organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of [(2R,3R,4S)-3,4-bis­(acet­yl­oxy)-5-iodo-3,4-di­hydro-2H-pyran-2-yl]methyl acetate

aDepartmento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, bDepartmento de Física, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, cDepartamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo-SP, Brazil, dInstituto de Química, Universidade de São Paulo, São Paulo-SP, Brazil, and eDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: julio@power.ufscar.br

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 21 November 2014; accepted 24 November 2014; online 1 January 2015)

In the title compound, C12H15IO7, the 3,4-di­hydro-2H-pyran ring is in a distorted half-boat conformation with the atom bearing the acet­yloxy group adjacent to the C atom bearing the methyl­acetate group lying 0.633 (6) Å above the plane of the remaining ring atoms (r.m.s. deviation = 0.0907 Å). In the crystal, mol­ecules are linked into a supra­molecular chain along the a axis through two C—H⋯O inter­actions to the same acceptor carbonyl O atom; these chains pack with no specific inter­molecular inter­actions between them.

1. Related literature

For the structure of the unsubstituted parent compound, determined three times, and having a distorted half-boat conformation, see: Vangehr et al. (1979[Vangehr, K., Luger, P. & Paulsen, H. (1979). Carbohydr. Res. 70, 1-11.]); Krajewski et al. (1979[Krajewski, J. W., Urbańczyk-Lipkowska, Z., Gluziński, P., Bleidelis, J. & Kemme, A. (1979). Acta Cryst. B35, 1248-1250.]); Voelter et al. (1981[Voelter, W., Fuchs, W., Stezowski, J. J. & Schott-Kollat, P. (1981). Angew. Chem. Int. Ed. Engl. 20, 1042-1043.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C12H15IO7

  • Mr = 398.14

  • Orthorhombic, P 21 21 21

  • a = 7.9048 (2) Å

  • b = 8.7521 (2) Å

  • c = 22.7094 (5) Å

  • V = 1571.12 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.06 mm−1

  • T = 293 K

  • 0.35 × 0.24 × 0.11 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.601, Tmax = 0.745

  • 6116 measured reflections

  • 2818 independent reflections

  • 2456 reflections with I > 2σ(I)

  • Rint = 0.019

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.071

  • S = 1.04

  • 2818 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.58 e Å−3

  • Absolute structure: Flack x determined using 925 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: 0.000 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O6i 0.93 2.58 3.448 (7) 156
C3—H3⋯O6ii 0.98 2.55 3.383 (6) 143
Symmetry codes: (i) x-1, y, z; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR (Burla et al., 2014[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2014). In preparation.]; program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: MarvinSketch (ChemAxon, 2010[ChemAxon (2010). Marvinsketch. http://www.chemaxon.com.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Experimental top

Synthesis and crystallization top

To a solution of 3,4,6-tri-oxo­acetyl-D-Glucal (3 mmol) in aceto­nitrile (9 mL) at 373 K under a N2 atmosphere was added N-iodo­succinimide (3.6 mmol) and silver nitrate (0.6 mmol) as catalyst followed by stirring for 4 h. After consumption of the starting material (TLC monitoring), the reaction mixture was filtered through a sintered funnel (using Celite) and the filtrate was then evaporated giving a crude product which was purified by silica gel column chromatography (20-30% of EtOAc/hexane) to obtain the title compound. Suitable crystals were obtained by keeping the EtOAc solution of the product at 277 K for 48 h.

1H NMR (CDCl3, 300 MHz): δ 6.73 (s, 1H), 5.44 (d, J = 5.1 Hz, 1H), 5.18 (dd, J = 5.1, 7.0 Hz, 1>H), 4.37-4.30 (m, 2H), 4.08-4.18 (m, 1H), 2.09 (s, 3H), 2.05 (s, 3H), 2.04 (s, 3H). 13C NMR (CDCl3, 75 MHz) δ = 170.5, 170.3, 169.4, 149.4, 74.0, 70.6, 67.6, 66.3, 61.0, 20.9, 20.8, 20.7 ppm. HRMS: calcd. for C12H15IO7 [M + H]+ 397.9862; found: 397.9863.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93 to 0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2–1.5Ueq(C).

Results and discussion top

The 3,4-di­hydro-2H-pyran ring in the title compound, Fig. 1, is in a distorted half-boat conformation as reflected in the conformational parameters: the puckering amplitude (Q) = 0.497 (5) Å, θ = 52.6 (6)° and φ = 268.6 (7)°. In this conformation, the C4 atom lies 0.633 (6) Å above the plane of the remaining ring atoms which have a r.m.s. of 0.0907 Å. The substituents at the C3 and C4 sites occupy equatorial positions while that at atom C5 is bis­ectional. The crystal structure of the unsubstituted parent compound has been reported three times and also adopts a distorted half-boat conformation (Vangehr et al., 1979; Krajewski et al., 1979; Voelter et al., 1981).

In the crystal , the molecules are linked via two independent C—H···O inter­actions, Table 1, involving the same carbonyl-O6 atom as acceptor. The resulting supra­molecular architecture is a chain parallel to the a axis, Fig. 2. These chains pack with no specific inter­molecular inter­actions between them, Fig. 3.

Related literature top

For the structure of the unsubstituted parent compound, determined three times, and having a distorted half-boat conformation, see: Vangehr et al. (1979); Krajewski et al. (1979); Voelter et al. (1981).

Structure description top

The 3,4-di­hydro-2H-pyran ring in the title compound, Fig. 1, is in a distorted half-boat conformation as reflected in the conformational parameters: the puckering amplitude (Q) = 0.497 (5) Å, θ = 52.6 (6)° and φ = 268.6 (7)°. In this conformation, the C4 atom lies 0.633 (6) Å above the plane of the remaining ring atoms which have a r.m.s. of 0.0907 Å. The substituents at the C3 and C4 sites occupy equatorial positions while that at atom C5 is bis­ectional. The crystal structure of the unsubstituted parent compound has been reported three times and also adopts a distorted half-boat conformation (Vangehr et al., 1979; Krajewski et al., 1979; Voelter et al., 1981).

In the crystal , the molecules are linked via two independent C—H···O inter­actions, Table 1, involving the same carbonyl-O6 atom as acceptor. The resulting supra­molecular architecture is a chain parallel to the a axis, Fig. 2. These chains pack with no specific inter­molecular inter­actions between them, Fig. 3.

For the structure of the unsubstituted parent compound, determined three times, and having a distorted half-boat conformation, see: Vangehr et al. (1979); Krajewski et al. (1979); Voelter et al. (1981).

Synthesis and crystallization top

To a solution of 3,4,6-tri-oxo­acetyl-D-Glucal (3 mmol) in aceto­nitrile (9 mL) at 373 K under a N2 atmosphere was added N-iodo­succinimide (3.6 mmol) and silver nitrate (0.6 mmol) as catalyst followed by stirring for 4 h. After consumption of the starting material (TLC monitoring), the reaction mixture was filtered through a sintered funnel (using Celite) and the filtrate was then evaporated giving a crude product which was purified by silica gel column chromatography (20-30% of EtOAc/hexane) to obtain the title compound. Suitable crystals were obtained by keeping the EtOAc solution of the product at 277 K for 48 h.

1H NMR (CDCl3, 300 MHz): δ 6.73 (s, 1H), 5.44 (d, J = 5.1 Hz, 1H), 5.18 (dd, J = 5.1, 7.0 Hz, 1>H), 4.37-4.30 (m, 2H), 4.08-4.18 (m, 1H), 2.09 (s, 3H), 2.05 (s, 3H), 2.04 (s, 3H). 13C NMR (CDCl3, 75 MHz) δ = 170.5, 170.3, 169.4, 149.4, 74.0, 70.6, 67.6, 66.3, 61.0, 20.9, 20.8, 20.7 ppm. HRMS: calcd. for C12H15IO7 [M + H]+ 397.9862; found: 397.9863.

Refinement details top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93 to 0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SIR (Burla et al., 2014; program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: MarvinSketch (ChemAxon, 2010) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. A view of the supramolecular chain along the a axis mediated by C—H···O interactions (orange dashed lines).
[Figure 3] Fig. 3. A view in projection down the a axis of the unit-cell contents. The C—H···O interactions are shown as orange dashed lines.
[(2R,3R,4S)-3,4-Bis(acetyloxy)-5-iodo-3,4-dihydro-2H-pyran-2-yl]methyl acetate top
Crystal data top
C12H15IO7Dx = 1.683 Mg m3
Mr = 398.14Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 3256 reflections
a = 7.9048 (2) Åθ = 2.7–25.1°
b = 8.7521 (2) ŵ = 2.06 mm1
c = 22.7094 (5) ÅT = 293 K
V = 1571.12 (6) Å3Irregular, colourless
Z = 40.35 × 0.24 × 0.11 mm
F(000) = 784
Data collection top
Bruker APEXII CCD
diffractometer
2456 reflections with I > 2σ(I)
φ and ω scansRint = 0.019
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 25.4°, θmin = 1.8°
Tmin = 0.601, Tmax = 0.745h = 95
6116 measured reflectionsk = 710
2818 independent reflectionsl = 2727
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0299P)2 + 0.3563P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2818 reflectionsΔρmax = 0.28 e Å3
184 parametersΔρmin = 0.58 e Å3
0 restraintsAbsolute structure: Flack x determined using 925 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.000 (11)
Crystal data top
C12H15IO7V = 1571.12 (6) Å3
Mr = 398.14Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.9048 (2) ŵ = 2.06 mm1
b = 8.7521 (2) ÅT = 293 K
c = 22.7094 (5) Å0.35 × 0.24 × 0.11 mm
Data collection top
Bruker APEXII CCD
diffractometer
2818 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2456 reflections with I > 2σ(I)
Tmin = 0.601, Tmax = 0.745Rint = 0.019
6116 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.071Δρmax = 0.28 e Å3
S = 1.04Δρmin = 0.58 e Å3
2818 reflectionsAbsolute structure: Flack x determined using 925 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
184 parametersAbsolute structure parameter: 0.000 (11)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I0.55529 (6)0.37319 (5)0.49032 (2)0.1044 (2)
O10.5090 (4)0.9803 (5)0.31664 (17)0.0798 (10)
O20.7080 (7)1.1290 (7)0.2782 (3)0.141 (2)
O30.8630 (3)0.8456 (4)0.37365 (13)0.0609 (8)
O40.8637 (5)0.7615 (5)0.28034 (15)0.0839 (11)
O50.8078 (4)0.5163 (4)0.38956 (12)0.0603 (8)
O61.0344 (5)0.4998 (6)0.44747 (19)0.1042 (14)
O70.4218 (4)0.8098 (5)0.41934 (15)0.0749 (9)
C10.5672 (6)0.5851 (6)0.44833 (17)0.0637 (11)
C20.4291 (6)0.6670 (7)0.44323 (19)0.0728 (14)
H20.32870.62460.45690.087*
C30.5830 (5)0.8834 (6)0.41154 (19)0.0653 (12)
H30.62640.91360.45020.078*
C40.7049 (5)0.7701 (5)0.38426 (17)0.0514 (10)
H40.65850.73340.34680.062*
C50.7335 (5)0.6361 (6)0.42476 (16)0.0576 (10)
H50.80950.66470.45700.069*
C60.5543 (7)1.0241 (6)0.3756 (3)0.0825 (14)
H6A0.46431.08460.39290.099*
H6B0.65641.08550.37490.099*
C70.5931 (7)1.0403 (7)0.2711 (3)0.0887 (18)
C80.5349 (9)0.9756 (11)0.2140 (3)0.121 (3)
H8A0.54970.86670.21430.181*
H8B0.60001.01900.18240.181*
H8C0.41740.99930.20830.181*
C90.9308 (6)0.8302 (5)0.3190 (2)0.0607 (11)
C101.0949 (6)0.9124 (7)0.3156 (3)0.0869 (16)
H10A1.07991.00660.29460.130*
H10B1.17620.85000.29540.130*
H10C1.13480.93380.35470.130*
C110.9611 (6)0.4617 (6)0.4043 (2)0.0653 (11)
C121.0198 (7)0.3483 (8)0.3605 (3)0.0952 (19)
H12A1.11300.29150.37660.143*
H12B1.05560.40020.32540.143*
H12C0.92900.27960.35120.143*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I0.1334 (4)0.0973 (3)0.0825 (3)0.0195 (3)0.0270 (2)0.0107 (2)
O10.0605 (18)0.092 (3)0.087 (2)0.0091 (16)0.0051 (16)0.015 (2)
O20.126 (4)0.127 (4)0.169 (5)0.048 (4)0.012 (3)0.045 (4)
O30.0480 (14)0.074 (2)0.0606 (16)0.0122 (14)0.0004 (12)0.0116 (16)
O40.080 (2)0.114 (3)0.058 (2)0.022 (2)0.0163 (18)0.013 (2)
O50.0586 (16)0.076 (2)0.0461 (15)0.0052 (15)0.0067 (13)0.0102 (15)
O60.075 (2)0.146 (4)0.092 (3)0.021 (3)0.030 (2)0.026 (3)
O70.0491 (16)0.105 (3)0.0702 (19)0.0004 (17)0.0113 (15)0.0053 (19)
C10.069 (3)0.081 (3)0.0416 (19)0.010 (3)0.0058 (19)0.006 (2)
C20.066 (3)0.102 (4)0.050 (2)0.018 (3)0.017 (2)0.014 (3)
C30.056 (2)0.085 (3)0.055 (2)0.006 (3)0.0020 (18)0.020 (3)
C40.0427 (19)0.069 (3)0.042 (2)0.0070 (19)0.0024 (17)0.011 (2)
C50.059 (2)0.077 (3)0.0368 (18)0.011 (2)0.0018 (16)0.011 (2)
C60.068 (3)0.073 (3)0.107 (4)0.001 (3)0.008 (3)0.011 (3)
C70.063 (3)0.086 (4)0.118 (5)0.007 (3)0.004 (3)0.041 (4)
C80.102 (4)0.174 (8)0.086 (4)0.001 (5)0.008 (4)0.057 (5)
C90.052 (2)0.065 (3)0.065 (3)0.002 (2)0.010 (2)0.002 (2)
C100.059 (3)0.092 (4)0.109 (4)0.010 (3)0.017 (3)0.007 (3)
C110.058 (2)0.084 (3)0.055 (2)0.001 (3)0.003 (2)0.005 (2)
C120.086 (4)0.116 (5)0.084 (4)0.023 (4)0.010 (3)0.013 (4)
Geometric parameters (Å, º) top
I—C12.087 (5)C4—C51.507 (6)
O1—C71.336 (7)C4—H40.9800
O1—C61.438 (7)C5—H50.9800
O2—C71.205 (8)C6—H6A0.9700
O3—C91.359 (5)C6—H6B0.9700
O3—C41.434 (5)C7—C81.490 (10)
O4—C91.188 (6)C8—H8A0.9600
O5—C111.345 (6)C8—H8B0.9600
O5—C51.444 (5)C8—H8C0.9600
O6—C111.186 (6)C9—C101.486 (7)
O7—C21.364 (7)C10—H10A0.9600
O7—C31.439 (5)C10—H10B0.9600
C1—C21.311 (7)C10—H10C0.9600
C1—C51.488 (6)C11—C121.479 (7)
C2—H20.9300C12—H12A0.9600
C3—C61.495 (8)C12—H12B0.9600
C3—C41.515 (6)C12—H12C0.9600
C3—H30.9800
C7—O1—C6119.4 (5)O1—C6—H6B109.9
C9—O3—C4116.8 (3)C3—C6—H6B109.9
C11—O5—C5119.1 (3)H6A—C6—H6B108.3
C2—O7—C3114.9 (4)O2—C7—O1121.7 (7)
C2—C1—C5122.6 (5)O2—C7—C8126.4 (6)
C2—C1—I119.3 (4)O1—C7—C8111.8 (5)
C5—C1—I118.1 (4)C7—C8—H8A109.5
C1—C2—O7124.9 (4)C7—C8—H8B109.5
C1—C2—H2117.6H8A—C8—H8B109.5
O7—C2—H2117.6C7—C8—H8C109.5
O7—C3—C6107.6 (4)H8A—C8—H8C109.5
O7—C3—C4108.7 (4)H8B—C8—H8C109.5
C6—C3—C4114.3 (4)O4—C9—O3123.3 (4)
O7—C3—H3108.7O4—C9—C10126.6 (4)
C6—C3—H3108.7O3—C9—C10110.1 (4)
C4—C3—H3108.7C9—C10—H10A109.5
O3—C4—C5109.3 (3)C9—C10—H10B109.5
O3—C4—C3108.7 (3)H10A—C10—H10B109.5
C5—C4—C3110.8 (4)C9—C10—H10C109.5
O3—C4—H4109.3H10A—C10—H10C109.5
C5—C4—H4109.3H10B—C10—H10C109.5
C3—C4—H4109.3O6—C11—O5123.1 (5)
O5—C5—C1109.9 (4)O6—C11—C12126.2 (5)
O5—C5—C4106.8 (3)O5—C11—C12110.7 (4)
C1—C5—C4108.7 (4)C11—C12—H12A109.5
O5—C5—H5110.5C11—C12—H12B109.5
C1—C5—H5110.5H12A—C12—H12B109.5
C4—C5—H5110.5C11—C12—H12C109.5
O1—C6—C3109.1 (4)H12A—C12—H12C109.5
O1—C6—H6A109.9H12B—C12—H12C109.5
C3—C6—H6A109.9
C5—C1—C2—O73.9 (7)C2—C1—C5—C413.0 (6)
I—C1—C2—O7176.7 (3)I—C1—C5—C4166.4 (3)
C3—O7—C2—C113.7 (6)O3—C4—C5—O576.7 (4)
C2—O7—C3—C6170.0 (4)C3—C4—C5—O5163.5 (3)
C2—O7—C3—C445.7 (5)O3—C4—C5—C1164.8 (3)
C9—O3—C4—C5108.8 (4)C3—C4—C5—C145.0 (4)
C9—O3—C4—C3130.1 (4)C7—O1—C6—C3128.3 (5)
O7—C3—C4—O3177.0 (3)O7—C3—C6—O168.9 (5)
C6—C3—C4—O356.8 (5)C4—C3—C6—O151.9 (5)
O7—C3—C4—C562.8 (4)C6—O1—C7—O21.0 (8)
C6—C3—C4—C5177.0 (4)C6—O1—C7—C8177.0 (5)
C11—O5—C5—C1121.9 (4)C4—O3—C9—O41.9 (6)
C11—O5—C5—C4120.4 (4)C4—O3—C9—C10179.0 (4)
C2—C1—C5—O5129.5 (5)C5—O5—C11—O65.3 (7)
I—C1—C5—O549.9 (4)C5—O5—C11—C12175.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O6i0.932.583.448 (7)156
C3—H3···O6ii0.982.553.383 (6)143
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O6i0.932.583.448 (7)156
C3—H3···O6ii0.982.553.383 (6)143
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+3/2, z+1.
 

Acknowledgements

We thank Professor Regina H. A. Santos from IQSC–USP for the X-ray data collection. The Brazilian agencies CNPq (305626/2013–2 to JZS; 306121/2013-2 to IC; 308320/2010-7 to HAS) and FAPESP are acknowledged for financial support.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2014). In preparation.  Google Scholar
First citationChemAxon (2010). Marvinsketch. http://www.chemaxon.com.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKrajewski, J. W., Urbańczyk-Lipkowska, Z., Gluziński, P., Bleidelis, J. & Kemme, A. (1979). Acta Cryst. B35, 1248–1250.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVangehr, K., Luger, P. & Paulsen, H. (1979). Carbohydr. Res. 70, 1–11.  CSD CrossRef CAS Web of Science Google Scholar
First citationVoelter, W., Fuchs, W., Stezowski, J. J. & Schott-Kollat, P. (1981). Angew. Chem. Int. Ed. Engl. 20, 1042–1043.  CSD CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds