research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N-[(2S,5R)-4-oxo-2,3-di­phenyl-1,3-thia­zinan-5-yl]acetamide 0.375-hydrate

aDepartment of Chemistry, Pennsylvania State University, University Park, PA 16802, USA, and bPennsylvania State University, Schuylkill Campus, 200 University Drive, Schuylkill Haven, PA 17972, USA
*Correspondence e-mail: ljs43@psu.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 9 November 2014; accepted 1 December 2014; online 1 January 2015)

The asymmetric unit of the title compound, C18H18N2O2S.0.375H2O, has two independent organic mol­ecules (A and B) and 3/4 of a water mol­ecule distributed over three sites. In mol­ecule A, the 1,3-thia­zine ring is in a boat conformation, with the C atoms at the 2- and 5-positions out of the plane. The angle between the two phenyl rings is 51.70 (12)°. In mol­ecule B, the thia­zine ring is in a half-chair conformation, with the S atom forming the back of the half-chair. The angle between the two phenyl rings is 84.44 (14)°. The A mol­ecule features an intra­molecular N—H⋯O hydrogen bond, which closes an S(5) ring motif. In the crystal, the corresponding N—H grouping of the B mol­ecule participates in an inter­molecular hydrogen bond to the A mol­ecule. The A mol­ecule participates in a C—H⋯O inter­action back to the B mol­ecule, whilst the B mol­ecule features an intra­molecular C—H⋯O link, which generates an S(10) loop.

1. Chemical context

In a recent paper, we reported the 2,4,6-tripropyl-1,3,5,2,4,6-trioxatri­phospho­rinane-2,4,6-trioxide (T3P)-promoted cyclization of N-[phenyl­methyl­idene]aniline with 3-sulfanyl­propanoic acid to produce 2,3-diphenyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zin-4-one (Yennawar & Silverberg, 2014[Yennawar, H. P. & Silverberg, L. J. (2014). Acta Cryst. E70, o133.]). As noted before (Yennawar et al., 2014[Yennawar, H. P., Bendinsky, R. V., Coyle, D. J., Cali, A. S. & Silverberg, L. J. (2014). Acta Cryst. E70, o465.]), prior to this, the N-aryl compounds had not easily been prepared by condensation of imines with thio­acids. With respect to the thio­acid, the use of a homochiral cysteine derivative is desirable because, along with putting a functional group on the ring, it creates a second chiral center at the 5-position of the thia­zinone, potentially allowing the separation of two diastereomers into cis and trans homochiral heterocycles. A condensation of N-acetyl­cysteine with two very active (CX3)2C=NH imines has been reported (Raasch, 1974[Raasch, M. S. (1974). J. Heterocycl. Chem. 11, 587-593.]), giving a thia­zinone with one chiral center. Although a search of 2,3,5,6-tetra­hydro-4H-1,3-thia­zin-4-ones with a nitro­gen atom at the 5-position and carbon atoms at positions 2 and 3 found 156 compounds, there were only two compounds with an aryl group at the 3-position and both involved a more complex bridged structure synthesized by a cyclo­addition route (Potts, et al., 1974[Potts, K. T., Baum, J., Houghton, E., Roy, D. N. & Singh, U. P. (1974). J. Org. Chem. 39, 3619-3627.]). Herein we report the T3P-promoted cyclization of N-[phenyl­methyl­idene]aniline with N-acetyl-L-cysteine. One major product arose along with at least three minor products, as determined by NMR spectroscopy. The major product was isolated by column chromatography followed by recrystallization. The structure is reported as the title compound here. The minor products have not yet been satisfactorily isolated. As reported here, the major product is the cis diastereomer.

[Scheme 1]

2. Structural commentary

The two independent organic mol­ecules in the asymmetric unit exhibit different geometries for the thia­zine ring (Fig. 1[link]). In mol­ecule A, the ring takes a boat configuration with the groups at the 2- and 5-positions pseudo-equatorial and the hydrogens at these positions within 1.993 Å of each other. The stability gained by having both groups pseudo-equatorial must offset the higher energy expected in a boat conformation. The dihedral angle between the C1- and C8-benzene rings is 51.7 (2)°. An intra­molecular N2—H2N⋯O1 hydrogen bond is observed, which closes an S(5) ring.

[Figure 1]
Figure 1
ORTEP view of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

In mol­ecule B, the thia­zine ring adopts a half-chair conformation. The groups at the 2- and 5-positions cannot readily be defined as pseudo-axial or pseudo-equatorial, but the phenyl ring at the 2-position is closer to axial, while the amide group at the 5-position is closer to equatorial. The dihedral angle between the phenyl rings (C20–C25 and C26–C31) is 84.4 (2)°. This conformation is similar to that observed for 2,3-diphenyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zin-4-one (Yennawar & Silverberg, 2014[Yennawar, H. P. & Silverberg, L. J. (2014). Acta Cryst. E70, o133.]). Mol­ecule B features an intra­molecular C21—H21⋯O4 link, which generates an S(10) loop.

The residual electron density suggested several solvent mol­ecule sites but only with partial occupancies. The best model fixed the occupancy for each of the three water-mol­ecule sites at 0.25.

3. Supra­molecular features

In the crystal, the N—H grouping of mol­ecule B (corres­ponding to the one involved in the intra­molecular N2—H2N⋯O1 hydrogen bond in mol­ecule A) participates in an inter­molecular N4—H4N⋯O2 hydrogen bond to mol­ecule A (Table 1[link]). Mol­ecule A participates in a C7—H7⋯O3 inter­action back to mol­ecule B. The crystal packing is shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O1 0.88 (6) 2.22 (5) 2.678 (4) 113 (5)
N4—H4N⋯O2 0.90 (4) 2.03 (4) 2.899 (5) 162 (4)
C7—H7⋯O3 0.98 2.50 3.241 (4) 132
C21—H21⋯O4 0.93 2.48 3.375 (5) 162
[Figure 2]
Figure 2
The crystal packing of the title compound.

4. Synthesis and crystallization

A two-necked 25 ml round-bottom flask was oven-dried, cooled under N2, and charged with a stir bar and N-benzyl­ideneaniline (1.087 g, 6 mmol). Tetra­hydro­furan (2.3 ml) was added, the solid dissolved, and the solution was stirred. Pyridine (1.95 ml, 24 mmol) was added and then N-acetyl-L-cysteine (6 mmol, 0.9824 g) was added. Finally, 2,4,6-tripropyl-1,3,5,2,4,6-trioxatri­phospho­rinane-2,4,6-trioxide (T3P) in 2-methyl­tetra­hydro­furan (50 weight%; 7.1 ml, 12 mmol) was added. The reaction was stirred at room temperature. TLC (EtOAc) after one day showed the reaction was complete, with two product spots, but the reaction was allowed to stir another 13 days. The mixture was poured into a separatory funnel with di­chloro­methane and distilled water. The layers were separated and the aqueous was then extracted twice with di­chloro­methane. The organics were combined and washed with saturated sodium bicarbonate and then saturated sodium chloride. The organic was dried over sodium sulfate, and concentrated under vacuum to a solid. The crude was chromatographed on 30 g flash silica gel, eluting with 50% ethyl acetate/hexa­nes and 100% ethyl acetate. Fractions containing the larger, more polar spot on TLC were combined, concentrated under vacuum, recrystallized from ethyl acetate/hexa­nes, and rinsed with ethanol to give light-yellow crystals of N-[(2S, 5R)-4-oxo-2,3-diphenyl-1,3-thia­zinan-5-yl]acetamide (0.2702 g, 13.8%). m.p.: 460–463 K. Rf = 0.24 (EtOAc). Colourless cuboids were grown by slow evaporation from 2-propanol. The fractions containing the other TLC spot [Rf = 0.33 (EtOAc)] showed four different compounds by NMR, including the title compound.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hydrogen atoms bound to the nitro­gen atom was located in the difference Fourier map and refined isotropically. The C-bound H atoms were geometrically placed with C—H = 0.93–0.97 Å, and refined as riding with Uiso(H) = 1.2Ueq(C). The three solvent mol­ecule sites were given occupancy of 0.25 each, as that proved to be the best way to account for the residual electron density.

Table 2
Experimental details

Crystal data
Chemical formula 2C18H18N2O2S·0.75OH2O
Mr 664.81
Crystal system, space group Tetragonal, P41212
Temperature (K) 298
a, c (Å) 13.3438 (12), 40.237 (7)
V3) 7164.6 (16)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.19
Crystal size (mm) 0.28 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.948, 0.962
No. of measured, independent and observed [I > 2σ(I)] reflections 56028, 8891, 6254
Rint 0.049
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.216, 1.05
No. of reflections 8891
No. of parameters 448
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.75, −0.48
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3769 Friedel pairs
Absolute structure parameter 0.1 (1)
Computer programs: SMART and SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), XSHELL (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XSHELL (Bruker, 2001); software used to prepare material for publication: ORTEP-3 for Windows (Farrugia, 2012).

N-[(2S,5R)-4-Oxo-2,3-diphenyl-1,3-thiazinan-5-yl]acetamide 0.375-hydrate top
Crystal data top
2C18H18N2O2S·0.75OH2ODx = 1.233 Mg m3
Mr = 664.81Melting point: 451(2) K
Tetragonal, P41212Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 4abw 2nwCell parameters from 6252 reflections
a = 13.3438 (12) Åθ = 2.2–26.4°
c = 40.237 (7) ŵ = 0.19 mm1
V = 7164.6 (16) Å3T = 298 K
Z = 8Cube, colorless
F(000) = 28000.28 × 0.25 × 0.20 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
8891 independent reflections
Radiation source: fine-focus sealed tube6254 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 8.34 pixels mm-1θmax = 28.3°, θmin = 1.6°
φ and ω scansh = 1617
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1716
Tmin = 0.948, Tmax = 0.962l = 5353
56028 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.216 w = 1/[σ2(Fo2) + (0.140P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.008
8891 reflectionsΔρmax = 0.75 e Å3
448 parametersΔρmin = 0.48 e Å3
0 restraintsAbsolute structure: Flack (1983), 3769 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.10 (10)
Special details top

Experimental. Absorption correction: SADABS was used for absorption correction. R(int) was 0.0331 before and 0.0128 after correction. The Ratio of minimum to maximum transmission is 0.8482. The λ/2 correction factor is 0.0015.

The data collection nominally covered a full sphere of reciprocal space by a combination of 4 sets of ω scans each set at different φ and/or 2θ angles and each scan (10 s exposure) covering -0.300° degrees in ω. The crystal to detector distance was 5.82 cm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O5A0.0057 (15)0.053 (2)0.2410 (7)0.178 (10)0.25
C10.2504 (3)0.0827 (2)0.18198 (8)0.0489 (7)
C20.1531 (3)0.1098 (3)0.18700 (10)0.0651 (9)
H20.10940.06800.19850.078*
C30.1199 (4)0.2031 (4)0.17437 (13)0.0878 (15)
H30.05300.22120.17680.105*
C40.1842 (5)0.2668 (3)0.15865 (14)0.0923 (16)
H40.16180.32860.15100.111*
C50.2808 (4)0.2392 (3)0.15436 (11)0.0800 (13)
H50.32470.28250.14360.096*
C60.3156 (3)0.1476 (3)0.16574 (9)0.0625 (9)
H60.38220.12970.16250.075*
C70.3648 (3)0.0213 (3)0.21946 (8)0.0509 (7)
H70.41740.06480.21050.061*
C80.4137 (3)0.0748 (3)0.22965 (8)0.0562 (8)
C90.3653 (3)0.1439 (3)0.24980 (10)0.0706 (10)
H90.30100.13230.25790.085*
C100.4193 (5)0.2344 (3)0.25755 (12)0.0907 (16)
H100.38910.28290.27080.109*
C110.5109 (5)0.2497 (4)0.24620 (14)0.0932 (16)
H110.54390.30880.25170.112*
C120.5571 (4)0.1833 (5)0.22722 (15)0.0994 (17)
H120.62110.19660.21920.119*
C130.5102 (3)0.0938 (4)0.21928 (11)0.0739 (10)
H130.54420.04610.20680.089*
C140.2462 (2)0.0994 (2)0.18183 (8)0.0499 (7)
C150.2878 (3)0.1931 (2)0.19744 (9)0.0545 (7)
H150.36070.19320.19450.065*
C160.2647 (4)0.1940 (3)0.23457 (10)0.0724 (10)
H16A0.19270.19750.23770.087*
H16B0.29400.25350.24440.087*
C170.2967 (3)0.3685 (2)0.17969 (9)0.0577 (8)
C180.2486 (4)0.4517 (3)0.16103 (11)0.0772 (12)
H18A0.25210.51210.17390.116*
H18B0.17980.43530.15680.116*
H18C0.28300.46140.14030.116*
C190.6796 (2)0.1320 (2)0.09363 (8)0.0481 (7)
H190.66620.11200.07060.058*
C200.7810 (2)0.0882 (2)0.10234 (9)0.0516 (7)
C210.8070 (3)0.0618 (3)0.13434 (10)0.0612 (8)
H210.76020.06710.15140.073*
C220.9023 (3)0.0278 (3)0.14103 (15)0.0826 (13)
H220.91960.01000.16260.099*
C230.9725 (3)0.0197 (4)0.11586 (16)0.0866 (15)
H231.03740.00120.12070.104*
C240.9467 (3)0.0419 (4)0.08473 (16)0.0900 (15)
H240.99330.03400.06770.108*
C250.8515 (3)0.0765 (3)0.07738 (12)0.0693 (10)
H250.83470.09210.05550.083*
C260.5686 (2)0.0093 (2)0.10451 (8)0.0492 (7)
C270.5836 (3)0.0874 (3)0.12672 (11)0.0614 (8)
H270.61060.07480.14760.074*
C280.5582 (3)0.1838 (3)0.11770 (13)0.0726 (11)
H280.56690.23610.13270.087*
C290.5199 (4)0.2029 (3)0.08654 (14)0.0817 (13)
H290.50270.26810.08060.098*
C300.5071 (4)0.1261 (4)0.06417 (13)0.0899 (15)
H300.48230.13960.04300.108*
C310.5311 (3)0.0281 (3)0.07304 (10)0.0678 (10)
H310.52200.02400.05800.081*
C320.5461 (2)0.1382 (2)0.13924 (8)0.0490 (7)
C330.5743 (3)0.2454 (3)0.14941 (9)0.0542 (8)
H330.52490.28910.13870.065*
C340.6759 (3)0.2826 (2)0.13793 (10)0.0570 (8)
H34A0.72860.24420.14860.068*
H34B0.68420.35250.14390.068*
C350.6035 (3)0.1985 (4)0.20735 (10)0.0707 (10)
C360.5771 (5)0.2170 (5)0.24334 (11)0.1019 (17)
H36A0.54550.28130.24550.153*
H36B0.63710.21570.25650.153*
H36C0.53210.16570.25090.153*
N10.28612 (19)0.01260 (19)0.19383 (7)0.0474 (6)
N20.2471 (3)0.2807 (2)0.18125 (9)0.0601 (7)
H2N0.193 (5)0.265 (4)0.1701 (12)0.100 (17)*
N30.59653 (19)0.09217 (19)0.11341 (7)0.0481 (6)
N40.5591 (3)0.2575 (3)0.18477 (9)0.0633 (8)
H4N0.511 (3)0.305 (3)0.1853 (9)0.053 (10)*
O10.1807 (2)0.10192 (19)0.16054 (7)0.0673 (7)
O20.3791 (2)0.3763 (2)0.19349 (8)0.0734 (7)
O30.47621 (19)0.09644 (19)0.15238 (7)0.0629 (6)
O40.6614 (3)0.1312 (3)0.19895 (8)0.0841 (9)
S10.31262 (10)0.08417 (8)0.25589 (2)0.0726 (3)
S20.68356 (7)0.26844 (7)0.09362 (3)0.0624 (2)
O5C0.9973 (9)0.2040 (12)0.2631 (3)0.092 (4)0.25
O5B0.8745 (12)0.1255 (12)0.25000.270 (15)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O5A0.092 (12)0.22 (3)0.22 (3)0.038 (16)0.064 (14)0.00 (2)
C10.0553 (18)0.0383 (15)0.0533 (15)0.0032 (13)0.0101 (14)0.0055 (12)
C20.0536 (19)0.064 (2)0.078 (2)0.0075 (16)0.0073 (17)0.0157 (18)
C30.079 (3)0.070 (3)0.114 (3)0.028 (2)0.036 (3)0.023 (3)
C40.115 (4)0.046 (2)0.116 (4)0.008 (3)0.047 (3)0.002 (2)
C50.103 (4)0.054 (2)0.083 (3)0.014 (2)0.024 (2)0.013 (2)
C60.066 (2)0.061 (2)0.0607 (19)0.0083 (17)0.0060 (17)0.0083 (16)
C70.0494 (17)0.0505 (17)0.0527 (16)0.0001 (13)0.0053 (13)0.0027 (13)
C80.059 (2)0.0545 (19)0.0552 (16)0.0001 (15)0.0102 (15)0.0019 (14)
C90.074 (3)0.069 (2)0.069 (2)0.0090 (19)0.006 (2)0.0174 (19)
C100.132 (5)0.058 (2)0.083 (3)0.016 (3)0.038 (3)0.017 (2)
C110.099 (4)0.083 (3)0.097 (3)0.023 (3)0.037 (3)0.007 (3)
C120.081 (3)0.106 (4)0.111 (4)0.033 (3)0.023 (3)0.006 (3)
C130.059 (2)0.089 (3)0.074 (2)0.016 (2)0.0084 (19)0.007 (2)
C140.0495 (17)0.0416 (16)0.0585 (17)0.0026 (13)0.0020 (14)0.0028 (13)
C150.0507 (17)0.0406 (15)0.0722 (19)0.0010 (13)0.0011 (15)0.0072 (15)
C160.088 (3)0.052 (2)0.077 (2)0.0129 (19)0.009 (2)0.0090 (18)
C170.062 (2)0.0402 (16)0.071 (2)0.0004 (14)0.0133 (17)0.0029 (14)
C180.104 (3)0.0449 (19)0.083 (3)0.005 (2)0.009 (2)0.0092 (18)
C190.0402 (15)0.0411 (15)0.0630 (17)0.0036 (12)0.0048 (13)0.0051 (13)
C200.0445 (16)0.0382 (15)0.0722 (19)0.0046 (12)0.0036 (14)0.0062 (14)
C210.055 (2)0.0498 (18)0.078 (2)0.0039 (16)0.0041 (17)0.0032 (16)
C220.066 (3)0.056 (2)0.126 (4)0.0054 (19)0.030 (3)0.011 (2)
C230.043 (2)0.069 (3)0.148 (5)0.0080 (17)0.008 (3)0.009 (3)
C240.052 (2)0.083 (3)0.135 (5)0.004 (2)0.031 (3)0.012 (3)
C250.056 (2)0.060 (2)0.091 (3)0.0015 (17)0.0156 (19)0.001 (2)
C260.0369 (15)0.0466 (16)0.0641 (17)0.0015 (12)0.0024 (13)0.0020 (14)
C270.0502 (19)0.0510 (19)0.083 (2)0.0040 (15)0.0034 (17)0.0045 (17)
C280.058 (2)0.0470 (19)0.113 (3)0.0028 (16)0.003 (2)0.007 (2)
C290.070 (3)0.049 (2)0.126 (4)0.0124 (18)0.006 (3)0.014 (2)
C300.089 (3)0.093 (3)0.088 (3)0.035 (3)0.002 (3)0.015 (3)
C310.063 (2)0.070 (2)0.070 (2)0.0136 (18)0.0083 (18)0.0008 (18)
C320.0362 (15)0.0483 (17)0.0624 (17)0.0014 (12)0.0060 (13)0.0011 (14)
C330.0456 (17)0.0442 (16)0.073 (2)0.0081 (13)0.0025 (15)0.0023 (14)
C340.0499 (18)0.0363 (15)0.085 (2)0.0017 (13)0.0023 (16)0.0065 (15)
C350.062 (2)0.079 (3)0.071 (2)0.014 (2)0.0045 (18)0.005 (2)
C360.108 (4)0.129 (5)0.069 (2)0.034 (3)0.008 (3)0.017 (3)
N10.0457 (14)0.0392 (13)0.0574 (14)0.0019 (10)0.0038 (11)0.0014 (11)
N20.0589 (18)0.0402 (15)0.081 (2)0.0012 (12)0.0044 (16)0.0011 (13)
N30.0396 (13)0.0426 (13)0.0622 (14)0.0000 (10)0.0053 (11)0.0027 (11)
N40.0577 (18)0.0550 (18)0.0772 (19)0.0000 (15)0.0121 (15)0.0127 (15)
O10.0695 (16)0.0490 (13)0.0834 (16)0.0016 (12)0.0239 (14)0.0030 (12)
O20.0626 (17)0.0519 (15)0.106 (2)0.0026 (12)0.0136 (15)0.0058 (14)
O30.0511 (13)0.0584 (14)0.0791 (16)0.0047 (11)0.0173 (12)0.0021 (12)
O40.0760 (19)0.094 (2)0.0821 (18)0.0198 (17)0.0026 (16)0.0077 (17)
S10.0985 (8)0.0656 (6)0.0537 (4)0.0074 (5)0.0004 (5)0.0062 (4)
S20.0592 (5)0.0476 (5)0.0805 (6)0.0027 (4)0.0059 (4)0.0147 (4)
O5C0.059 (7)0.114 (11)0.103 (9)0.018 (7)0.012 (6)0.027 (8)
O5B0.172 (12)0.172 (12)0.47 (4)0.015 (16)0.096 (18)0.096 (18)
Geometric parameters (Å, º) top
O5A—O5Ai1.33 (4)C19—C201.515 (4)
C1—C21.363 (5)C19—S21.822 (3)
C1—C61.391 (5)C19—H190.9800
C1—N11.439 (4)C20—C211.379 (5)
C2—C31.415 (6)C20—C251.384 (5)
C2—H20.9300C21—C221.377 (6)
C3—C41.363 (8)C21—H210.9300
C3—H30.9300C22—C231.384 (8)
C4—C51.352 (8)C22—H220.9300
C4—H40.9300C23—C241.333 (7)
C5—C61.385 (6)C23—H230.9300
C5—H50.9300C24—C251.384 (7)
C6—H60.9300C24—H240.9300
C7—N11.477 (4)C25—H250.9300
C7—C81.496 (5)C26—C311.385 (5)
C7—S11.827 (4)C26—C271.388 (5)
C7—H70.9800C26—N31.449 (4)
C8—C131.377 (6)C27—C281.379 (6)
C8—C91.388 (5)C27—H270.9300
C9—C101.440 (7)C28—C291.378 (7)
C9—H90.9300C28—H280.9300
C10—C111.321 (8)C29—C301.376 (7)
C10—H100.9300C29—H290.9300
C11—C121.322 (8)C30—C311.392 (6)
C11—H110.9300C30—H300.9300
C12—C131.386 (7)C31—H310.9300
C12—H120.9300C32—O31.208 (4)
C13—H130.9300C32—N31.382 (4)
C14—O11.225 (4)C32—C331.535 (5)
C14—N11.363 (4)C33—N41.446 (5)
C14—C151.505 (5)C33—C341.516 (5)
C15—N21.444 (5)C33—H330.9800
C15—C161.525 (5)C34—S21.796 (4)
C15—H150.9800C34—H34A0.9700
C16—S11.814 (4)C34—H34B0.9700
C16—H16A0.9700C35—O41.232 (5)
C16—H16B0.9700C35—N41.340 (6)
C17—O21.236 (5)C35—C361.510 (6)
C17—N21.346 (5)C36—H36A0.9600
C17—C181.486 (6)C36—H36B0.9600
C18—H18A0.9600C36—H36C0.9600
C18—H18B0.9600N2—H2N0.87 (6)
C18—H18C0.9600N4—H4N0.90 (4)
C19—N31.464 (4)
C2—C1—C6120.0 (3)C21—C20—C19122.6 (3)
C2—C1—N1120.1 (3)C25—C20—C19118.8 (3)
C6—C1—N1119.9 (3)C22—C21—C20119.9 (4)
C1—C2—C3118.6 (4)C22—C21—H21120.1
C1—C2—H2120.7C20—C21—H21120.1
C3—C2—H2120.7C21—C22—C23120.5 (5)
C4—C3—C2121.2 (5)C21—C22—H22119.7
C4—C3—H3119.4C23—C22—H22119.7
C2—C3—H3119.4C24—C23—C22119.7 (4)
C5—C4—C3119.3 (4)C24—C23—H23120.2
C5—C4—H4120.4C22—C23—H23120.2
C3—C4—H4120.4C23—C24—C25120.8 (4)
C4—C5—C6121.2 (4)C23—C24—H24119.6
C4—C5—H5119.4C25—C24—H24119.6
C6—C5—H5119.4C24—C25—C20120.4 (5)
C5—C6—C1119.7 (4)C24—C25—H25119.8
C5—C6—H6120.1C20—C25—H25119.8
C1—C6—H6120.1C31—C26—C27120.3 (3)
N1—C7—C8115.7 (3)C31—C26—N3119.3 (3)
N1—C7—S1109.0 (2)C27—C26—N3120.4 (3)
C8—C7—S1109.9 (2)C28—C27—C26119.8 (4)
N1—C7—H7107.3C28—C27—H27120.1
C8—C7—H7107.3C26—C27—H27120.1
S1—C7—H7107.3C29—C28—C27120.2 (4)
C13—C8—C9119.3 (4)C29—C28—H28119.9
C13—C8—C7118.9 (4)C27—C28—H28119.9
C9—C8—C7121.8 (3)C30—C29—C28120.3 (4)
C8—C9—C10116.8 (4)C30—C29—H29119.9
C8—C9—H9121.6C28—C29—H29119.9
C10—C9—H9121.6C29—C30—C31120.2 (4)
C11—C10—C9121.2 (5)C29—C30—H30119.9
C11—C10—H10119.4C31—C30—H30119.9
C9—C10—H10119.4C26—C31—C30119.3 (4)
C10—C11—C12121.8 (5)C26—C31—H31120.4
C10—C11—H11119.1C30—C31—H31120.4
C12—C11—H11119.1O3—C32—N3120.0 (3)
C11—C12—C13120.0 (5)O3—C32—C33120.1 (3)
C11—C12—H12120.0N3—C32—C33119.7 (3)
C13—C12—H12120.0N4—C33—C34112.9 (3)
C8—C13—C12120.8 (5)N4—C33—C32109.4 (3)
C8—C13—H13119.6C34—C33—C32116.3 (3)
C12—C13—H13119.6N4—C33—H33105.8
O1—C14—N1123.4 (3)C34—C33—H33105.8
O1—C14—C15122.1 (3)C32—C33—H33105.8
N1—C14—C15114.5 (3)C33—C34—S2108.6 (3)
N2—C15—C14110.3 (3)C33—C34—H34A110.0
N2—C15—C16111.1 (3)S2—C34—H34A110.0
C14—C15—C16109.9 (3)C33—C34—H34B110.0
N2—C15—H15108.5S2—C34—H34B110.0
C14—C15—H15108.5H34A—C34—H34B108.3
C16—C15—H15108.5O4—C35—N4121.3 (4)
C15—C16—S1112.7 (2)O4—C35—C36121.8 (5)
C15—C16—H16A109.1N4—C35—C36116.8 (5)
S1—C16—H16A109.1C14—N1—C1120.3 (3)
C15—C16—H16B109.1C14—N1—C7117.3 (3)
S1—C16—H16B109.1C1—N1—C7122.4 (3)
H16A—C16—H16B107.8C17—N2—C15122.7 (3)
O2—C17—N2119.3 (3)C17—N2—H2N126 (4)
O2—C17—C18123.2 (3)C15—N2—H2N111 (4)
N2—C17—C18117.5 (4)C32—N3—C26118.4 (3)
N3—C19—C20114.2 (3)C32—N3—C19128.0 (3)
N3—C19—S2112.6 (2)C26—N3—C19113.5 (2)
C20—C19—S2111.1 (2)C35—N4—C33122.7 (3)
N3—C19—H19106.1C35—N4—H4N135 (2)
C20—C19—H19106.1C33—N4—H4N102 (2)
S2—C19—H19106.1C16—S1—C797.23 (17)
C21—C20—C25118.6 (3)C34—S2—C1995.94 (15)
C6—C1—C2—C32.1 (5)C29—C30—C31—C260.5 (7)
N1—C1—C2—C3178.6 (3)O3—C32—C33—N436.7 (4)
C1—C2—C3—C42.6 (7)N3—C32—C33—N4147.8 (3)
C2—C3—C4—C51.7 (7)O3—C32—C33—C34166.0 (3)
C3—C4—C5—C60.2 (7)N3—C32—C33—C3418.5 (4)
C4—C5—C6—C10.2 (6)N4—C33—C34—S2177.7 (2)
C2—C1—C6—C50.8 (5)C32—C33—C34—S254.8 (3)
N1—C1—C6—C5179.9 (3)O1—C14—N1—C11.1 (5)
N1—C7—C8—C13106.9 (4)C15—C14—N1—C1177.6 (3)
S1—C7—C8—C13129.2 (3)O1—C14—N1—C7179.9 (3)
N1—C7—C8—C974.5 (4)C15—C14—N1—C71.3 (4)
S1—C7—C8—C949.4 (4)C2—C1—N1—C1462.4 (4)
C13—C8—C9—C102.3 (6)C6—C1—N1—C14118.4 (4)
C7—C8—C9—C10179.1 (3)C2—C1—N1—C7116.5 (4)
C8—C9—C10—C110.7 (7)C6—C1—N1—C762.7 (4)
C9—C10—C11—C120.2 (8)C8—C7—N1—C14174.3 (3)
C10—C11—C12—C131.3 (9)S1—C7—N1—C1461.3 (3)
C9—C8—C13—C123.5 (6)C8—C7—N1—C16.7 (4)
C7—C8—C13—C12177.9 (4)S1—C7—N1—C1117.7 (3)
C11—C12—C13—C83.0 (8)O2—C17—N2—C152.4 (6)
O1—C14—C15—N26.0 (5)C18—C17—N2—C15177.4 (3)
N1—C14—C15—N2175.3 (3)C14—C15—N2—C17152.0 (3)
O1—C14—C15—C16116.8 (4)C16—C15—N2—C1785.9 (4)
N1—C14—C15—C1661.9 (4)O3—C32—N3—C264.8 (5)
N2—C15—C16—S1179.1 (3)C33—C32—N3—C26179.7 (3)
C14—C15—C16—S156.7 (4)O3—C32—N3—C19177.3 (3)
N3—C19—C20—C2134.8 (4)C33—C32—N3—C191.8 (5)
S2—C19—C20—C2193.9 (3)C31—C26—N3—C32117.9 (4)
N3—C19—C20—C25147.0 (3)C27—C26—N3—C3264.9 (4)
S2—C19—C20—C2584.3 (3)C31—C26—N3—C1963.9 (4)
C25—C20—C21—C222.0 (5)C27—C26—N3—C19113.2 (3)
C19—C20—C21—C22176.3 (3)C20—C19—N3—C32104.5 (4)
C20—C21—C22—C230.0 (6)S2—C19—N3—C3223.5 (4)
C21—C22—C23—C242.2 (7)C20—C19—N3—C2673.5 (3)
C22—C23—C24—C252.4 (8)S2—C19—N3—C26158.6 (2)
C23—C24—C25—C200.4 (7)O4—C35—N4—C331.1 (6)
C21—C20—C25—C241.8 (6)C36—C35—N4—C33177.4 (4)
C19—C20—C25—C24176.5 (4)C34—C33—N4—C3574.5 (4)
C31—C26—C27—C281.9 (6)C32—C33—N4—C3556.6 (4)
N3—C26—C27—C28179.0 (3)C15—C16—S1—C71.7 (4)
C26—C27—C28—C291.3 (6)N1—C7—S1—C1653.5 (3)
C27—C28—C29—C300.2 (7)C8—C7—S1—C16178.7 (3)
C28—C29—C30—C311.1 (7)C33—C34—S2—C1965.8 (2)
C27—C26—C31—C301.0 (6)N3—C19—S2—C3450.5 (3)
N3—C26—C31—C30178.1 (4)C20—C19—S2—C3479.1 (2)
Symmetry code: (i) y, x, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O10.88 (6)2.22 (5)2.678 (4)113 (5)
N4—H4N···O20.90 (4)2.03 (4)2.899 (5)162 (4)
C7—H7···O30.982.503.241 (4)132
C21—H21···O40.932.483.375 (5)162
 

Acknowledgements

We acknowledge NSF funding (CHEM-0131112) for the X-ray diffractometer. We also express gratitude to Euticals for the gift of T3P in 2-methyl­tetra­hydro­furan, and to Oakwood Products for the gift of N-acetyl-L-cysteine.

References

First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPotts, K. T., Baum, J., Houghton, E., Roy, D. N. & Singh, U. P. (1974). J. Org. Chem. 39, 3619–3627.  CrossRef CAS Web of Science Google Scholar
First citationRaasch, M. S. (1974). J. Heterocycl. Chem. 11, 587–593.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYennawar, H. P., Bendinsky, R. V., Coyle, D. J., Cali, A. S. & Silverberg, L. J. (2014). Acta Cryst. E70, o465.  CSD CrossRef IUCr Journals Google Scholar
First citationYennawar, H. P. & Silverberg, L. J. (2014). Acta Cryst. E70, o133.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds