Download citation
Download citation
link to html
The molecular conformation and supramolecular architecture of cocaethylene [systematic name: eth­yl (1R,2R,3S,5S)-3-benzo­yloxy-8-methyl-8-aza­bicyclo­[3.2.1]octane-2-carboxyl­ate], C18H23NO4, have been determined for the first time. Cocaethylene is a narcotic produced in vivo when cocaine and ethanol are administered concomitantly. The intra- and inter­molecular features of coca­ethyl­ene and its less potent narcotic precursor cocaine are very similar. The only mol­ecular difference is in the conformation of the methyl group of the ethoxycarbonyl group. Similar to cocaine, the carboxyl­ate atoms and the α-C atom are coplanar in coca­ethyl­ene, but the methyl C atom of the ethyl group is bent by ca 90° away from this plane in the narcotic reported here. The main supra­molecular motif is a one-dimensional chain stabilized by weak C—H...O contacts.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229617012852/cu3117sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617012852/cu3117Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229617012852/cu3117Isup3.cml
Supplementary material

CCDC reference: 1573265

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997), Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

ethyl (1R,2R,3S,5S)-3-(benzoyloxy)-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylate top
Crystal data top
C18H23NO4F(000) = 340
Mr = 317.37Dx = 1.248 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
a = 8.4533 (2) ÅCell parameters from 2631 reflections
b = 10.2380 (3) Åθ = 6.0–66.1°
c = 10.2552 (2) ŵ = 0.72 mm1
β = 107.881 (1)°T = 296 K
V = 844.66 (4) Å3Needle, colourless
Z = 20.35 × 0.15 × 0.10 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2026 reflections with I > 2σ(I)
CCD scansRint = 0.024
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 66.5°, θmin = 6.0°
Tmin = 0.725, Tmax = 0.931h = 99
3969 measured reflectionsk = 912
2133 independent reflectionsl = 1211
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0631P)2 + 0.0701P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.101(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.15 e Å3
2133 reflectionsΔρmin = 0.17 e Å3
208 parametersAbsolute structure: Flack x parameter determined using 568 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
1 restraintAbsolute structure parameter: 0.03 (14)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.5751 (2)0.4990 (2)0.13426 (17)0.0664 (6)
O10.65669 (18)0.5018 (2)0.27718 (16)0.0563 (5)
O30.6899 (2)0.6327 (3)0.0426 (2)0.0703 (6)
N10.2831 (2)0.6666 (2)0.0355 (2)0.0519 (5)
C170.5764 (6)0.6617 (5)0.2996 (4)0.1061 (14)
H17A0.6420.69920.35160.159*
H17B0.47540.6270.36090.159*
H17C0.55030.72770.2430.159*
C160.6698 (4)0.5572 (5)0.2134 (3)0.0863 (12)
H16A0.69770.49110.27050.104*
H16B0.77270.5920.15240.104*
C150.5920 (3)0.5498 (3)0.0097 (2)0.0500 (6)
C20.4677 (3)0.4846 (3)0.0482 (2)0.0467 (5)
H20.47960.38960.04360.056*
C30.4847 (3)0.5233 (3)0.1952 (2)0.0487 (6)
H30.41430.46480.22910.058*
C80.6854 (3)0.4519 (3)0.4018 (2)0.0523 (6)
C90.8662 (3)0.4243 (3)0.4680 (2)0.0507 (6)
C140.9159 (4)0.3499 (3)0.5864 (3)0.0677 (8)
H140.8370.31860.6250.081*
C131.0819 (5)0.3221 (4)0.6474 (3)0.0780 (9)
H131.11480.2710.72610.094*
C121.1978 (4)0.3697 (4)0.5917 (3)0.0831 (11)
H121.30970.35170.63370.1*
C100.9846 (3)0.4709 (3)0.4126 (3)0.0626 (7)
H100.95270.52090.3330.075*
C111.1512 (4)0.4433 (5)0.4756 (3)0.0825 (10)
H111.23120.47510.43860.099*
C40.4298 (3)0.6621 (3)0.2072 (2)0.0552 (6)
H4A0.51130.72270.19320.066*
H4B0.42070.67660.29810.066*
C50.2607 (3)0.6856 (3)0.0992 (3)0.0561 (6)
H50.22020.77390.10750.067*
C180.1473 (4)0.7238 (4)0.1467 (3)0.0772 (10)
H18A0.14830.8170.13650.116*
H18B0.16180.70190.23330.116*
H18C0.04290.68990.14280.116*
C10.2916 (3)0.5243 (3)0.0423 (2)0.0511 (6)
H10.27270.49560.13710.061*
C70.1534 (3)0.4726 (3)0.0128 (3)0.0659 (8)
H7A0.05160.45740.06130.079*
H7B0.1870.3920.06340.079*
C60.1309 (3)0.5823 (4)0.1068 (3)0.0694 (8)
H6A0.1520.5510.19990.083*
H6B0.01930.61790.07460.083*
O20.5794 (3)0.4319 (3)0.45504 (19)0.0812 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0741 (11)0.0762 (15)0.0519 (9)0.0089 (11)0.0238 (9)0.0017 (10)
O10.0401 (8)0.0775 (13)0.0467 (8)0.0054 (8)0.0066 (6)0.0137 (9)
O30.0495 (9)0.0973 (18)0.0612 (11)0.0194 (10)0.0129 (8)0.0028 (10)
N10.0381 (9)0.0570 (13)0.0533 (11)0.0001 (9)0.0031 (8)0.0101 (10)
C170.148 (4)0.081 (3)0.091 (3)0.004 (3)0.039 (3)0.010 (2)
C160.0776 (19)0.127 (4)0.0625 (17)0.017 (2)0.0336 (15)0.0166 (19)
C150.0386 (11)0.0581 (16)0.0491 (12)0.0082 (11)0.0076 (10)0.0042 (11)
C20.0445 (11)0.0451 (13)0.0475 (11)0.0018 (9)0.0095 (9)0.0012 (10)
C30.0360 (10)0.0625 (16)0.0431 (11)0.0004 (10)0.0057 (9)0.0045 (11)
C80.0524 (13)0.0618 (16)0.0396 (11)0.0022 (12)0.0097 (10)0.0005 (11)
C90.0560 (13)0.0515 (15)0.0371 (10)0.0033 (11)0.0034 (10)0.0004 (10)
C140.0776 (18)0.070 (2)0.0447 (13)0.0009 (15)0.0035 (13)0.0063 (13)
C130.092 (2)0.070 (2)0.0501 (14)0.0138 (19)0.0109 (15)0.0072 (14)
C120.0645 (17)0.093 (3)0.0682 (19)0.0173 (18)0.0145 (15)0.0024 (19)
C100.0512 (13)0.080 (2)0.0485 (12)0.0065 (13)0.0028 (10)0.0136 (13)
C110.0534 (15)0.112 (3)0.0719 (18)0.0078 (18)0.0046 (13)0.0153 (19)
C40.0485 (12)0.0642 (17)0.0500 (12)0.0018 (12)0.0110 (10)0.0096 (12)
C50.0456 (12)0.0595 (17)0.0614 (14)0.0089 (11)0.0139 (11)0.0031 (12)
C180.0526 (15)0.093 (3)0.0732 (19)0.0075 (16)0.0009 (13)0.0305 (18)
C10.0406 (11)0.0598 (16)0.0477 (12)0.0054 (10)0.0058 (9)0.0045 (11)
C70.0422 (12)0.070 (2)0.0772 (16)0.0127 (12)0.0063 (11)0.0089 (15)
C60.0391 (12)0.101 (2)0.0691 (16)0.0041 (14)0.0180 (12)0.0147 (16)
O20.0612 (11)0.129 (2)0.0524 (10)0.0048 (13)0.0163 (9)0.0109 (12)
Geometric parameters (Å, º) top
O4—C151.346 (3)C14—C131.379 (4)
O4—C161.434 (4)C14—H140.93
O1—C81.328 (3)C13—C121.367 (6)
O1—C31.456 (3)C13—H130.93
O3—C151.192 (3)C12—C111.361 (5)
N1—C11.462 (4)C12—H120.93
N1—C51.463 (3)C10—C111.387 (4)
N1—C181.468 (3)C10—H100.93
C17—C161.456 (7)C11—H110.93
C17—H17A0.96C4—C51.535 (3)
C17—H17B0.96C4—H4A0.97
C17—H17C0.96C4—H4B0.97
C16—H16A0.97C5—C61.543 (4)
C16—H16B0.97C5—H50.98
C15—C21.511 (3)C18—H18A0.96
C2—C31.522 (3)C18—H18B0.96
C2—C11.548 (3)C18—H18C0.96
C2—H20.98C1—C71.539 (4)
C3—C41.512 (4)C1—H10.98
C3—H30.98C7—C61.529 (5)
C8—O21.202 (3)C7—H7A0.97
C8—C91.497 (3)C7—H7B0.97
C9—C101.379 (4)C6—H6A0.97
C9—C141.385 (4)C6—H6B0.97
C15—O4—C16117.5 (3)C11—C12—H12119.6
C8—O1—C3117.99 (17)C13—C12—H12119.6
C1—N1—C5101.5 (2)C9—C10—C11119.9 (3)
C1—N1—C18113.5 (2)C9—C10—H10120
C5—N1—C18112.5 (2)C11—C10—H10120
C16—C17—H17A109.5C12—C11—C10120.0 (3)
C16—C17—H17B109.5C12—C11—H11120
H17A—C17—H17B109.5C10—C11—H11120
C16—C17—H17C109.5C3—C4—C5109.2 (2)
H17A—C17—H17C109.5C3—C4—H4A109.8
H17B—C17—H17C109.5C5—C4—H4A109.8
O4—C16—C17110.9 (3)C3—C4—H4B109.8
O4—C16—H16A109.5C5—C4—H4B109.8
C17—C16—H16A109.5H4A—C4—H4B108.3
O4—C16—H16B109.5N1—C5—C4107.42 (19)
C17—C16—H16B109.5N1—C5—C6104.9 (2)
H16A—C16—H16B108.1C4—C5—C6112.0 (2)
O3—C15—O4124.0 (2)N1—C5—H5110.8
O3—C15—C2127.5 (2)C4—C5—H5110.8
O4—C15—C2108.6 (2)C6—C5—H5110.8
C15—C2—C3114.1 (2)N1—C18—H18A109.5
C15—C2—C1107.80 (19)N1—C18—H18B109.5
C3—C2—C1107.85 (18)H18A—C18—H18B109.5
C15—C2—H2109N1—C18—H18C109.5
C3—C2—H2109H18A—C18—H18C109.5
C1—C2—H2109H18B—C18—H18C109.5
O1—C3—C4111.83 (19)N1—C1—C7105.7 (2)
O1—C3—C2107.86 (18)N1—C1—C2106.57 (19)
C4—C3—C2112.8 (2)C7—C1—C2112.9 (2)
O1—C3—H3108.1N1—C1—H1110.5
C4—C3—H3108.1C7—C1—H1110.5
C2—C3—H3108.1C2—C1—H1110.5
O2—C8—O1124.2 (2)C6—C7—C1103.6 (2)
O2—C8—C9124.2 (2)C6—C7—H7A111
O1—C8—C9111.65 (19)C1—C7—H7A111
C10—C9—C14119.3 (2)C6—C7—H7B111
C10—C9—C8121.1 (2)C1—C7—H7B111
C14—C9—C8119.6 (2)H7A—C7—H7B109
C13—C14—C9120.2 (3)C7—C6—C5104.1 (2)
C13—C14—H14119.9C7—C6—H6A110.9
C9—C14—H14119.9C5—C6—H6A110.9
C12—C13—C14119.8 (3)C7—C6—H6B110.9
C12—C13—H13120.1C5—C6—H6B110.9
C14—C13—H13120.1H6A—C6—H6B109
C11—C12—C13120.8 (3)
C15—O4—C16—C1790.5 (4)C8—C9—C10—C11179.6 (3)
C16—O4—C15—O36.1 (4)C13—C12—C11—C100.1 (6)
C16—O4—C15—C2173.6 (2)C9—C10—C11—C120.3 (6)
O3—C15—C2—C36.0 (4)O1—C3—C4—C5169.50 (19)
O4—C15—C2—C3174.3 (2)C2—C3—C4—C547.7 (3)
O3—C15—C2—C1113.7 (3)C1—N1—C5—C475.8 (3)
O4—C15—C2—C166.0 (3)C18—N1—C5—C4162.6 (3)
C8—O1—C3—C495.5 (3)C1—N1—C5—C643.6 (2)
C8—O1—C3—C2139.9 (2)C18—N1—C5—C678.1 (3)
C15—C2—C3—O153.0 (3)C3—C4—C5—N161.3 (3)
C1—C2—C3—O1172.69 (19)C3—C4—C5—C653.3 (3)
C15—C2—C3—C471.1 (2)C5—N1—C1—C743.2 (2)
C1—C2—C3—C448.7 (3)C18—N1—C1—C777.8 (3)
C3—O1—C8—O25.6 (4)C5—N1—C1—C277.1 (2)
C3—O1—C8—C9174.8 (2)C18—N1—C1—C2161.9 (2)
O2—C8—C9—C10168.0 (3)C15—C2—C1—N159.9 (2)
O1—C8—C9—C1011.6 (4)C3—C2—C1—N163.8 (2)
O2—C8—C9—C1412.5 (4)C15—C2—C1—C7175.5 (2)
O1—C8—C9—C14167.9 (3)C3—C2—C1—C751.8 (3)
C10—C9—C14—C130.5 (5)N1—C1—C7—C625.7 (3)
C8—C9—C14—C13179.0 (3)C2—C1—C7—C690.4 (3)
C9—C14—C13—C121.0 (5)C1—C7—C6—C51.1 (3)
C14—C13—C12—C110.8 (6)N1—C5—C6—C727.4 (3)
C14—C9—C10—C110.1 (5)C4—C5—C6—C788.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···O3i0.972.713.618 (3)157
Symmetry code: (i) x1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds