Download citation
Download citation
link to html
Aromatic polycarboxyl­ate linkers provide structural rigidity and strong inter­actions among the metal centre and the carboxylate O atoms. A new three-dimensional coordination polymer namely, catena-poly[potassium [tetraaqua­(μ-5-sulfo­benzene-1,3-di­carboxyl­ato)zinc(II)]], {K[Zn(C8H3O7S)(H2O)4]}n or {K[Zn(SIP)(H2O)4]}n, where SIP is 5-sulfo­benzene-1,3-di­carboxyl­ate or 5-sulfo­iso­phthalate, was obtained and characterized by elemental analysis and IR vibrational spectroscopy, and the single-crystal structure was determined by X-ray diffraction analysis. The compound crystallizes in the monoclinic space group P21/n with Z = 4. Topological analysis revealed that K—O inter­actions form a two-dimensional network, which is uninodal 4-connected and can be described with a point symbol (44.62), and this plane network is classified as sql/Shubnikov. The layers are connected by Zn2+ ions coordinated to the SIP linker, forming a three-dimensional network. This net is a trinodal (3,5,6)-connected system with point symbol (3.44.52.62.73.83).(3.44.52.62.7).(3.72).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229618010264/ov3111sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618010264/ov3111Isup2.hkl
Contains datablock I

CCDC reference: 1526885

Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008) and ORTEP 3 For Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012), publCIF (Westrip, 2010) and TOPOSPRO (Blatov et al., 2016).

catena-Poly[potassium [tetraaqua(µ-5-sulfobenzene-1,3-dicarboxylato)zinc(II)]] top
Crystal data top
K[Zn(C8H3O7S)(H2O)4]F(000) = 848
Mr = 419.7Dx = 2.079 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ynCell parameters from 19501 reflections
a = 6.7891 (1) Åθ = 3.7–29.0°
b = 16.7667 (2) ŵ = 2.36 mm1
c = 11.7793 (1) ÅT = 293 K
β = 90.752 (1)°Prismatic, colorless
V = 1340.73 (3) Å30.40 × 0.31 × 0.09 mm
Z = 4
Data collection top
Oxford Diffraction SuperNova Dual Source
diffractometer with an AtlasS2 detector
3640 independent reflections
Radiation source: micro-focus sealed X-ray tube3313 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.044
Detector resolution: 5.2923 pixels mm-1θmax = 29.7°, θmin = 3.2°
ω scansh = 89
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 2223
Tmin = 0.735, Tmax = 1l = 1616
41833 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0313P)2 + 0.8858P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.065(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.39 e Å3
3640 reflectionsΔρmin = 0.53 e Å3
210 parameters
Special details top

Experimental. #__ type_ start__ end____ width___ exp.time_ 1 omega -76.00 100.00 1.0000 3.0000 omega____ theta____ kappa____ phi______ frames - 11.79 0.0000 0.0000 176

#__ type_ start__ end____ width___ exp.time_ 2 omega -20.00 53.00 1.0000 3.0000 omega____ theta____ kappa____ phi______ frames - 11.79 -99.0000 60.0000 73

#__ type_ start__ end____ width___ exp.time_ 3 omega -20.00 29.00 1.0000 3.0000 omega____ theta____ kappa____ phi______ frames - -12.03 -99.0000 90.0000 49

#__ type_ start__ end____ width___ exp.time_ 4 omega -85.00 16.00 1.0000 3.0000 omega____ theta____ kappa____ phi______ frames - -12.03 -57.0000 159.0000 101

#__ type_ start__ end____ width___ exp.time_ 5 omega -40.00 61.00 1.0000 3.0000 omega____ theta____ kappa____ phi______ frames - -12.03 57.0000 -60.0000 101

#__ type_ start__ end____ width___ exp.time_ 6 omega -62.00 36.00 1.0000 3.0000 omega____ theta____ kappa____ phi______ frames - 11.79 -38.0000 -180.0000 98

#__ type_ start__ end____ width___ exp.time_ 7 omega -20.00 53.00 1.0000 3.0000 omega____ theta____ kappa____ phi______ frames - 11.79 -99.0000 -180.0000 73

#__ type_ start__ end____ width___ exp.time_ 8 omega -20.00 29.00 1.0000 3.0000 omega____ theta____ kappa____ phi______ frames - -12.03 -99.0000 -60.0000 49

#__ type_ start__ end____ width___ exp.time_ 9 omega -20.00 29.00 1.0000 3.0000 omega____ theta____ kappa____ phi______ frames - -12.03 -99.0000 30.0000 49

#__ type_ start__ end____ width___ exp.time_ 10 omega -20.00 29.00 1.0000 3.0000 omega____ theta____ kappa____ phi______ frames - -12.03 -99.0000 0.0000 49

#__ type_ start__ end____ width___ exp.time_ 11 omega -20.00 53.00 1.0000 3.0000 omega____ theta____ kappa____ phi______ frames - 11.79 -99.0000 -120.0000 73

#__ type_ start__ end____ width___ exp.time_ 12 omega -20.00 53.00 1.0000 3.0000 omega____ theta____ kappa____ phi______ frames - 11.79 -99.0000 120.0000 73

#__ type_ start__ end____ width___ exp.time_ 13 omega -45.00 64.00 1.0000 3.0000 omega____ theta____ kappa____ phi______ frames - -12.03 77.0000 -120.0000 109

#__ type_ start__ end____ width___ exp.time_ 14 omega -88.00 -40.00 1.0000 3.0000 omega____ theta____ kappa____ phi______ frames - -12.03 -77.0000 -30.0000 48

#__ type_ start__ end____ width___ exp.time_ 15 omega -20.00 29.00 1.0000 3.0000 omega____ theta____ kappa____ phi______ frames - -12.03 -99.0000 -90.0000 49

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement.

_reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.32214 (3)0.24186 (2)0.25221 (2)0.02170 (7)
K0.64311 (6)0.06941 (3)0.36694 (4)0.03651 (11)
S10.17932 (6)0.00347 (2)0.34264 (3)0.01782 (9)
O10.02690 (19)0.02261 (8)0.36164 (11)0.0294 (3)
O20.23130 (18)0.07663 (7)0.37944 (10)0.0229 (2)
O30.3137 (2)0.06239 (8)0.38961 (11)0.0331 (3)
O40.3177 (2)0.14336 (7)0.14800 (10)0.0260 (3)
O50.3302 (2)0.20402 (7)0.02076 (11)0.0315 (3)
O60.20630 (19)0.15456 (7)0.15212 (10)0.0247 (3)
O70.1604 (2)0.21618 (8)0.01355 (11)0.0354 (3)
O80.2021 (3)0.17067 (10)0.37636 (12)0.0603 (6)
H8B0.1599770.1317350.3728710.090*
H8A0.2237460.1851960.4365600.090*
O90.6146 (2)0.21894 (8)0.31278 (11)0.0299 (3)
H9B0.6485860.2446280.3617430.045*
H9A0.6282310.1733980.3311050.045*
O100.41855 (19)0.31583 (7)0.12098 (10)0.0254 (3)
H10B0.5179630.3383940.1205870.038*
H10A0.4135730.2878240.0654900.038*
O110.02081 (19)0.27368 (8)0.19839 (12)0.0306 (3)
H11A0.0274080.2482460.1439780.046*
H11B0.0336530.2696860.2486810.046*
C10.2708 (2)0.06554 (9)0.01814 (13)0.0173 (3)
C20.2506 (2)0.00558 (9)0.04116 (13)0.0183 (3)
H20.2610250.0056550.1199650.022*
C30.2149 (2)0.07678 (9)0.01654 (13)0.0179 (3)
C40.1975 (2)0.07603 (9)0.13446 (13)0.0190 (3)
H40.1735540.1232450.1737000.023*
C50.2160 (2)0.00484 (9)0.19337 (13)0.0171 (3)
C60.2538 (2)0.06559 (9)0.13614 (13)0.0187 (3)
H60.2678320.1129470.1763400.022*
C70.3089 (2)0.14364 (9)0.04129 (14)0.0202 (3)
C80.1920 (2)0.15534 (10)0.04498 (14)0.0201 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.03106 (12)0.01702 (11)0.01700 (11)0.00144 (7)0.00039 (8)0.00263 (7)
K0.0276 (2)0.0373 (2)0.0447 (3)0.00300 (17)0.00112 (18)0.00491 (18)
S10.0253 (2)0.01469 (18)0.01347 (17)0.00044 (14)0.00119 (14)0.00050 (13)
O10.0321 (7)0.0289 (7)0.0270 (6)0.0093 (5)0.0088 (5)0.0037 (5)
O20.0285 (6)0.0201 (6)0.0201 (6)0.0016 (5)0.0003 (5)0.0057 (4)
O30.0510 (9)0.0283 (7)0.0201 (6)0.0166 (6)0.0022 (6)0.0029 (5)
O40.0410 (7)0.0199 (6)0.0171 (6)0.0006 (5)0.0016 (5)0.0046 (4)
O50.0540 (9)0.0165 (6)0.0235 (6)0.0053 (6)0.0097 (6)0.0009 (5)
O60.0370 (7)0.0200 (6)0.0171 (6)0.0005 (5)0.0016 (5)0.0060 (4)
O70.0620 (10)0.0181 (6)0.0258 (7)0.0075 (6)0.0141 (6)0.0043 (5)
O80.1187 (17)0.0398 (9)0.0226 (7)0.0450 (10)0.0058 (8)0.0034 (6)
O90.0416 (8)0.0229 (6)0.0251 (6)0.0070 (6)0.0074 (5)0.0057 (5)
O100.0327 (7)0.0222 (6)0.0213 (6)0.0063 (5)0.0029 (5)0.0049 (5)
O110.0275 (7)0.0318 (7)0.0324 (7)0.0026 (5)0.0036 (5)0.0051 (5)
C10.0191 (7)0.0157 (7)0.0170 (7)0.0000 (6)0.0013 (6)0.0020 (5)
C20.0202 (7)0.0201 (7)0.0146 (7)0.0014 (6)0.0016 (5)0.0005 (6)
C30.0194 (7)0.0174 (7)0.0170 (7)0.0004 (6)0.0002 (6)0.0028 (6)
C40.0239 (8)0.0148 (7)0.0182 (7)0.0016 (6)0.0008 (6)0.0004 (5)
C50.0209 (7)0.0170 (7)0.0133 (7)0.0006 (6)0.0003 (5)0.0002 (5)
C60.0240 (8)0.0145 (7)0.0176 (7)0.0005 (6)0.0006 (6)0.0014 (5)
C70.0218 (8)0.0182 (7)0.0204 (8)0.0018 (6)0.0030 (6)0.0033 (6)
C80.0211 (8)0.0186 (7)0.0203 (7)0.0008 (6)0.0021 (6)0.0040 (6)
Geometric parameters (Å, º) top
Zn—O42.0578 (12)O6—C81.2646 (19)
Zn—O82.0637 (15)O7—C81.248 (2)
Zn—O6i2.0806 (11)C1—C21.390 (2)
Zn—O102.0935 (12)C1—C61.393 (2)
Zn—O92.1360 (13)C1—C71.506 (2)
Zn—O112.1994 (13)C2—C31.393 (2)
Zn—Kii3.6627 (5)C3—C41.392 (2)
K—O10iii2.6882 (13)C3—C81.513 (2)
K—O1iv2.7202 (14)C4—C51.387 (2)
K—O22.8004 (13)C5—C61.382 (2)
K—O11iii2.8671 (14)O8—H8A0.7600
K—O3v2.8889 (13)O8—H8B0.7100
K—O6vi3.0689 (13)O9—H9A0.8000
K—O33.1527 (16)O9—H9B0.7500
K—S13.3931 (6)O10—H10B0.7700
K—Kv4.3428 (9)O10—H10A0.8100
S1—O11.4509 (13)O11—H11B0.7100
S1—O21.4561 (12)O11—H11A0.8300
S1—O31.4589 (13)C2—H20.9300
S1—C51.7726 (15)C4—H40.9300
O4—C71.258 (2)C6—H60.9300
O5—C71.258 (2)
O4—Zn—O887.46 (5)S1—K—Kv57.383 (12)
O4—Zn—O6i172.87 (5)Zniii—K—Kv151.97 (2)
O8—Zn—O6i93.37 (6)O1—S1—O2113.28 (7)
O4—Zn—O1092.14 (5)O1—S1—O3113.51 (9)
O8—Zn—O10174.95 (7)O2—S1—O3110.88 (8)
O6i—Zn—O1086.42 (5)O1—S1—C5105.83 (7)
O4—Zn—O993.51 (5)O2—S1—C5106.02 (7)
O8—Zn—O991.90 (7)O3—S1—C5106.68 (7)
O6i—Zn—O993.54 (5)O1—S1—K164.01 (5)
O10—Zn—O993.15 (5)O2—S1—K54.12 (5)
O4—Zn—O1190.94 (5)O3—S1—K68.04 (6)
O8—Zn—O1188.29 (7)C5—S1—K88.28 (5)
O6i—Zn—O1182.01 (5)S1—O1—Kvii132.13 (8)
O10—Zn—O1186.68 (5)S1—O2—K100.96 (6)
O9—Zn—O11175.55 (5)S1—O3—Kv118.43 (7)
O4—Zn—Kii117.56 (4)S1—O3—K86.54 (6)
O8—Zn—Kii129.73 (6)Kv—O3—K91.81 (4)
O6i—Zn—Kii56.89 (3)C7—O4—Zn126.39 (11)
O10—Zn—Kii46.42 (4)C8—O6—Znviii121.69 (11)
O9—Zn—Kii125.86 (4)C8—O6—Kvi148.01 (10)
O11—Zn—Kii51.49 (4)Znviii—O6—Kvi88.51 (4)
O10iii—K—O1iv80.44 (4)Zn—O10—Kii99.23 (5)
O10iii—K—O2131.37 (4)Zn—O11—Kii91.63 (4)
O1iv—K—O2147.90 (4)C2—C1—C6119.64 (14)
O10iii—K—O11iii63.99 (4)C2—C1—C7122.01 (14)
O1iv—K—O11iii139.08 (4)C6—C1—C7118.35 (14)
O2—K—O11iii71.46 (4)C1—C2—C3120.51 (14)
O10iii—K—O3v84.08 (4)C4—C3—C2119.39 (14)
O1iv—K—O3v84.58 (4)C4—C3—C8118.55 (14)
O2—K—O3v93.65 (4)C2—C3—C8122.06 (14)
O11iii—K—O3v109.71 (4)C5—C4—C3119.99 (14)
O10iii—K—O6vi59.09 (3)C6—C5—C4120.57 (14)
O1iv—K—O6vi88.83 (4)C6—C5—S1119.69 (12)
O2—K—O6vi110.17 (4)C4—C5—S1119.67 (12)
O11iii—K—O6vi56.38 (4)C5—C6—C1119.90 (14)
O3v—K—O6vi143.17 (4)O4—C7—O5125.41 (15)
O10iii—K—O3172.03 (4)O4—C7—C1117.84 (14)
O1iv—K—O3100.80 (4)O5—C7—C1116.75 (14)
O2—K—O347.11 (3)O7—C8—O6124.76 (15)
O11iii—K—O3117.28 (4)O7—C8—C3117.72 (14)
O3v—K—O388.19 (4)O6—C8—C3117.52 (14)
O6vi—K—O3128.62 (4)Zn—O8—H8A114.00
O10iii—K—S1155.39 (3)Zn—O8—H8B131.00
O1iv—K—S1123.97 (3)H8A—O8—H8B115.00
O2—K—S124.92 (2)Zn—O9—H9B115.00
O11iii—K—S192.03 (3)H9A—O9—H9B108.00
O3v—K—S1100.10 (3)Zn—O9—H9A111.00
O6vi—K—S1113.42 (3)Zn—O10—H10A104.00
O3—K—S125.42 (2)Zn—O10—H10B125.00
O10iii—K—Zniii34.34 (3)K—O10—H10A116.00
O1iv—K—Zniii102.25 (3)K—O10—H10B105.00
O2—K—Zniii107.99 (3)H10A—O10—H10B108.00
O11iii—K—Zniii36.89 (3)K—O11—H11B118.00
O3v—K—Zniii112.22 (3)H11A—O11—H11B113.00
O6vi—K—Zniii34.60 (2)K—O11—H11A112.00
O3—K—Zniii150.40 (3)Zn—O11—H11A117.00
S1—K—Zniii125.621 (15)Zn—O11—H11B103.00
O10iii—K—Kv130.57 (3)C1—C2—H2120.00
O1iv—K—Kv94.20 (3)C3—C2—H2120.00
O2—K—Kv63.14 (3)C3—C4—H4120.00
O11iii—K—Kv123.86 (3)C5—C4—H4120.00
O3v—K—Kv46.52 (3)C1—C6—H6120.00
O6vi—K—Kv170.24 (3)C5—C6—H6120.00
O3—K—Kv41.67 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z1/2; (iv) x+1, y, z; (v) x+1, y, z1; (vi) x+1, y, z; (vii) x1, y, z; (viii) x+1/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8A···O7i0.762.042.653 (2)138
O8—H8B···O1ix0.712.052.759 (2)177
O9—H9A···O3vi0.802.022.8166 (19)174
O9—H9B···O5x0.752.032.7536 (18)160
O10—H10A···O50.811.822.5757 (17)156
O10—H10B···O2x0.772.032.7854 (17)165
O11—H11A···O7ix0.831.852.667 (2)166
C4—H4···O70.932.452.761 (2)100
C6—H6···O20.932.482.8741 (19)106
C6—H6···O50.932.422.7358 (19)100
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (vi) x+1, y, z; (ix) x, y, z; (x) x+1/2, y+1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds