organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of ({4-[(4-bromo­phen­yl)ethyn­yl]-3,5-di­ethyl­phen­yl}ethyn­yl)triiso­propyl­silane

aSchool of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People's Republic of China, and bResearch School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
*Correspondence e-mail: Graeme.Moxey@anu.edu.au

Edited by P. C. Healy, Griffith University, Australia (Received 10 April 2015; accepted 11 April 2015; online 18 April 2015)

The title compound, C29H37BrSi, was synthesized by the Sonogashira coupling of [(3,5-diethyl-4-ethynylphen­yl)ethyn­yl]triiso­propyl­silane with 4-bromo-1-iodo­benzene. In the structure, the two phenyl rings are nearly parallel to each other with a dihedral angle of 4.27 (4)°. In the crystal, ππ inter­actions between the terminal and central phenyl rings of adjacent mol­ecules link them in the a-axis direction [perpendicular distance = 3.5135 (14); centroid–centroid distance = 3.7393 (11) Å]. In addition, there are weak C—H⋯π inter­actions between the isopropyl H atoms and the phenyl rings of adjacent mol­ecules.

1. Related literature

For the syntheses of aryl­alkynes by Sonogashira coupling, see: Takahashi et al. (1980[Takahashi, S., Kuroyama, Y., Sonogashira, K. & Hagihara, N. (1980). Synthesis, pp. 627-630.]). For the use of related oligo(phenyl­eneethynylene)s in the construction of metal alkynyl complexes exhibiting non-linear optical properties, see: Garcia et al. (2002[Garcia, M. H., Robalo, M. P., Dias, A. R., Duarte, M. T., Wenseleers, W., Aerts, G., Goovaerts, E., Cifuentes, M. P., Hurst, S., Humphrey, M. G., Samoc, M. & Luther-Davies, B. (2002). Organometallics, 21, 2107-2118.]); Hurst et al. (2002[Hurst, S. K., Cifuentes, M. P. & Humphrey, M. G. (2002). Organometallics, 21, 2353-2355.]; 2003[Hurst, S. K., Humphrey, M. G., Morrall, J. P., Cifuentes, M. P., Samoc, M., Luther-Davies, B., Heath, G. A. & Willis, A. C. (2003). J. Organomet. Chem. 670, 56-65.]); McDonagh et al. (2003[McDonagh, A. M., Powell, C. E., Morrall, J. P., Cifuentes, M. P. & Humphrey, M. G. (2003). Organometallics, 22, 1402-1413.]). For the synthesis of [(3,5-diethyl-4-iodo­phen­yl)ethyn­yl]triiso­propyl­silane, see: Ehlers et al. (2011[Ehlers, I., Maity, P., Aubé, J. & König, B. (2011). Eur. J. Org. Chem. 2011, 2474-2490.]). For related structures, see: Lehnherr et al. (2008[Lehnherr, D., McDonald, R. & Tykwinski, R. R. (2008). Org. Lett. 10, 4163-4166.], 2009[Lehnherr, D., Murray, A. H., McDonald, R., Ferguson, M. J. & Tykwinski, R. R. (2009). Chem. Eur. J. 15, 12580-12584.]); Błaszczyk et al. (2007[Błaszczyk, A., Fischer, M., von Hänisch, C. & Mayor, M. (2007). Eur. J. Org. Chem. 2007, 2630-2642.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C29H37BrSi

  • Mr = 493.58

  • Monoclinic, P 21 /n

  • a = 14.9043 (2) Å

  • b = 8.50185 (11) Å

  • c = 22.6111 (3) Å

  • β = 108.2791 (16)°

  • V = 2720.56 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.56 mm−1

  • T = 150 K

  • 0.19 × 0.06 × 0.05 mm

2.2. Data collection

  • Agilent SuperNova (Dual, Cu at zero, EosS2) diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Agilent, 2014[Agilent Technologies (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.910, Tmax = 0.973

  • 17549 measured reflections

  • 5355 independent reflections

  • 4677 reflections with I > 2σ(I)

  • Rint = 0.030

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.093

  • S = 1.03

  • 5355 reflections

  • 288 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C9–C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C25—H25BCgi 0.96 2.98 3.699 (3) 132
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2014[Agilent Technologies (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Synthesis and crystallization top

As described herein, the title compound was prepared in three steps from ((3,5-di­ethyl-4-iodo­phenyl)­ethynyl)triiso­propyl­silane; the synthesis of ((3,5-di­ethyl-4-iodo­phenyl)­ethynyl)triiso­propyl­silane is described in: Ehlers et al. (2011).

1. Synthesis of ((2,6-di­ethyl-4-((triiso­propyl­silyl)ethynyl)phenyl)­ethynyl)tri­methyl­silane

((3,5-Di­ethyl-4-iodo­phenyl)­ethynyl)triiso­propyl­silane (325 mg, 0.740 mmol) was added to tri­ethyl­amine (15 mL) and the solvent was de­oxy­genated. Triiso­propyl­silyl­acetyl­ene (0.2 mL, 1.45 mmol) was then added, followed by Pd(PPh3)4 (30 mg, 0.025 mmol) and CuI (5.0 mg, 0.025 mmol) and the mixture was stirred at room temperature for 24 h. The solvent was removed under reduced pressure and the residue was purified using column chromatography on silica, eluting with petrol. The solvent was removed from the eluate to give

((2,6-di­ethyl-4-((triiso­propyl­silyl)ethynyl)phenyl)­ethynyl)tri­methyl­silane as a pale yellow liquid (0.194 g, 64%). 1H NMR (δ, 400MHz, CDCl3): 0.26 (s, 9H, H(Si(CH3)3), 1.13 (s, 21H, H21, H22), 1.23 (t, JHH = 7.5Hz, 6H, H16), 2.77 (q, JHH = 7.5Hz, 4H, H15), 7.14 (s, 2H, H11). 13C NMR (δ, 101MHz, CDCl3): 146.9 (C10), 128.9 (C11), 123.1 (C9), 121.9 (C12), 107.4 (C19), 103.6 (C8), 102.0 (C7), 91.4 (C20), 28.0 (C15), 18.8 (C22), 14.5 (C16), 11.4 (C21), 0.12 (C(SiCH3)3). MS—EI: m/z (fragment, relative intensity): 410.2 ([M]+, 8).

2. Synthesis of ((3,5-di­ethyl-4-ethynyl­phenyl)­ethynyl)triiso­propyl­silane

((2,6-Di­ethyl-4-((triiso­propyl­silyl)ethynyl)phenyl)­ethynyl)tri­methyl­silane (0.947 g, 2.31 mmol) was added to a mixture of THF and ethanol (1:1, 50 mL). An aqueous solution of NaOH (2.5 mL, 0.1 M) was then added, and the mixture was stirred for 30 min. The solvent was removed under reduced pressure and the residue was purified using column chromatography on silica, eluting with petrol. The solvent was removed to give ((3,5-di­ethyl-4-ethynyl­phenyl)­ethynyl)triiso­propyl­silane as a pale yellow liquid (0.706 g, 90%). 1H NMR (δ, 400MHz, CDCl3): 1.13 (s, 21H, H21, H22), 1.24 (t, JHH = 7.5Hz, 6H, H16), 2.80 (q, JHH = 7.5Hz, 4H, H15), 3.50 (s, 1H, H7), 7.17 (s, 2H, H11). 13C NMR (δ, 101MHz, CDCl3): 147.2 (C10), 128.9 (C11), 123.5 (C9), 120.7 (C12), 107.2 (C19), 91.6 (C20), 85.8 (C7), 80.3 (C8), 27.8 (C15), 18.7 (C22), 14.7 (C16), 11.4 (C21). MS—EI: m/z (fragment, relative intensity): 338.3 ([M]+, 26).

3. Synthesis of ((4-((4-bromo­phenyl)­ethynyl)-3,5-di­ethyl­phenyl)­ethynyl)triiso­propyl­silane

((3,5-Di­ethyl-4-ethynyl­phenyl)­ethynyl)triiso­propyl­silane (0.140 g, 0.415 mmol) and 4-bromo-1-iodo­benzene (0.139 g, 0.491 mmol) was added to de­oxy­genated tri­ethyl­amine (40 mL). PdCl2(PPh3)2 (9.0 mg, 0.12 mmol) and CuI (4 mg, 0.02 mmol) were then added, and the resultant solution was stirred at room temperature for 16 h. The solvent was then removed under vacuum and the residue was passed through a silica column, eluting with petrol. The solvent was reduced in volume to give ((4-((4-bromo­phenyl)­ethynyl)-3,5-di­ethyl­phenyl)­ethynyl)triiso­propyl­silane as a white solid (0.192 g, 96%). Anal. Calc. for C29H37BrSi: C, 70.57; H, 7.56. Found: C, 70.53; H, 7.61%. 1H NMR (δ, 400MHz, CDCl3): 1.14 (s, 21H, H21, H22), 1.28 (t, JHH = 7.5Hz, 6H, H16), 2.84 (q, JHH = 7.5Hz, 4H, H15), 7.20 (s, 2H, H11), 7.37 (d, JHH = 7.5Hz, 2H, H3), 7.49 (d, JHH = 7.5Hz, 2H, H2). 13C NMR (δ, 101MHz, CDCl3): 146.9 (C10), 132.8 (C3), 131.8 (C2), 128.9 (C11), 123.1 (C9), 122.8 (C1 or 4), 122.6 (C1 or 4), 121.9 (C12), 107.4 (C19), 97.2 (C7), 91.9 (C20), 87.8 (C8), 28.1 (C15), 18.8 (C22), 14.8 (C16), 11.5 (C21). MS—EI: m/z (fragment, relative intensity): 494.2 ([M]+, 10). Colorless crystals of the title compound were obtained by slow evaporation of a hexane solution at room temperature.

Refinement top

Crystal data, data collection and structure refinement details are summarized below.

Related literature top

For the syntheses of arylalkynes by Sonogashira coupling, see: Takahashi et al. (1980). For the use of related oligo(phenyleneethynylene)s in the construction of metal alkynyl complexes exhibiting non-linear optical properties, see: Garcia et al. (2002); Hurst et al. (2002); Hurst et al. (2003); McDonagh et al. (2003). For the synthesis of [(3,5-diethyl-4-iodophenyl)ethynyl]triisopropylsilane, see: Ehlers et al. (2011). For related structures, see: Lehnherr et al. (2008, 2009); Błaszczyk et al. (2007).

Structure description top

For the syntheses of arylalkynes by Sonogashira coupling, see: Takahashi et al. (1980). For the use of related oligo(phenyleneethynylene)s in the construction of metal alkynyl complexes exhibiting non-linear optical properties, see: Garcia et al. (2002); Hurst et al. (2002); Hurst et al. (2003); McDonagh et al. (2003). For the synthesis of [(3,5-diethyl-4-iodophenyl)ethynyl]triisopropylsilane, see: Ehlers et al. (2011). For related structures, see: Lehnherr et al. (2008, 2009); Błaszczyk et al. (2007).

Synthesis and crystallization top

As described herein, the title compound was prepared in three steps from ((3,5-di­ethyl-4-iodo­phenyl)­ethynyl)triiso­propyl­silane; the synthesis of ((3,5-di­ethyl-4-iodo­phenyl)­ethynyl)triiso­propyl­silane is described in: Ehlers et al. (2011).

1. Synthesis of ((2,6-di­ethyl-4-((triiso­propyl­silyl)ethynyl)phenyl)­ethynyl)tri­methyl­silane

((3,5-Di­ethyl-4-iodo­phenyl)­ethynyl)triiso­propyl­silane (325 mg, 0.740 mmol) was added to tri­ethyl­amine (15 mL) and the solvent was de­oxy­genated. Triiso­propyl­silyl­acetyl­ene (0.2 mL, 1.45 mmol) was then added, followed by Pd(PPh3)4 (30 mg, 0.025 mmol) and CuI (5.0 mg, 0.025 mmol) and the mixture was stirred at room temperature for 24 h. The solvent was removed under reduced pressure and the residue was purified using column chromatography on silica, eluting with petrol. The solvent was removed from the eluate to give

((2,6-di­ethyl-4-((triiso­propyl­silyl)ethynyl)phenyl)­ethynyl)tri­methyl­silane as a pale yellow liquid (0.194 g, 64%). 1H NMR (δ, 400MHz, CDCl3): 0.26 (s, 9H, H(Si(CH3)3), 1.13 (s, 21H, H21, H22), 1.23 (t, JHH = 7.5Hz, 6H, H16), 2.77 (q, JHH = 7.5Hz, 4H, H15), 7.14 (s, 2H, H11). 13C NMR (δ, 101MHz, CDCl3): 146.9 (C10), 128.9 (C11), 123.1 (C9), 121.9 (C12), 107.4 (C19), 103.6 (C8), 102.0 (C7), 91.4 (C20), 28.0 (C15), 18.8 (C22), 14.5 (C16), 11.4 (C21), 0.12 (C(SiCH3)3). MS—EI: m/z (fragment, relative intensity): 410.2 ([M]+, 8).

2. Synthesis of ((3,5-di­ethyl-4-ethynyl­phenyl)­ethynyl)triiso­propyl­silane

((2,6-Di­ethyl-4-((triiso­propyl­silyl)ethynyl)phenyl)­ethynyl)tri­methyl­silane (0.947 g, 2.31 mmol) was added to a mixture of THF and ethanol (1:1, 50 mL). An aqueous solution of NaOH (2.5 mL, 0.1 M) was then added, and the mixture was stirred for 30 min. The solvent was removed under reduced pressure and the residue was purified using column chromatography on silica, eluting with petrol. The solvent was removed to give ((3,5-di­ethyl-4-ethynyl­phenyl)­ethynyl)triiso­propyl­silane as a pale yellow liquid (0.706 g, 90%). 1H NMR (δ, 400MHz, CDCl3): 1.13 (s, 21H, H21, H22), 1.24 (t, JHH = 7.5Hz, 6H, H16), 2.80 (q, JHH = 7.5Hz, 4H, H15), 3.50 (s, 1H, H7), 7.17 (s, 2H, H11). 13C NMR (δ, 101MHz, CDCl3): 147.2 (C10), 128.9 (C11), 123.5 (C9), 120.7 (C12), 107.2 (C19), 91.6 (C20), 85.8 (C7), 80.3 (C8), 27.8 (C15), 18.7 (C22), 14.7 (C16), 11.4 (C21). MS—EI: m/z (fragment, relative intensity): 338.3 ([M]+, 26).

3. Synthesis of ((4-((4-bromo­phenyl)­ethynyl)-3,5-di­ethyl­phenyl)­ethynyl)triiso­propyl­silane

((3,5-Di­ethyl-4-ethynyl­phenyl)­ethynyl)triiso­propyl­silane (0.140 g, 0.415 mmol) and 4-bromo-1-iodo­benzene (0.139 g, 0.491 mmol) was added to de­oxy­genated tri­ethyl­amine (40 mL). PdCl2(PPh3)2 (9.0 mg, 0.12 mmol) and CuI (4 mg, 0.02 mmol) were then added, and the resultant solution was stirred at room temperature for 16 h. The solvent was then removed under vacuum and the residue was passed through a silica column, eluting with petrol. The solvent was reduced in volume to give ((4-((4-bromo­phenyl)­ethynyl)-3,5-di­ethyl­phenyl)­ethynyl)triiso­propyl­silane as a white solid (0.192 g, 96%). Anal. Calc. for C29H37BrSi: C, 70.57; H, 7.56. Found: C, 70.53; H, 7.61%. 1H NMR (δ, 400MHz, CDCl3): 1.14 (s, 21H, H21, H22), 1.28 (t, JHH = 7.5Hz, 6H, H16), 2.84 (q, JHH = 7.5Hz, 4H, H15), 7.20 (s, 2H, H11), 7.37 (d, JHH = 7.5Hz, 2H, H3), 7.49 (d, JHH = 7.5Hz, 2H, H2). 13C NMR (δ, 101MHz, CDCl3): 146.9 (C10), 132.8 (C3), 131.8 (C2), 128.9 (C11), 123.1 (C9), 122.8 (C1 or 4), 122.6 (C1 or 4), 121.9 (C12), 107.4 (C19), 97.2 (C7), 91.9 (C20), 87.8 (C8), 28.1 (C15), 18.8 (C22), 14.8 (C16), 11.5 (C21). MS—EI: m/z (fragment, relative intensity): 494.2 ([M]+, 10). Colorless crystals of the title compound were obtained by slow evaporation of a hexane solution at room temperature.

Refinement details top

Crystal data, data collection and structure refinement details are summarized below.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of ((4-((4-bromophenyl)ethynyl)-3,5-diethylphenyl)ethynyl)triisopropylsilane, with thermal ellipsoids set at the 40% probability level.
[Figure 2] Fig. 2. Packing diagram of ((4-((4-bromophenyl)ethynyl)-3,5-diethylphenyl)ethynyl)triisopropylsilane.
[Figure 3] Fig. 3. Atom numbering scheme of ((2,6-diethyl-4-((triisopropylsilyl)ethynyl)phenyl)ethynyl)trimethylsilane for 1H and 13C NMR assignments.
[Figure 4] Fig. 4. Atom numbering scheme of ((3,5-diethyl-4-ethynylphenyl)ethynyl)triisopropylsilane for 1H and 13C NMR assignments.
[Figure 5] Fig. 5. Atom numbering scheme of ((4-((4-bromophenyl)ethynyl)-3,5-diethylphenyl)ethynyl)triisopropylsilane for 1H and 13C NMR assignments.
({4-[(4-Bromophenyl)ethynyl]-3,5-diethylphenyl}ethynyl)triisopropylsilane top
Crystal data top
C29H37BrSiF(000) = 1040
Mr = 493.58Dx = 1.205 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 14.9043 (2) ÅCell parameters from 7858 reflections
b = 8.50185 (11) Åθ = 3.1–72.1°
c = 22.6111 (3) ŵ = 2.56 mm1
β = 108.2791 (16)°T = 150 K
V = 2720.56 (7) Å3Needle, colorless
Z = 40.19 × 0.06 × 0.05 mm
Data collection top
Agilent SuperNova (Dual, Cu at zero, EosS2)
diffractometer
5355 independent reflections
Radiation source: sealed X-ray tube, SuperNova (Cu) X-ray Source4677 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.030
Detector resolution: 8.1297 pixels mm-1θmax = 72.3°, θmin = 4.1°
ω scansh = 1718
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2014), based on expressions derived by Clark & Reid (1995)]
k = 108
Tmin = 0.910, Tmax = 0.973l = 2627
17549 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0487P)2 + 0.7988P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
5355 reflectionsΔρmax = 0.44 e Å3
288 parametersΔρmin = 0.64 e Å3
0 restraints
Crystal data top
C29H37BrSiV = 2720.56 (7) Å3
Mr = 493.58Z = 4
Monoclinic, P21/nCu Kα radiation
a = 14.9043 (2) ŵ = 2.56 mm1
b = 8.50185 (11) ÅT = 150 K
c = 22.6111 (3) Å0.19 × 0.06 × 0.05 mm
β = 108.2791 (16)°
Data collection top
Agilent SuperNova (Dual, Cu at zero, EosS2)
diffractometer
5355 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2014), based on expressions derived by Clark & Reid (1995)]
4677 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 0.973Rint = 0.030
17549 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.03Δρmax = 0.44 e Å3
5355 reflectionsΔρmin = 0.64 e Å3
288 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro (Agilent Technologies, 2014) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark & Reid, 1995). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.59936 (2)1.35829 (4)0.03406 (2)0.06342 (11)
C10.60740 (12)1.2473 (2)0.04038 (8)0.0367 (4)
C20.61900 (13)1.3304 (2)0.09424 (10)0.0391 (4)
H20.62291.43960.09440.047*
C30.62480 (13)1.2492 (2)0.14846 (8)0.0353 (4)
H30.63461.30430.18550.042*
C40.61611 (11)1.0861 (2)0.14807 (8)0.0297 (3)
C50.60401 (13)1.0054 (2)0.09239 (8)0.0351 (4)
H50.59790.89650.09140.042*
C60.60100 (13)1.0858 (3)0.03850 (8)0.0386 (4)
H60.59481.03160.00170.046*
C70.61969 (12)1.0040 (2)0.20410 (8)0.0346 (4)
C80.62174 (12)0.9394 (2)0.25178 (8)0.0340 (3)
C90.62603 (11)0.8617 (2)0.30887 (7)0.0285 (3)
C100.63335 (11)0.9506 (2)0.36276 (8)0.0303 (3)
C110.64252 (11)0.8724 (2)0.41843 (7)0.0296 (3)
H110.64790.93020.45430.036*
C120.64376 (11)0.7080 (2)0.42108 (7)0.0277 (3)
C130.63343 (11)0.62185 (19)0.36677 (7)0.0284 (3)
H130.63240.51260.36830.034*
C140.62465 (11)0.6958 (2)0.31058 (7)0.0287 (3)
C150.63495 (14)1.1285 (2)0.36204 (10)0.0396 (4)
H15A0.60871.16830.39330.048*
H15B0.59551.16570.32170.048*
C160.73415 (18)1.1921 (3)0.37476 (16)0.0639 (7)
H16A0.76191.14750.34560.096*
H16B0.77171.16470.41640.096*
H16C0.73181.30450.37040.096*
C170.61268 (14)0.5983 (2)0.25298 (8)0.0384 (4)
H17A0.63840.49410.26520.046*
H17B0.64830.64600.22840.046*
C180.51011 (17)0.5835 (3)0.21337 (10)0.0575 (6)
H18A0.50620.52660.17600.086*
H18B0.48350.68650.20280.086*
H18C0.47560.52810.23630.086*
C190.65751 (12)0.6270 (2)0.47885 (8)0.0306 (3)
C200.67199 (12)0.5571 (2)0.52729 (7)0.0318 (3)
C210.68643 (12)0.6214 (2)0.65936 (8)0.0330 (3)
H210.70190.57520.70110.040*
C220.75465 (17)0.7576 (3)0.66248 (10)0.0482 (5)
H22A0.81840.71910.67620.072*
H22B0.74690.83530.69130.072*
H22C0.74150.80400.62190.072*
C230.58501 (15)0.6822 (3)0.64139 (11)0.0497 (5)
H23A0.56680.72260.59960.075*
H23B0.58100.76450.66950.075*
H23C0.54350.59780.64370.075*
C240.61059 (12)0.3018 (2)0.59826 (8)0.0328 (3)
H240.54940.35520.58850.039*
C250.62337 (16)0.2156 (3)0.65974 (10)0.0493 (5)
H25A0.68000.15350.67000.074*
H25B0.57000.14820.65560.074*
H25C0.62810.29100.69220.074*
C260.60039 (18)0.1852 (3)0.54504 (11)0.0554 (5)
H26A0.59330.24180.50710.083*
H26B0.54580.12040.54020.083*
H26C0.65570.12010.55440.083*
C270.82830 (12)0.3998 (2)0.62548 (8)0.0337 (3)
H270.86350.49240.61930.040*
C280.87126 (14)0.3534 (3)0.69440 (10)0.0492 (5)
H28A0.86490.43950.72030.074*
H28B0.93700.32880.70290.074*
H28C0.83870.26310.70300.074*
C290.84528 (15)0.2720 (3)0.58276 (11)0.0511 (5)
H29A0.82150.17340.59230.077*
H29B0.91180.26290.58900.077*
H29C0.81320.29930.54020.077*
Si10.70023 (3)0.46269 (5)0.60435 (2)0.02571 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.05680 (15)0.0898 (2)0.04728 (14)0.00897 (12)0.02157 (11)0.04038 (12)
C10.0294 (8)0.0511 (10)0.0307 (8)0.0024 (7)0.0110 (6)0.0173 (7)
C20.0355 (9)0.0348 (8)0.0469 (10)0.0030 (7)0.0126 (8)0.0087 (7)
C30.0375 (9)0.0374 (8)0.0305 (8)0.0025 (7)0.0101 (7)0.0016 (7)
C40.0252 (7)0.0369 (8)0.0270 (7)0.0022 (6)0.0081 (6)0.0071 (6)
C50.0374 (9)0.0331 (8)0.0341 (8)0.0014 (7)0.0103 (7)0.0034 (7)
C60.0385 (9)0.0505 (10)0.0259 (8)0.0016 (8)0.0089 (7)0.0008 (7)
C70.0304 (8)0.0430 (9)0.0311 (8)0.0053 (7)0.0108 (6)0.0084 (7)
C80.0294 (8)0.0423 (9)0.0311 (8)0.0058 (6)0.0106 (6)0.0082 (7)
C90.0236 (7)0.0379 (8)0.0251 (7)0.0052 (6)0.0091 (6)0.0076 (6)
C100.0253 (7)0.0344 (8)0.0310 (8)0.0034 (6)0.0084 (6)0.0041 (6)
C110.0274 (7)0.0367 (8)0.0241 (7)0.0018 (6)0.0071 (6)0.0010 (6)
C120.0238 (7)0.0367 (8)0.0223 (7)0.0014 (6)0.0068 (5)0.0042 (6)
C130.0266 (7)0.0317 (7)0.0265 (7)0.0019 (6)0.0078 (6)0.0033 (6)
C140.0257 (7)0.0376 (8)0.0232 (7)0.0056 (6)0.0080 (6)0.0021 (6)
C150.0400 (9)0.0349 (9)0.0448 (10)0.0074 (7)0.0147 (8)0.0049 (7)
C160.0482 (12)0.0308 (9)0.113 (2)0.0018 (8)0.0260 (13)0.0018 (11)
C170.0439 (10)0.0457 (9)0.0265 (8)0.0110 (8)0.0124 (7)0.0001 (7)
C180.0504 (12)0.0779 (16)0.0364 (10)0.0063 (11)0.0022 (9)0.0193 (10)
C190.0286 (7)0.0383 (8)0.0250 (8)0.0004 (6)0.0084 (6)0.0027 (6)
C200.0317 (8)0.0408 (9)0.0226 (7)0.0018 (6)0.0080 (6)0.0030 (6)
C210.0332 (8)0.0415 (9)0.0244 (7)0.0021 (7)0.0091 (6)0.0030 (6)
C220.0523 (11)0.0461 (10)0.0464 (11)0.0083 (9)0.0159 (9)0.0115 (8)
C230.0391 (10)0.0623 (12)0.0471 (11)0.0094 (9)0.0127 (8)0.0152 (9)
C240.0288 (8)0.0401 (8)0.0284 (8)0.0024 (6)0.0073 (6)0.0009 (7)
C250.0481 (11)0.0572 (12)0.0403 (10)0.0159 (9)0.0107 (8)0.0119 (9)
C260.0571 (13)0.0613 (13)0.0480 (11)0.0208 (11)0.0169 (10)0.0201 (10)
C270.0272 (7)0.0417 (9)0.0322 (8)0.0025 (6)0.0096 (6)0.0055 (7)
C280.0305 (9)0.0717 (14)0.0406 (10)0.0066 (9)0.0043 (8)0.0166 (9)
C290.0380 (10)0.0573 (12)0.0595 (13)0.0094 (9)0.0172 (9)0.0093 (10)
Si10.0248 (2)0.0339 (2)0.01806 (18)0.00090 (15)0.00617 (14)0.00271 (15)
Geometric parameters (Å, º) top
Br1—C11.9003 (16)C18—H18B0.9600
C1—C21.371 (3)C18—H18C0.9600
C1—C61.376 (3)C19—C201.204 (3)
C2—H20.9300C20—Si11.8431 (17)
C2—C31.386 (3)C21—H210.9800
C3—H30.9300C21—C221.528 (3)
C3—C41.393 (3)C21—C231.527 (3)
C4—C51.395 (3)C21—Si11.8894 (17)
C4—C71.433 (2)C22—H22A0.9600
C5—H50.9300C22—H22B0.9600
C5—C61.386 (3)C22—H22C0.9600
C6—H60.9300C23—H23A0.9600
C7—C81.202 (3)C23—H23B0.9600
C8—C91.434 (2)C23—H23C0.9600
C9—C101.409 (2)C24—H240.9800
C9—C141.411 (2)C24—C251.530 (2)
C10—C111.392 (2)C24—C261.530 (3)
C10—C151.513 (2)C24—Si11.8866 (17)
C11—H110.9300C25—H25A0.9600
C11—C121.399 (2)C25—H25B0.9600
C12—C131.396 (2)C25—H25C0.9600
C12—C191.434 (2)C26—H26A0.9600
C13—H130.9300C26—H26B0.9600
C13—C141.387 (2)C26—H26C0.9600
C14—C171.507 (2)C27—H270.9800
C15—H15A0.9700C27—C281.539 (2)
C15—H15B0.9700C27—C291.527 (3)
C15—C161.515 (3)C27—Si11.8936 (17)
C16—H16A0.9600C28—H28A0.9600
C16—H16B0.9600C28—H28B0.9600
C16—H16C0.9600C28—H28C0.9600
C17—H17A0.9700C29—H29A0.9600
C17—H17B0.9700C29—H29B0.9600
C17—C181.515 (3)C29—H29C0.9600
C18—H18A0.9600
C2—C1—Br1119.11 (15)C20—C19—C12177.76 (18)
C2—C1—C6121.98 (16)C19—C20—Si1175.58 (16)
C6—C1—Br1118.90 (15)C22—C21—H21107.8
C1—C2—H2120.5C22—C21—Si1111.30 (13)
C1—C2—C3119.02 (17)C23—C21—H21107.8
C3—C2—H2120.5C23—C21—C22110.13 (18)
C2—C3—H3119.7C23—C21—Si1111.70 (13)
C2—C3—C4120.68 (17)Si1—C21—H21107.8
C4—C3—H3119.7C21—C22—H22A109.5
C3—C4—C5118.74 (16)C21—C22—H22B109.5
C3—C4—C7120.14 (17)C21—C22—H22C109.5
C5—C4—C7121.12 (17)H22A—C22—H22B109.5
C4—C5—H5119.7H22A—C22—H22C109.5
C6—C5—C4120.69 (17)H22B—C22—H22C109.5
C6—C5—H5119.7C21—C23—H23A109.5
C1—C6—C5118.83 (17)C21—C23—H23B109.5
C1—C6—H6120.6C21—C23—H23C109.5
C5—C6—H6120.6H23A—C23—H23B109.5
C8—C7—C4177.9 (2)H23A—C23—H23C109.5
C7—C8—C9178.92 (18)H23B—C23—H23C109.5
C10—C9—C8120.05 (16)C25—C24—H24105.5
C10—C9—C14120.69 (15)C25—C24—Si1113.43 (12)
C14—C9—C8119.24 (16)C26—C24—H24105.5
C9—C10—C15121.63 (16)C26—C24—C25110.96 (18)
C11—C10—C9119.01 (15)C26—C24—Si1114.88 (14)
C11—C10—C15119.33 (16)Si1—C24—H24105.5
C10—C11—H11119.6C24—C25—H25A109.5
C10—C11—C12120.81 (15)C24—C25—H25B109.5
C12—C11—H11119.6C24—C25—H25C109.5
C11—C12—C19121.02 (15)H25A—C25—H25B109.5
C13—C12—C11119.35 (15)H25A—C25—H25C109.5
C13—C12—C19119.61 (15)H25B—C25—H25C109.5
C12—C13—H13119.3C24—C26—H26A109.5
C14—C13—C12121.37 (15)C24—C26—H26B109.5
C14—C13—H13119.3C24—C26—H26C109.5
C9—C14—C17121.68 (15)H26A—C26—H26B109.5
C13—C14—C9118.71 (15)H26A—C26—H26C109.5
C13—C14—C17119.60 (16)H26B—C26—H26C109.5
C10—C15—H15A109.2C28—C27—H27106.2
C10—C15—H15B109.2C28—C27—Si1113.21 (13)
C10—C15—C16111.88 (16)C29—C27—H27106.2
H15A—C15—H15B107.9C29—C27—C28111.08 (18)
C16—C15—H15A109.2C29—C27—Si1113.30 (13)
C16—C15—H15B109.2Si1—C27—H27106.2
C15—C16—H16A109.5C27—C28—H28A109.5
C15—C16—H16B109.5C27—C28—H28B109.5
C15—C16—H16C109.5C27—C28—H28C109.5
H16A—C16—H16B109.5H28A—C28—H28B109.5
H16A—C16—H16C109.5H28A—C28—H28C109.5
H16B—C16—H16C109.5H28B—C28—H28C109.5
C14—C17—H17A109.1C27—C29—H29A109.5
C14—C17—H17B109.1C27—C29—H29B109.5
C14—C17—C18112.37 (16)C27—C29—H29C109.5
H17A—C17—H17B107.9H29A—C29—H29B109.5
C18—C17—H17A109.1H29A—C29—H29C109.5
C18—C17—H17B109.1H29B—C29—H29C109.5
C17—C18—H18A109.5C20—Si1—C21105.76 (8)
C17—C18—H18B109.5C20—Si1—C24107.47 (8)
C17—C18—H18C109.5C20—Si1—C27105.95 (8)
H18A—C18—H18B109.5C21—Si1—C27110.17 (8)
H18A—C18—H18C109.5C24—Si1—C21110.17 (8)
H18B—C18—H18C109.5C24—Si1—C27116.63 (8)
Br1—C1—C2—C3179.97 (14)C12—C13—C14—C17179.40 (15)
Br1—C1—C6—C5178.08 (14)C13—C14—C17—C1897.4 (2)
C1—C2—C3—C42.0 (3)C14—C9—C10—C112.2 (2)
C2—C1—C6—C51.7 (3)C14—C9—C10—C15180.00 (15)
C2—C3—C4—C51.7 (3)C15—C10—C11—C12178.35 (15)
C2—C3—C4—C7178.31 (17)C19—C12—C13—C14176.79 (15)
C3—C4—C5—C60.2 (3)C22—C21—Si1—C2061.07 (15)
C4—C5—C6—C11.9 (3)C22—C21—Si1—C24176.92 (13)
C6—C1—C2—C30.2 (3)C22—C21—Si1—C2753.01 (15)
C7—C4—C5—C6179.76 (16)C23—C21—Si1—C2062.49 (16)
C8—C9—C10—C11176.57 (15)C23—C21—Si1—C2453.36 (17)
C8—C9—C10—C151.2 (2)C23—C21—Si1—C27176.56 (15)
C8—C9—C14—C13176.92 (15)C25—C24—Si1—C20178.21 (15)
C8—C9—C14—C173.9 (2)C25—C24—Si1—C2163.44 (17)
C9—C10—C11—C120.5 (2)C25—C24—Si1—C2763.09 (17)
C9—C10—C15—C1687.6 (2)C26—C24—Si1—C2052.68 (17)
C9—C14—C17—C1881.8 (2)C26—C24—Si1—C21167.46 (15)
C10—C9—C14—C131.9 (2)C26—C24—Si1—C2766.01 (17)
C10—C9—C14—C17177.33 (15)C28—C27—Si1—C20166.62 (15)
C10—C11—C12—C131.5 (2)C28—C27—Si1—C2152.66 (17)
C10—C11—C12—C19177.13 (15)C28—C27—Si1—C2473.87 (17)
C11—C10—C15—C1690.2 (2)C29—C27—Si1—C2065.74 (16)
C11—C12—C13—C141.9 (2)C29—C27—Si1—C21179.69 (15)
C12—C13—C14—C90.2 (2)C29—C27—Si1—C2453.77 (17)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
C25—H25B···Cgi0.962.983.699 (3)132
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
C25—H25B···Cgi0.962.983.699 (3)132
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We gratefully acknowledge support from the Australian Research Council (LE130100057) to purchase Agilent Technologies SuperNova and XCalibur diffractometers. We thank Professors C. Zhang (Jiangnan University), M. P. Cifuentes (Australian National University) and M. G. Humphrey (Australian National University) for assistance.

References

First citationAgilent Technologies (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBłaszczyk, A., Fischer, M., von Hänisch, C. & Mayor, M. (2007). Eur. J. Org. Chem. 2007, 2630–2642.  Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEhlers, I., Maity, P., Aubé, J. & König, B. (2011). Eur. J. Org. Chem. 2011, 2474–2490.  CrossRef Google Scholar
First citationGarcia, M. H., Robalo, M. P., Dias, A. R., Duarte, M. T., Wenseleers, W., Aerts, G., Goovaerts, E., Cifuentes, M. P., Hurst, S., Humphrey, M. G., Samoc, M. & Luther-Davies, B. (2002). Organometallics, 21, 2107–2118.  Web of Science CSD CrossRef CAS Google Scholar
First citationHurst, S. K., Cifuentes, M. P. & Humphrey, M. G. (2002). Organometallics, 21, 2353–2355.  CrossRef CAS Google Scholar
First citationHurst, S. K., Humphrey, M. G., Morrall, J. P., Cifuentes, M. P., Samoc, M., Luther-Davies, B., Heath, G. A. & Willis, A. C. (2003). J. Organomet. Chem. 670, 56–65.  Web of Science CSD CrossRef CAS Google Scholar
First citationLehnherr, D., McDonald, R. & Tykwinski, R. R. (2008). Org. Lett. 10, 4163–4166.  CSD CrossRef PubMed CAS Google Scholar
First citationLehnherr, D., Murray, A. H., McDonald, R., Ferguson, M. J. & Tykwinski, R. R. (2009). Chem. Eur. J. 15, 12580–12584.  CSD CrossRef PubMed CAS Google Scholar
First citationMcDonagh, A. M., Powell, C. E., Morrall, J. P., Cifuentes, M. P. & Humphrey, M. G. (2003). Organometallics, 22, 1402–1413.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTakahashi, S., Kuroyama, Y., Sonogashira, K. & Hagihara, N. (1980). Synthesis, pp. 627–630.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds