2012). Organometallics, 31, 3512–3518.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGarrison, J. C., Tessier, C. A. & Youngs, W. J. (2005). J. Organomet. Chem. 690, 6008–6020.  Web of Science CSD CrossRef CAS Google Scholar
First citationLin, J. C. Y., Huang, R. T. W., Lee, C. S., Bhattacharyya, A., Hwang, W. S. & Lin, I. J. B. (2009). Chem. Rev. 109, 3561–3598.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, B., Chen, W. & Jin, S. (2007). Organometallics, 26, 3660–3667.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomás-Mendivil, E., Toullec, P. Y., Borge, J., Conejero, S., Michelet, V. & Cadierno, V. (2013). ACS Catal. 3, 3086–3098.  Google Scholar
First citationYe, J., Chen, W. & Wang, D. (2008). Dalton Trans. pp. 4015–4022.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds