organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o318-o319

3-(1H-Imidazol-1-yl)propanaminium 2-carb­­oxy-4,6-di­nitro­phenolate

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 20 January 2014; accepted 11 February 2014; online 19 February 2014)

In the title salt, C6H12N3+·C7H3N2O7, the imidazole ring is planar, with a maximum deviation of 0.0013 (14) Å for the N attached to the propanaminium group. In the anion, a single intra­molecular O—H⋯O hydrogen bond is observed. The mean planes of the nitro groups in the anion are twisted from the benzene ring mean plane making dihedral angles of 24.7 (9) and 3.9 (6)°. In the crystal, the ammonium H atoms form N—H⋯N and N—H⋯O hydrogen bonds, resulting in an infinite chain along [111]. In addition to the classical hydrogen bonds, weak C—H⋯O and ππ [centroid–centroid distance = 3.7124 (9) Å] inter­actions are also observed, which lead to the formation a three-dimensional supramolecular structure that links the chains into layers along the bc plane.

Related literature

For general background and the pharmacological properties of imidazole compounds, see: ten Have et al. (1997[Have, R. ten, Huisman, M., Meetsma, A. & van Leusen, A. M. (1997). Tetrahedron, 53, 11355-11368.]); Lombardino & Wiseman (1974[Lombardino, J. G. & Wiseman, E. H. (1974). J. Med. Chem. 17, 1182-1188.]); Jackson et al. (2000[Jackson, C. J., Lamb, D. C., Kelly, D. E. & Kelly, S. L. (2000). FEMS Microbiol. Lett. 192, 159-162.]); Krezel (1998[Krezel, I. (1998). Il Farmaco, 53, 342-345.]); Maier et al. (1989[Maier, T., Schmierer, R., Bauer, K., Bieringer, H., Buerstell, H. & Sachse, B. (1989). US Patent No. 4 820 335.]). For the related structures of substituted imidazoles, see: Dayananda et al. (2012[Dayananda, A. S., Yathirajan, H. S., Gerber, T., Hosten, E. & Betz, R. (2012). Acta Cryst. E68, o1165-o1166.]); Hemamalini & Fun (2010[Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1194-o1195.]); Jasinski et al. (2011[Jasinski, J. P., Butcher, R. J., Siddegowda, M. S., Yathirajan, H. S. & Siddaraju, B. P. (2011). Acta Cryst. E67, o432-o433.]); Wei et al. (2012[Wei, S., Jin, S., Hu, Z., Zhou, Y. & Zhou, Y. (2012). Acta Cryst. E68, o3117.]); Yamuna et al. (2013[Yamuna, T. S., Jasinski, J. P., Duff, C. E., Yathirajan, H. S. & Kaur, M. (2013). Acta Cryst. E69, o1572-o1573.]).

[Scheme 1]

Experimental

Crystal data
  • C6H12N3+·C7H3N2O7

  • Mr = 353.30

  • Triclinic, [P \overline 1]

  • a = 7.0109 (4) Å

  • b = 10.6617 (8) Å

  • c = 10.7454 (7) Å

  • α = 93.075 (6)°

  • β = 95.863 (5)°

  • γ = 104.944 (6)°

  • V = 769.30 (9) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.09 mm−1

  • T = 173 K

  • 0.22 × 0.14 × 0.12 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.925, Tmax = 1.000

  • 4664 measured reflections

  • 2953 independent reflections

  • 2582 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.122

  • S = 1.04

  • 2953 reflections

  • 229 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2B—H2B⋯O1B 0.84 1.66 2.4484 (15) 155
N3A—H3AA⋯N1Ai 0.91 1.92 2.7987 (19) 162
N3A—H3AB⋯O1Bii 0.91 2.03 2.8153 (17) 144
N3A—H3AC⋯O3Biii 0.91 2.07 2.9546 (17) 165
C4A—H4AB⋯O4Biv 0.99 2.53 3.3572 (19) 142
Symmetry codes: (i) -x, -y, -z; (ii) -x, -y+1, -z+1; (iii) x+1, y, z; (iv) -x+1, -y+1, -z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Imidazole rings appear frequently in biologically active compounds, both natural and man-made (ten Have et al., 1997). Compounds with an imidazole ring system have many pharmacological properties and play important roles in biochemical processes (Lombardino & Wiseman, 1974). Most of the imidazole compounds are known as inhibitors of fungicides and herbicides, plant growth regulators and therapeutic agents (Maier et al., 1989), anticancer agents (Krezel, 1998) and bactericidal effects (Jackson et al., 2000). The crystal structures of some related compounds, viz ; 2-amino-5-methylpyridinium 2-hydroxy-3,5-dinitrobenzoate (Hemamalini et al., 2010); Cinnarizinium 3,5-dinitrosalicylate (Dayananda et al., 2012); Enrofloxacinium picrate (Jasinski et al., 2011); 3-(1H-imidazol-1-yl)propanaminium picrate (Yamuna et al., 2013); 3,5-dimethylpyrazolium 3,5-dinitrosalicylate (Wei et al., 2012), have been reported. In view of the importance of substituted imidazoles and organic acid–base adducts based on hydrogen bonding and receiving great attention in recent years, this paper reports the crystal structure of the title salt, (I), C6H12N3+.C7H3N2O7-.

The title salt, (I), C6H12N3+.C7H3N2O7-, crystallizes with one independent monocation (A) and monoanion (B) in the asymmetric unit (Fig. 1). In the cation the protonated imidazol-1-ium ring is planar (maximum deviation = 0.0013 (14)Å for N2A). In the anion, a single O—H···O intramolecular hydrogen bond is observed. Bond lengths are in normal ranges. The mean planes of the nitro groups in the anion are twisted from the phenyl ring mean plane with maximun angles of 24.7 (9)° and 3.9 (6)°, respectively. The hydrogen atoms on the terminal N atom of the cation form N—H···N and N—H···O intermolecular hydrogen bonds resulting in an infinite 1D chain along [1 1 1]. In the crystal, in addition to the classical hydrogen bonds, weak C—H···O (Table 1) and Cg1—Cg2 ππ intermolecular interactions are observed with an intercentroid distance of 3.7125 (9)Å (symmetry operation -x,1-y,-z; Cg1 and Cg2 are the centroids of the C1B–C6B and N1A/C1A/N2A/C3A/C2A rings) which contribute to crystal packing stability (Fig. 2).

Related literature top

For general background and the pharmacological properties of imidazole compounds, see: ten Have et al. (1997); Lombardino & Wiseman (1974); Jackson et al. (2000); Krezel (1998); Maier et al. (1989). For the related structures of substituted imidazoles, see: Dayananda et al. (2012); Hemamalini & Fun (2010); Jasinski et al. (2011); Wei et al. (2012); Yamuna et al. (2013).

Experimental top

Commercially available 1-(3-aminopropyl)imidazole (0.5 g, 3.99 mmol) and 3,5 dinitrosalicylic acid (0.909 g, 3.99 mmol) were dissolved in 10 ml of methanol and stirred for 15 minutes at 308 K. X-ray quality crystals were formed on slow evaporation of methanol. (m.p.: 468- 475K).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH); 0.99Å (CH2); 0.84Å (OH) or 0.91Å (NH3) . Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2, NH3) or 1.5 (OH) times Ueq of the parent atom. Idealised ammonium and tetrahedral OH were refined as rotating groups.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of (I) ( C6H12N3+.C7H3N2O7-) showing the labeling scheme with 30% probability displacement ellipsoids. Dashed lines indicate a O2B—H2B···O1B intramolecular hydrogen bond in the anion within the asymmetric unit.
[Figure 2] Fig. 2. Molecular packing for (I) viewed along the a axis. Dashed lines indicate N—H···O, N—H···N intermolecular hydrogen bonds and weak C—H···O intermolecular interactions. H atoms not involved in hydrogen bonding have been removed for clarity.
3-(1H-Imidazol-1-yl)propanaminium 2-carboxy-4,6-dinitrophenolate top
Crystal data top
C6H12N3+·C7H3N2O7Z = 2
Mr = 353.30F(000) = 368
Triclinic, P1Dx = 1.525 Mg m3
a = 7.0109 (4) ÅCu Kα radiation, λ = 1.54184 Å
b = 10.6617 (8) ÅCell parameters from 2218 reflections
c = 10.7454 (7) Åθ = 4.2–72.3°
α = 93.075 (6)°µ = 1.09 mm1
β = 95.863 (5)°T = 173 K
γ = 104.944 (6)°Irregular, yellow
V = 769.30 (9) Å30.22 × 0.14 × 0.12 mm
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
2953 independent reflections
Radiation source: Enhance (Cu) X-ray Source2582 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 16.0416 pixels mm-1θmax = 72.5°, θmin = 4.2°
ω scansh = 85
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
k = 1213
Tmin = 0.925, Tmax = 1.000l = 1313
4664 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0682P)2 + 0.1101P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.122(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.25 e Å3
2953 reflectionsΔρmin = 0.25 e Å3
229 parametersExtinction correction: SHELXL2012 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0087 (12)
Primary atom site location: structure-invariant direct methods
Crystal data top
C6H12N3+·C7H3N2O7γ = 104.944 (6)°
Mr = 353.30V = 769.30 (9) Å3
Triclinic, P1Z = 2
a = 7.0109 (4) ÅCu Kα radiation
b = 10.6617 (8) ŵ = 1.09 mm1
c = 10.7454 (7) ÅT = 173 K
α = 93.075 (6)°0.22 × 0.14 × 0.12 mm
β = 95.863 (5)°
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
2953 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
2582 reflections with I > 2σ(I)
Tmin = 0.925, Tmax = 1.000Rint = 0.026
4664 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.04Δρmax = 0.25 e Å3
2953 reflectionsΔρmin = 0.25 e Å3
229 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1B0.19166 (16)0.67530 (11)0.52669 (10)0.0288 (3)
O2B0.38294 (16)0.47146 (11)0.40815 (11)0.0309 (3)
H2B0.34930.54020.45630.046*
O3B0.25490 (16)0.37708 (11)0.26154 (11)0.0308 (3)
O4B0.41267 (18)0.58644 (12)0.16868 (12)0.0360 (3)
O5B0.59770 (17)0.75622 (12)0.28233 (13)0.0378 (3)
O6B0.34447 (19)0.93705 (13)0.62652 (14)0.0466 (4)
O7B0.02866 (19)0.91669 (12)0.61489 (13)0.0407 (3)
N1B0.1720 (2)0.88464 (13)0.58134 (13)0.0293 (3)
N2B0.43937 (19)0.67328 (13)0.25380 (13)0.0277 (3)
C1B0.0459 (2)0.68012 (14)0.46271 (13)0.0220 (3)
C2B0.0571 (2)0.57869 (14)0.36592 (13)0.0216 (3)
C3B0.0986 (2)0.57928 (14)0.29803 (13)0.0224 (3)
H3B0.08600.51260.23310.027*
C4B0.2742 (2)0.67709 (15)0.32417 (14)0.0235 (3)
C5B0.2969 (2)0.77675 (14)0.41652 (14)0.0242 (3)
H5B0.41870.84280.43390.029*
C6B0.1396 (2)0.77858 (15)0.48287 (14)0.0240 (3)
C7B0.2410 (2)0.46764 (15)0.34003 (14)0.0240 (3)
N1A0.2236 (2)0.05132 (13)0.17302 (13)0.0301 (3)
N2A0.01482 (18)0.22563 (12)0.06974 (12)0.0236 (3)
N3A0.34673 (18)0.20535 (12)0.28180 (12)0.0247 (3)
H3AA0.32730.11930.25840.030*
H3AB0.30970.21460.35980.030*
H3AC0.47760.24740.28290.030*
C1A0.0393 (2)0.12597 (15)0.15759 (15)0.0267 (3)
H1A0.06350.11120.20290.032*
C2A0.3211 (2)0.10673 (16)0.08994 (16)0.0311 (4)
H2A0.45750.07450.07930.037*
C3A0.1954 (2)0.21366 (16)0.02562 (15)0.0290 (4)
H3A0.22570.26920.03720.035*
C4A0.1721 (2)0.32486 (15)0.02842 (14)0.0265 (3)
H4AA0.14190.40320.00940.032*
H4AB0.24230.35020.10230.032*
C5A0.3076 (2)0.27761 (16)0.06655 (14)0.0270 (3)
H5AA0.32360.19290.03350.032*
H5AB0.44050.34070.07920.032*
C6A0.2253 (2)0.26209 (16)0.19094 (14)0.0276 (3)
H6AA0.22000.34830.22710.033*
H6AB0.08770.20510.17690.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1B0.0263 (6)0.0300 (6)0.0273 (6)0.0012 (5)0.0097 (4)0.0047 (4)
O2B0.0247 (6)0.0304 (6)0.0321 (6)0.0027 (4)0.0082 (5)0.0070 (5)
O3B0.0276 (6)0.0282 (6)0.0318 (6)0.0003 (5)0.0045 (5)0.0081 (5)
O4B0.0360 (6)0.0319 (6)0.0414 (7)0.0081 (5)0.0168 (5)0.0040 (5)
O5B0.0229 (6)0.0376 (7)0.0501 (8)0.0011 (5)0.0111 (5)0.0012 (6)
O6B0.0351 (7)0.0402 (8)0.0540 (8)0.0004 (6)0.0049 (6)0.0192 (6)
O7B0.0393 (7)0.0324 (7)0.0472 (8)0.0026 (5)0.0160 (6)0.0121 (6)
N1B0.0319 (7)0.0233 (7)0.0293 (7)0.0012 (5)0.0057 (6)0.0025 (5)
N2B0.0253 (7)0.0258 (7)0.0339 (7)0.0072 (5)0.0088 (5)0.0060 (5)
C1B0.0230 (7)0.0232 (7)0.0194 (7)0.0049 (6)0.0033 (5)0.0023 (6)
C2B0.0215 (7)0.0215 (7)0.0207 (7)0.0035 (6)0.0021 (5)0.0028 (6)
C3B0.0255 (7)0.0216 (7)0.0210 (7)0.0072 (6)0.0043 (6)0.0016 (5)
C4B0.0220 (7)0.0248 (7)0.0258 (7)0.0076 (6)0.0066 (6)0.0059 (6)
C5B0.0215 (7)0.0221 (7)0.0268 (7)0.0017 (6)0.0023 (6)0.0051 (6)
C6B0.0270 (8)0.0208 (7)0.0226 (7)0.0041 (6)0.0017 (6)0.0002 (6)
C7B0.0240 (7)0.0253 (7)0.0213 (7)0.0047 (6)0.0016 (5)0.0001 (6)
N1A0.0291 (7)0.0246 (7)0.0347 (7)0.0050 (5)0.0016 (6)0.0005 (6)
N2A0.0241 (6)0.0230 (6)0.0229 (6)0.0049 (5)0.0032 (5)0.0002 (5)
N3A0.0258 (6)0.0224 (6)0.0241 (6)0.0041 (5)0.0025 (5)0.0028 (5)
C1A0.0273 (8)0.0256 (8)0.0277 (8)0.0078 (6)0.0050 (6)0.0019 (6)
C2A0.0262 (8)0.0311 (8)0.0354 (9)0.0045 (6)0.0070 (6)0.0059 (7)
C3A0.0293 (8)0.0308 (8)0.0286 (8)0.0093 (6)0.0093 (6)0.0013 (6)
C4A0.0268 (8)0.0245 (7)0.0248 (7)0.0007 (6)0.0048 (6)0.0001 (6)
C5A0.0237 (7)0.0293 (8)0.0258 (8)0.0029 (6)0.0054 (6)0.0020 (6)
C6A0.0301 (8)0.0301 (8)0.0256 (8)0.0124 (6)0.0060 (6)0.0017 (6)
Geometric parameters (Å, º) top
O1B—C1B1.2803 (18)N1A—C2A1.375 (2)
O2B—H2B0.8400N2A—C1A1.3472 (19)
O2B—C7B1.3019 (18)N2A—C3A1.3748 (19)
O3B—C7B1.2249 (18)N2A—C4A1.4660 (19)
O4B—N2B1.2303 (18)N3A—H3AA0.9100
O5B—N2B1.2261 (18)N3A—H3AB0.9100
O6B—N1B1.2300 (18)N3A—H3AC0.9100
O7B—N1B1.2224 (18)N3A—C6A1.4844 (19)
N1B—C6B1.4629 (19)C1A—H1A0.9500
N2B—C4B1.4540 (18)C2A—H2A0.9500
C1B—C2B1.441 (2)C2A—C3A1.352 (2)
C1B—C6B1.433 (2)C3A—H3A0.9500
C2B—C3B1.373 (2)C4A—H4AA0.9900
C2B—C7B1.498 (2)C4A—H4AB0.9900
C3B—H3B0.9500C4A—C5A1.517 (2)
C3B—C4B1.385 (2)C5A—H5AA0.9900
C4B—C5B1.381 (2)C5A—H5AB0.9900
C5B—H5B0.9500C5A—C6A1.510 (2)
C5B—C6B1.377 (2)C6A—H6AA0.9900
N1A—C1A1.320 (2)C6A—H6AB0.9900
C7B—O2B—H2B109.5H3AA—N3A—H3AC109.5
O6B—N1B—C6B117.54 (13)H3AB—N3A—H3AC109.5
O7B—N1B—O6B123.30 (14)C6A—N3A—H3AA109.5
O7B—N1B—C6B119.17 (13)C6A—N3A—H3AB109.5
O4B—N2B—C4B118.05 (13)C6A—N3A—H3AC109.5
O5B—N2B—O4B123.43 (13)N1A—C1A—N2A111.69 (13)
O5B—N2B—C4B118.52 (13)N1A—C1A—H1A124.2
O1B—C1B—C2B120.31 (13)N2A—C1A—H1A124.2
O1B—C1B—C6B124.78 (14)N1A—C2A—H2A124.8
C6B—C1B—C2B114.84 (13)C3A—C2A—N1A110.33 (14)
C1B—C2B—C7B119.59 (13)C3A—C2A—H2A124.8
C3B—C2B—C1B121.69 (14)N2A—C3A—H3A127.0
C3B—C2B—C7B118.70 (13)C2A—C3A—N2A105.94 (14)
C2B—C3B—H3B120.0C2A—C3A—H3A127.0
C2B—C3B—C4B120.03 (14)N2A—C4A—H4AA109.1
C4B—C3B—H3B120.0N2A—C4A—H4AB109.1
C3B—C4B—N2B119.02 (13)N2A—C4A—C5A112.48 (12)
C5B—C4B—N2B119.37 (13)H4AA—C4A—H4AB107.8
C5B—C4B—C3B121.60 (13)C5A—C4A—H4AA109.1
C4B—C5B—H5B120.7C5A—C4A—H4AB109.1
C6B—C5B—C4B118.69 (14)C4A—C5A—H5AA109.3
C6B—C5B—H5B120.7C4A—C5A—H5AB109.3
C1B—C6B—N1B120.14 (13)H5AA—C5A—H5AB108.0
C5B—C6B—N1B116.69 (13)C6A—C5A—C4A111.50 (12)
C5B—C6B—C1B123.12 (14)C6A—C5A—H5AA109.3
O2B—C7B—C2B116.03 (13)C6A—C5A—H5AB109.3
O3B—C7B—O2B121.99 (14)N3A—C6A—C5A112.37 (12)
O3B—C7B—C2B121.96 (13)N3A—C6A—H6AA109.1
C1A—N1A—C2A105.07 (13)N3A—C6A—H6AB109.1
C1A—N2A—C3A106.97 (13)C5A—C6A—H6AA109.1
C1A—N2A—C4A125.58 (13)C5A—C6A—H6AB109.1
C3A—N2A—C4A127.43 (13)H6AA—C6A—H6AB107.9
H3AA—N3A—H3AB109.5
O1B—C1B—C2B—C3B178.23 (13)C3B—C2B—C7B—O2B179.26 (13)
O1B—C1B—C2B—C7B0.3 (2)C3B—C2B—C7B—O3B1.0 (2)
O1B—C1B—C6B—N1B0.9 (2)C3B—C4B—C5B—C6B0.6 (2)
O1B—C1B—C6B—C5B176.43 (14)C4B—C5B—C6B—N1B178.87 (13)
O4B—N2B—C4B—C3B3.8 (2)C4B—C5B—C6B—C1B1.5 (2)
O4B—N2B—C4B—C5B177.14 (13)C6B—C1B—C2B—C3B0.9 (2)
O5B—N2B—C4B—C3B176.02 (14)C6B—C1B—C2B—C7B177.58 (12)
O5B—N2B—C4B—C5B3.0 (2)C7B—C2B—C3B—C4B176.73 (13)
O6B—N1B—C6B—C1B154.04 (15)N1A—C2A—C3A—N2A0.13 (18)
O6B—N1B—C6B—C5B23.4 (2)N2A—C4A—C5A—C6A69.71 (16)
O7B—N1B—C6B—C1B25.8 (2)C1A—N1A—C2A—C3A0.02 (18)
O7B—N1B—C6B—C5B156.73 (14)C1A—N2A—C3A—C2A0.23 (17)
N2B—C4B—C5B—C6B179.60 (13)C1A—N2A—C4A—C5A80.85 (18)
C1B—C2B—C3B—C4B1.8 (2)C2A—N1A—C1A—N2A0.17 (18)
C1B—C2B—C7B—O2B0.7 (2)C3A—N2A—C1A—N1A0.26 (18)
C1B—C2B—C7B—O3B177.60 (13)C3A—N2A—C4A—C5A97.42 (17)
C2B—C1B—C6B—N1B178.03 (12)C4A—N2A—C1A—N1A178.83 (13)
C2B—C1B—C6B—C5B0.7 (2)C4A—N2A—C3A—C2A178.77 (14)
C2B—C3B—C4B—N2B177.99 (13)C4A—C5A—C6A—N3A175.16 (12)
C2B—C3B—C4B—C5B1.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2B—H2B···O1B0.841.662.4484 (15)155
N3A—H3AA···N1Ai0.911.922.7987 (19)162
N3A—H3AB···O1Bii0.912.032.8153 (17)144
N3A—H3AC···O3Biii0.912.072.9546 (17)165
C4A—H4AB···O4Biv0.992.533.3572 (19)142
Symmetry codes: (i) x, y, z; (ii) x, y+1, z+1; (iii) x+1, y, z; (iv) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2B—H2B···O1B0.841.662.4484 (15)155.0
N3A—H3AA···N1Ai0.911.922.7987 (19)162
N3A—H3AB···O1Bii0.912.032.8153 (17)144
N3A—H3AC···O3Biii0.912.072.9546 (17)165
C4A—H4AB···O4Biv0.992.533.3572 (19)142
Symmetry codes: (i) x, y, z; (ii) x, y+1, z+1; (iii) x+1, y, z; (iv) x+1, y+1, z.
 

Acknowledgements

TSY thanks the University of Mysore for research facilities and is also grateful to the Principal, Maharani's Science College for Women, Mysore, for giving permission to undertake research. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationDayananda, A. S., Yathirajan, H. S., Gerber, T., Hosten, E. & Betz, R. (2012). Acta Cryst. E68, o1165–o1166.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHave, R. ten, Huisman, M., Meetsma, A. & van Leusen, A. M. (1997). Tetrahedron, 53, 11355–11368.  CSD CrossRef Web of Science Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1194–o1195.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJackson, C. J., Lamb, D. C., Kelly, D. E. & Kelly, S. L. (2000). FEMS Microbiol. Lett. 192, 159–162.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJasinski, J. P., Butcher, R. J., Siddegowda, M. S., Yathirajan, H. S. & Siddaraju, B. P. (2011). Acta Cryst. E67, o432–o433.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKrezel, I. (1998). Il Farmaco, 53, 342–345.  Web of Science CAS PubMed Google Scholar
First citationLombardino, J. G. & Wiseman, E. H. (1974). J. Med. Chem. 17, 1182–1188.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMaier, T., Schmierer, R., Bauer, K., Bieringer, H., Buerstell, H. & Sachse, B. (1989). US Patent No. 4 820 335.  Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, S., Jin, S., Hu, Z., Zhou, Y. & Zhou, Y. (2012). Acta Cryst. E68, o3117.  CSD CrossRef IUCr Journals Google Scholar
First citationYamuna, T. S., Jasinski, J. P., Duff, C. E., Yathirajan, H. S. & Kaur, M. (2013). Acta Cryst. E69, o1572–o1573.  CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o318-o319
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds