organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Methyl­piperidinium bromide

aOrdered Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: xqchem@yahoo.com.cn

(Received 12 April 2012; accepted 2 May 2012; online 5 May 2012)

In the crystal structure of the title molecular salt, C6H14N+·Br, N—H⋯Br hydrogen bonds link the cations and anions to form a one-dimensional network.

Related literature

For general background to ferroelectric organic frameworks, see: Ye et al. (2006[Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554-6555.]); Zhang et al. (2008[Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468-10469.], 2010[Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300-7302.]).

[Scheme 1]

Experimental

Crystal data
  • C6H14N+·Br

  • Mr = 180.09

  • Monoclinic, C 2/c

  • a = 23.134 (5) Å

  • b = 9.997 (2) Å

  • c = 7.7214 (15) Å

  • β = 107.90 (3)°

  • V = 1699.3 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 4.75 mm−1

  • T = 293 K

  • 0.55 × 0.44 × 0.36 mm

Data collection
  • Rigaku Mercury70 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.134, Tmax = 0.223

  • 8544 measured reflections

  • 1946 independent reflections

  • 1327 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.091

  • S = 1.09

  • 1946 reflections

  • 74 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1D⋯Br1 0.90 2.38 3.273 (3) 175
N1—H1C⋯Br1i 0.90 2.36 3.255 (3) 173
Symmetry code: (i) [x, -y+1, z-{\script{1\over 2}}].

Data collection: SCXmini (Rigaku, 2006[Rigaku (2006). SCXmini. Rigaku Americas Corporation, The Woodlands, Texas, USA.]); cell refinement: SCXmini; data reduction: SCXmini; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Dielectric-ferroelectric constitute an interesting class of materials, comprising organic ligands,metal-organic coordination compounds and organic-inorganic hybrids.(Zhang et al., 2010; Zhang et al., 2008;Ye et al., 2006). Unfortunately,the dielectric constant of the title compound as a function of temperature indicates that the permittivity is basically temperature-independent, below the melting point (428k-429k) of the compound, we have found that title compound has no dielectric disuniform from 80 K to 405 K. Herein we descibe the crystal structure of this compound.

Regarding its crystal structure,the asymmetric unit of the title compound consists of a 3-methylpiperidinium cation, a bromide anion (Fig. 1). The cations and anions were connected by hydrogen bonds involving N—H···Br which makes great contribution to the stability of the crystal structure,and these hydrogen bonds link the cations and anions into stable crystal structure (Fig. 2 and Tab. 1).

Related literature top

For general background to ferroelectric organic frameworks, see: Ye et al. (2006); Zhang et al. (2008, 2010).

Experimental top

The title compound was obtained by the addition of hydrobromic acid (0.8 g, 0.01 mol) to a solution of 3-methylpiperidine (0.97 g, 0.01 mol) in water, in the stoichiometric ratio 1: 1. Good quality single crystals were obtained by slow evaporation after two days(the chemical yield is 65%).

Refinement top

Amino H atoms were located in a difference Fourier map and refined isotropically. Other H atoms were placed in geometrically idealized positions nd constrained to ride on their parent atoms with C—H = 0.97–0.98 Å, Uiso(H) = 1.2Uiso(C, N) and Uiso(H) = 1.5Uiso(C) for the methyl.

Computing details top

Data collection: SCXmini (Rigaku, 2006); cell refinement: SCXmini (Rigaku, 2006); data reduction: SCXmini (Rigaku, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The dashed line indicate intramolecular hydrogen bond.
[Figure 2] Fig. 2. A view of the packing of the title compound, stacking along the a axis. Dashed lines indicate hydrogen bonds.
3-Methylpiperidinium bromide top
Crystal data top
C6H14N+·BrF(000) = 736
Mr = 180.09Dx = 1.408 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1946 reflections
a = 23.134 (5) Åθ = 3.0–27.5°
b = 9.997 (2) ŵ = 4.75 mm1
c = 7.7214 (15) ÅT = 293 K
β = 107.90 (3)°Block, colorless
V = 1699.3 (6) Å30.55 × 0.44 × 0.36 mm
Z = 8
Data collection top
Rigaku Mercury70 CCD
diffractometer
1946 independent reflections
Radiation source: fine-focus sealed tube1327 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 3030
Tmin = 0.134, Tmax = 0.223k = 1212
8544 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.035P)2 + 0.5231P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1946 reflectionsΔρmax = 0.37 e Å3
74 parametersΔρmin = 0.57 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0
Crystal data top
C6H14N+·BrV = 1699.3 (6) Å3
Mr = 180.09Z = 8
Monoclinic, C2/cMo Kα radiation
a = 23.134 (5) ŵ = 4.75 mm1
b = 9.997 (2) ÅT = 293 K
c = 7.7214 (15) Å0.55 × 0.44 × 0.36 mm
β = 107.90 (3)°
Data collection top
Rigaku Mercury70 CCD
diffractometer
1946 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1327 reflections with I > 2σ(I)
Tmin = 0.134, Tmax = 0.223Rint = 0.057
8544 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.09Δρmax = 0.37 e Å3
1946 reflectionsΔρmin = 0.57 e Å3
74 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.11379 (15)0.3573 (3)0.1464 (4)0.0570 (9)
H1C0.11880.44560.13320.068*
H1D0.11410.34310.26180.068*
C10.16511 (17)0.2840 (4)0.1151 (5)0.0513 (9)
H1A0.20270.31170.20430.062*
H1B0.16760.30570.00480.062*
C20.15735 (16)0.1344 (3)0.1290 (5)0.0468 (9)
H20.15750.11350.25310.056*
C30.09709 (15)0.0903 (4)0.0014 (5)0.0523 (9)
H3A0.09160.00470.01340.063*
H3B0.09690.10570.12560.063*
C40.04502 (18)0.1672 (4)0.0339 (6)0.0634 (11)
H4A0.00700.14060.05430.076*
H4B0.04300.14560.15430.076*
C50.05371 (18)0.3159 (4)0.0204 (6)0.0641 (11)
H5A0.05140.33900.10360.077*
H5B0.02160.36320.05110.077*
C60.21027 (17)0.0600 (4)0.0926 (6)0.0775 (13)
H6A0.20430.03460.09930.116*
H6B0.24760.08540.18210.116*
H6C0.21200.08270.02650.116*
Br10.120008 (18)0.32311 (4)0.57328 (5)0.05608 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.091 (3)0.0367 (17)0.0462 (18)0.0022 (16)0.0255 (17)0.0003 (15)
C10.054 (2)0.049 (2)0.047 (2)0.0167 (18)0.0104 (18)0.0017 (18)
C20.053 (2)0.0416 (19)0.045 (2)0.0015 (17)0.0131 (17)0.0016 (17)
C30.053 (2)0.040 (2)0.061 (2)0.0077 (17)0.0138 (19)0.0038 (19)
C40.052 (2)0.053 (2)0.085 (3)0.0089 (19)0.020 (2)0.004 (2)
C50.061 (3)0.055 (2)0.074 (3)0.007 (2)0.017 (2)0.006 (2)
C60.059 (3)0.080 (3)0.090 (3)0.002 (2)0.017 (2)0.009 (3)
Br10.0834 (3)0.0399 (2)0.0459 (2)0.00318 (19)0.0213 (2)0.00200 (18)
Geometric parameters (Å, º) top
N1—C11.477 (5)C3—H3A0.9700
N1—C51.490 (5)C3—H3B0.9700
N1—H1C0.9000C4—C51.507 (5)
N1—H1D0.9000C4—H4A0.9700
C1—C21.514 (5)C4—H4B0.9700
C1—H1A0.9700C5—H5A0.9700
C1—H1B0.9700C5—H5B0.9700
C2—C31.512 (5)C6—H6A0.9600
C2—C61.530 (5)C6—H6B0.9600
C2—H20.9800C6—H6C0.9600
C3—C41.523 (5)
C1—N1—C5113.0 (3)C2—C3—H3B109.5
C1—N1—H1C109.3C4—C3—H3B109.5
C5—N1—H1C109.0H3A—C3—H3B108.1
C1—N1—H1D108.7C5—C4—C3110.8 (3)
C5—N1—H1D109.0C5—C4—H4A109.5
H1C—N1—H1D107.8C3—C4—H4A109.5
N1—C1—C2111.1 (3)C5—C4—H4B109.5
N1—C1—H1A109.4C3—C4—H4B109.5
C2—C1—H1A109.4H4A—C4—H4B108.1
N1—C1—H1B109.4N1—C5—C4110.3 (3)
C2—C1—H1B109.4N1—C5—H5A109.6
H1A—C1—H1B108.0C4—C5—H5A109.6
C3—C2—C1110.2 (3)N1—C5—H5B109.6
C3—C2—C6111.2 (3)C4—C5—H5B109.6
C1—C2—C6110.4 (3)H5A—C5—H5B108.1
C3—C2—H2108.3C2—C6—H6A109.5
C1—C2—H2108.3C2—C6—H6B109.5
C6—C2—H2108.3H6A—C6—H6B109.5
C2—C3—C4110.6 (3)C2—C6—H6C109.5
C2—C3—H3A109.5H6A—C6—H6C109.5
C4—C3—H3A109.5H6B—C6—H6C109.5
C5—N1—C1—C256.3 (4)C6—C2—C3—C4178.8 (3)
N1—C1—C2—C355.7 (4)C2—C3—C4—C556.6 (5)
N1—C1—C2—C6178.9 (3)C1—N1—C5—C456.1 (4)
C1—C2—C3—C456.1 (4)C3—C4—C5—N155.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···Br10.902.383.273 (3)175
N1—H1C···Br1i0.902.363.255 (3)173
Symmetry code: (i) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC6H14N+·Br
Mr180.09
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)23.134 (5), 9.997 (2), 7.7214 (15)
β (°) 107.90 (3)
V3)1699.3 (6)
Z8
Radiation typeMo Kα
µ (mm1)4.75
Crystal size (mm)0.55 × 0.44 × 0.36
Data collection
DiffractometerRigaku Mercury70 CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.134, 0.223
No. of measured, independent and
observed [I > 2σ(I)] reflections
8544, 1946, 1327
Rint0.057
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.091, 1.09
No. of reflections1946
No. of parameters74
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.57

Computer programs: SCXmini (Rigaku, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···Br10.902.383.273 (3)175.0
N1—H1C···Br1i0.902.363.255 (3)173.1
Symmetry code: (i) x, y+1, z1/2.
 

Acknowledgements

The author is grateful to the starter fund of Southeast University for the purchase of the diffractometer.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2006). SCXmini. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554–6555.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300–7302.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds