organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(3-Chloro­phen­yl)thio­urea

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India
*Correspondence e-mail: hkfun@usm.my

(Received 4 July 2012; accepted 6 July 2012; online 10 July 2012)

In the title compound, C7H7ClN2S, the thio­urea N—C(=S)—N plane forms a dihedral angle of 64.80 (6)° with the benzene ring. In the crystal, mol­ecules are linked via inter­molecular N—H⋯S and N—H⋯Cl hydrogen bonds into a sheet extending parallel to the (101) plane.

Related literature

For related structures, see: Saleem & Yamin (2010[Saleem, H. F. & Yamin, B. M. (2010). Acta Cryst. E66, o789.]); Sarojini et al. (2007[Sarojini, B. K., Narayana, B., Sunil, K., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o3754.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C7H7ClN2S

  • Mr = 186.66

  • Triclinic, [P \overline 1]

  • a = 5.4406 (3) Å

  • b = 8.5715 (4) Å

  • c = 9.2392 (4) Å

  • α = 104.221 (2)°

  • β = 91.776 (2)°

  • γ = 96.362 (2)°

  • V = 414.33 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.64 mm−1

  • T = 100 K

  • 0.38 × 0.30 × 0.07 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.791, Tmax = 0.956

  • 8525 measured reflections

  • 2414 independent reflections

  • 2194 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.085

  • S = 1.08

  • 2414 reflections

  • 112 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N2⋯Cl1i 0.80 (2) 2.64 (2) 3.3583 (12) 150 (2)
N2—H1N2⋯S1ii 0.83 (3) 2.54 (3) 3.3619 (13) 167.5 (19)
N1—H1N1⋯S1iii 0.84 (2) 2.49 (3) 3.3149 (12) 167 (2)
Symmetry codes: (i) -x, -y+1, -z+2; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In view of importance of thiourea derivatives (Saleem & Yamin, 2010; Sarojini et al., 2007), the title compound (I) is prepared and its crystal structure is reported.

In the title molecule (Fig. 1), the thiourea moiety (S1/N1/N2/C7) is planar (r.m.s. deviation = < 0.001) and it forms a dihedral angle of 64.80 (6)° with the benzene ring (C1–C6). Bond lengths (Allen et al., 1987) and angles are within normal ranges. In the crystal structure (Fig. 2), molecules are linked via intermolecular N2—H2N2···S1, N2—H1N2···Cl1 and N1—H11···S1 hydrogen bonds (Table 1) into two-dimensional sheets parallel to the (101) plane.

Related literature top

For related structures, see: Saleem & Yamin (2010); Sarojini et al. (2007). For standard bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

3-Chloroaniline (0.65 ml, 0.0081 mol) was refluxed with potassium thiocyanate (1.4 g, 0.0142 mol) in 20 ml of water and 1.6 ml of conc. HCl for 3 h. The reaction mixture was then cooled to room temperature and stirred overnight. The precipitated product was then filetred, washed with water, dried and single crystals were grown from toluene and acetone (1:1) mixture by the slow evaporation method (m.p. 402 K).

Refinement top

N-bound hydrogen atoms were located in a difference Fourier map and refined freely [N—H = 0.80 (2)–0.84 (2) Å]. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

In view of importance of thiourea derivatives (Saleem & Yamin, 2010; Sarojini et al., 2007), the title compound (I) is prepared and its crystal structure is reported.

In the title molecule (Fig. 1), the thiourea moiety (S1/N1/N2/C7) is planar (r.m.s. deviation = < 0.001) and it forms a dihedral angle of 64.80 (6)° with the benzene ring (C1–C6). Bond lengths (Allen et al., 1987) and angles are within normal ranges. In the crystal structure (Fig. 2), molecules are linked via intermolecular N2—H2N2···S1, N2—H1N2···Cl1 and N1—H11···S1 hydrogen bonds (Table 1) into two-dimensional sheets parallel to the (101) plane.

For related structures, see: Saleem & Yamin (2010); Sarojini et al. (2007). For standard bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
1-(3-Chlorophenyl)thiourea top
Crystal data top
C7H7ClN2SZ = 2
Mr = 186.66F(000) = 192
Triclinic, P1Dx = 1.496 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.4406 (3) ÅCell parameters from 5475 reflections
b = 8.5715 (4) Åθ = 2.9–30.0°
c = 9.2392 (4) ŵ = 0.64 mm1
α = 104.221 (2)°T = 100 K
β = 91.776 (2)°Plate, colourless
γ = 96.362 (2)°0.38 × 0.30 × 0.07 mm
V = 414.33 (3) Å3
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
2414 independent reflections
Radiation source: fine-focus sealed tube2194 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
φ and ω scansθmax = 30.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 77
Tmin = 0.791, Tmax = 0.956k = 1212
8525 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0374P)2 + 0.222P]
where P = (Fo2 + 2Fc2)/3
2414 reflections(Δ/σ)max = 0.001
112 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C7H7ClN2Sγ = 96.362 (2)°
Mr = 186.66V = 414.33 (3) Å3
Triclinic, P1Z = 2
a = 5.4406 (3) ÅMo Kα radiation
b = 8.5715 (4) ŵ = 0.64 mm1
c = 9.2392 (4) ÅT = 100 K
α = 104.221 (2)°0.38 × 0.30 × 0.07 mm
β = 91.776 (2)°
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
2414 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2194 reflections with I > 2σ(I)
Tmin = 0.791, Tmax = 0.956Rint = 0.033
8525 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.68 e Å3
2414 reflectionsΔρmin = 0.37 e Å3
112 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.18973 (6)0.42500 (4)1.19169 (4)0.02562 (10)
S10.60726 (6)0.24290 (3)0.46595 (4)0.01698 (10)
N10.2888 (2)0.14096 (13)0.64519 (13)0.0164 (2)
N20.2660 (2)0.39857 (14)0.61960 (14)0.0190 (2)
C10.0855 (2)0.05999 (16)0.76120 (15)0.0181 (2)
H10.13970.01710.67300.022*
C20.2277 (2)0.07757 (17)0.88598 (16)0.0214 (3)
H20.37720.01160.88020.026*
C30.1494 (2)0.19203 (17)1.01876 (15)0.0201 (3)
H30.24600.20461.10120.024*
C40.0770 (2)0.28730 (15)1.02523 (14)0.0172 (2)
C50.2222 (2)0.27251 (15)0.90312 (15)0.0167 (2)
H40.37310.33720.90970.020*
C60.1378 (2)0.15877 (14)0.76997 (14)0.0150 (2)
C70.3726 (2)0.26353 (14)0.58419 (14)0.0150 (2)
H2N20.147 (4)0.404 (3)0.669 (2)0.033 (5)*
H1N20.310 (4)0.479 (3)0.587 (2)0.028 (5)*
H1N10.335 (4)0.050 (3)0.610 (2)0.029 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02138 (16)0.03212 (19)0.01919 (17)0.00492 (13)0.00105 (12)0.00194 (13)
S10.01841 (15)0.01114 (14)0.02287 (17)0.00166 (10)0.00657 (11)0.00646 (11)
N10.0210 (5)0.0096 (4)0.0193 (5)0.0014 (4)0.0059 (4)0.0046 (4)
N20.0195 (5)0.0133 (5)0.0271 (6)0.0038 (4)0.0083 (4)0.0091 (4)
C10.0178 (5)0.0168 (5)0.0196 (6)0.0018 (4)0.0009 (4)0.0065 (4)
C20.0164 (5)0.0246 (6)0.0246 (6)0.0027 (5)0.0011 (5)0.0107 (5)
C30.0167 (5)0.0255 (6)0.0206 (6)0.0031 (5)0.0034 (5)0.0099 (5)
C40.0170 (5)0.0184 (5)0.0166 (6)0.0042 (4)0.0006 (4)0.0041 (4)
C50.0142 (5)0.0148 (5)0.0208 (6)0.0006 (4)0.0008 (4)0.0049 (4)
C60.0160 (5)0.0128 (5)0.0176 (6)0.0016 (4)0.0021 (4)0.0065 (4)
C70.0153 (5)0.0122 (5)0.0176 (5)0.0005 (4)0.0006 (4)0.0047 (4)
Geometric parameters (Å, º) top
Cl1—C41.7389 (13)C1—C21.3948 (19)
S1—C71.7021 (13)C1—H10.9300
N1—C71.3527 (15)C2—C31.390 (2)
N1—C61.4239 (16)C2—H20.9300
N1—H1N10.83 (2)C3—C41.3918 (17)
N2—C71.3257 (17)C3—H30.9300
N2—H2N20.80 (2)C4—C51.3855 (18)
N2—H1N20.84 (2)C5—C61.3968 (17)
C1—C61.3901 (16)C5—H40.9300
C7—N1—C6124.20 (11)C4—C3—H3120.8
C7—N1—H1N1117.8 (14)C5—C4—C3121.85 (12)
C6—N1—H1N1117.9 (14)C5—C4—Cl1118.15 (10)
C7—N2—H2N2121.1 (16)C3—C4—Cl1119.97 (10)
C7—N2—H1N2122.5 (14)C4—C5—C6118.84 (11)
H2N2—N2—H1N2116 (2)C4—C5—H4120.6
C6—C1—C2119.36 (12)C6—C5—H4120.6
C6—C1—H1120.3C1—C6—C5120.51 (12)
C2—C1—H1120.3C1—C6—N1120.46 (11)
C3—C2—C1121.08 (12)C5—C6—N1118.98 (11)
C3—C2—H2119.5N2—C7—N1117.85 (12)
C1—C2—H2119.5N2—C7—S1121.69 (10)
C2—C3—C4118.34 (12)N1—C7—S1120.45 (10)
C2—C3—H3120.8
C6—C1—C2—C30.1 (2)C2—C1—C6—N1178.69 (12)
C1—C2—C3—C41.1 (2)C4—C5—C6—C11.26 (19)
C2—C3—C4—C51.1 (2)C4—C5—C6—N1178.74 (11)
C2—C3—C4—Cl1176.81 (10)C7—N1—C6—C1126.31 (14)
C3—C4—C5—C60.1 (2)C7—N1—C6—C556.21 (18)
Cl1—C4—C5—C6177.99 (10)C6—N1—C7—N215.51 (19)
C2—C1—C6—C51.24 (19)C6—N1—C7—S1164.53 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N2···Cl1i0.80 (2)2.64 (2)3.3583 (12)150 (2)
N2—H1N2···S1ii0.83 (3)2.54 (3)3.3619 (13)167.5 (19)
N1—H1N1···S1iii0.84 (2)2.49 (3)3.3149 (12)167 (2)
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC7H7ClN2S
Mr186.66
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.4406 (3), 8.5715 (4), 9.2392 (4)
α, β, γ (°)104.221 (2), 91.776 (2), 96.362 (2)
V3)414.33 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.64
Crystal size (mm)0.38 × 0.30 × 0.07
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.791, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
8525, 2414, 2194
Rint0.033
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.085, 1.08
No. of reflections2414
No. of parameters112
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.68, 0.37

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N2···Cl1i0.80 (2)2.64 (2)3.3583 (12)150 (2)
N2—H1N2···S1ii0.83 (3)2.54 (3)3.3619 (13)167.5 (19)
N1—H1N1···S1iii0.84 (2)2.49 (3)3.3149 (12)167 (2)
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

The authors would like to thank Universiti Sains Malaysia (USM) for the Research University Grant No. 1001/PFIZIK/811160. BN thanks the UGC for financial assistance through SAP and a BSR one-time grant for the purchase of chemicals.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSaleem, H. F. & Yamin, B. M. (2010). Acta Cryst. E66, o789.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSarojini, B. K., Narayana, B., Sunil, K., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o3754.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds