metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[μ-4-(4-carb­­oxy­phen­­oxy)phthalato]bis­­[tri­aqua­nickel(II)]

aDepartment of Chemistry, Mudanjiang Normal College, Mudanjiang 157012, Heilongjiang Province, People's Republic of China
*Correspondence e-mail: caixue341205@126.com

(Received 15 November 2010; accepted 28 November 2010; online 11 December 2010)

In the centrosymmetric binuclear title compound, [Ni2(C15H8O7)2(H2O)6], the NiII ion is in a distorted octa­hedral coordination geometry with O6 donors, three from three water mol­ecules, the others from three carboxylate groups of two ligands. Extensive O—H⋯O hydrogen bonding connects the mol­ecules into a three-dimensional supra­molecular structure.

Related literature

For metal-organic coordination polymers, see: Evans et al. (1999[Evans, O. R., Xiong, R., Wang, Z., Wong, G. K. & Lin, W. (1999). Angew. Chem. Int. Ed. 38, 536-538.]); Li et al. (2008[Li, S.-L., Lan, Y.-Q., Ma, J.-F., Yang, J., Wei, G.-H., Zhang, L.-P. & Su, Z.-M. (2008). Cryst. Growth Des. 8, 675-684.]). For related structures, see: Wang et al. (2010[Wang, H., Zhang, D., Sun, D., Chen, Y., Wang, K., Ni, Z., Tian, L. & Jiang, J. (2010). Inorg. Chem. 12, 1096-1102.]); Hökelek et al. (2009[Hökelek, T., Süzen, Y., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009). Acta Cryst. E65, m1015-m1016.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni2(C15H8O7)2(H2O)6]

  • Mr = 825.90

  • Monoclinic, P 21 /c

  • a = 14.4173 (9) Å

  • b = 9.5002 (6) Å

  • c = 11.2857 (7) Å

  • β = 92.632 (1)°

  • V = 1544.14 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.32 mm−1

  • T = 298 K

  • 0.18 × 0.12 × 0.05 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003)[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.] Tmin = 0.798, Tmax = 0.937

  • 7457 measured reflections

  • 2716 independent reflections

  • 2245 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.069

  • S = 1.02

  • 2716 reflections

  • 263 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6A⋯O1i 0.85 (1) 1.73 (1) 2.579 (3) 176 (4)
O8—H8A⋯O10ii 0.85 (1) 2.41 (3) 2.967 (3) 124 (3)
O8—H8B⋯O2iii 0.86 (1) 2.07 (2) 2.841 (3) 150 (4)
O9—H9B⋯O3iv 0.84 (1) 2.14 (2) 2.889 (2) 149 (3)
O8—H8A⋯O7v 0.85 (1) 2.12 (2) 2.867 (3) 146 (3)
O10—H10B⋯O1vi 0.84 (1) 1.96 (1) 2.770 (3) 164 (3)
Symmetry codes: (i) -x+3, -y, -z; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) x-1, y, z; (vi) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus . Bruker AXS Inc., Madison,Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Sheldrick, 1998[Sheldrick, G. M. (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the field of supramolecular chemistry and crystal engineering, the design and assembly of metal-organic coordination polymers with appealing structures and properties have stimulated interests of chemists (Evans et al., 1999). The hydrogen bonding interaction often leads to complicated spramolecular structure (Li et al., 2008).

As shown in Fig.1, compound I is a new binuclear neutral complex with a shuttle molecular configuration. The two Ni(II) ions locate in the middle of this molecule. Ni(II) atom is coordinated in a octahedral coordination sphere The bond lengths of Ni—O are similar with the values in those complexes containing Ni—O sgment (Wang et al., 2010). There are rich hydrogen bonding interaction O—H···O in this compound, giving a three-dimensional supramolecular structure.

Related literature top

For metal-organic coordination polymers, see: Evans et al. (1999); Li et al. (2008). For related structures, see: Wang et al. (2010); Hökelek et al. (2009).

Experimental top

H3L4 (0.0302 g, 0.1 mmol), Ni(OAc)2.4H2O (0.0498 g, 0.2 mmol), and H2O (15 ml) was sealed in 25 ml Teflon-lined stainless steel reactor and heated to 120 oC. Green block-shaped crystals suitable for X-ray diffraction analysis were separated by filtration with the yield of 37%

Refinement top

All H-atoms bound to carbon were refined using a riding model with distance C—H = 0.93 Å, Uiso = 1.2Ueq (C) for aromatic atoms. The distance of O—H of water molecule has been restrained using the 'DFIX' command as 0.85Å with the deviation of 0.01.

Structure description top

In the field of supramolecular chemistry and crystal engineering, the design and assembly of metal-organic coordination polymers with appealing structures and properties have stimulated interests of chemists (Evans et al., 1999). The hydrogen bonding interaction often leads to complicated spramolecular structure (Li et al., 2008).

As shown in Fig.1, compound I is a new binuclear neutral complex with a shuttle molecular configuration. The two Ni(II) ions locate in the middle of this molecule. Ni(II) atom is coordinated in a octahedral coordination sphere The bond lengths of Ni—O are similar with the values in those complexes containing Ni—O sgment (Wang et al., 2010). There are rich hydrogen bonding interaction O—H···O in this compound, giving a three-dimensional supramolecular structure.

For metal-organic coordination polymers, see: Evans et al. (1999); Li et al. (2008). For related structures, see: Wang et al. (2010); Hökelek et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I) with the unique atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of (I) along a axis.
Bis[µ-4-(4-carboxyphenoxy)phthalato]bis[triaquanickel(II)] top
Crystal data top
[Ni2(C15H8O7)2(H2O)6]F(000) = 848
Mr = 825.90Dx = 1.776 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2290 reflections
a = 14.4173 (9) Åθ = 2.6–25.3°
b = 9.5002 (6) ŵ = 1.32 mm1
c = 11.2857 (7) ÅT = 298 K
β = 92.632 (1)°Sheet, green
V = 1544.14 (17) Å30.18 × 0.12 × 0.05 mm
Z = 2
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2716 independent reflections
Radiation source: fine-focus sealed tube2245 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 0 pixels mm-1θmax = 25.0°, θmin = 1.4°
ω scansh = 1617
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 711
Tmin = 0.798, Tmax = 0.937l = 1313
7457 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0295P)2 + 0.7208P]
where P = (Fo2 + 2Fc2)/3
2716 reflections(Δ/σ)max = 0.001
263 parametersΔρmax = 0.28 e Å3
10 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Ni2(C15H8O7)2(H2O)6]V = 1544.14 (17) Å3
Mr = 825.90Z = 2
Monoclinic, P21/cMo Kα radiation
a = 14.4173 (9) ŵ = 1.32 mm1
b = 9.5002 (6) ÅT = 298 K
c = 11.2857 (7) Å0.18 × 0.12 × 0.05 mm
β = 92.632 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2716 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2245 reflections with I > 2σ(I)
Tmin = 0.798, Tmax = 0.937Rint = 0.030
7457 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03010 restraints
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.28 e Å3
2716 reflectionsΔρmin = 0.31 e Å3
263 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.13696 (16)0.0011 (3)0.4707 (2)0.0205 (6)
C21.16031 (17)0.1901 (3)0.2544 (2)0.0217 (6)
C31.23890 (17)0.1474 (3)0.3408 (2)0.0219 (6)
C41.22697 (16)0.0685 (3)0.4442 (2)0.0210 (6)
C51.30275 (18)0.0466 (3)0.5226 (2)0.0298 (7)
H51.29490.00420.59180.036*
C61.38951 (18)0.0989 (3)0.4998 (2)0.0302 (6)
H61.43940.08470.55360.036*
C71.40112 (17)0.1721 (3)0.3963 (2)0.0263 (6)
C81.32712 (17)0.1980 (3)0.3173 (2)0.0252 (6)
H81.33600.24900.24840.030*
C91.62538 (18)0.2565 (3)0.2812 (2)0.0313 (7)
H91.64110.32910.33350.038*
C101.54081 (17)0.1884 (3)0.2880 (2)0.0237 (6)
C111.51594 (18)0.0824 (3)0.2086 (2)0.0313 (7)
H111.45850.03830.21180.038*
C121.57749 (18)0.0433 (3)0.1249 (2)0.0306 (7)
H121.56120.02810.07150.037*
C131.66329 (17)0.1082 (3)0.1185 (2)0.0262 (6)
C141.68622 (18)0.2165 (3)0.1967 (2)0.0321 (7)
H141.74290.26240.19210.039*
C151.73084 (18)0.0607 (3)0.0322 (2)0.0283 (6)
O11.16730 (12)0.1605 (2)0.14741 (16)0.0346 (5)
O21.09321 (11)0.25998 (18)0.29324 (15)0.0236 (4)
O31.07414 (11)0.01111 (18)0.38727 (14)0.0215 (4)
O41.12870 (11)0.04895 (19)0.57313 (15)0.0255 (4)
O51.48851 (12)0.2300 (2)0.38073 (16)0.0327 (5)
O61.70082 (14)0.0415 (2)0.03746 (19)0.0393 (5)
O71.80790 (13)0.1132 (2)0.02540 (17)0.0418 (6)
O80.95069 (13)0.0514 (2)0.20299 (16)0.0283 (4)
O90.89424 (13)0.3188 (2)0.31920 (17)0.0267 (4)
O101.00957 (13)0.2419 (2)0.52416 (15)0.0261 (4)
Ni10.98127 (2)0.15487 (3)0.36037 (3)0.01905 (11)
H6A1.7430 (19)0.079 (4)0.077 (3)0.074 (13)*
H8A0.927 (2)0.094 (3)0.143 (2)0.062 (11)*
H8B0.918 (2)0.023 (3)0.211 (3)0.102 (17)*
H9B0.916 (2)0.385 (2)0.279 (2)0.066 (12)*
H9A0.872 (2)0.352 (3)0.3811 (16)0.048 (10)*
H10B1.0610 (11)0.275 (3)0.548 (2)0.035 (9)*
H10A0.9937 (19)0.176 (3)0.569 (2)0.062 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0208 (13)0.0174 (13)0.0238 (14)0.0048 (11)0.0051 (11)0.0013 (11)
C20.0208 (13)0.0191 (14)0.0257 (14)0.0032 (11)0.0061 (11)0.0045 (11)
C30.0213 (13)0.0217 (14)0.0230 (13)0.0026 (11)0.0033 (10)0.0034 (11)
C40.0197 (13)0.0235 (14)0.0201 (13)0.0017 (11)0.0041 (10)0.0005 (11)
C50.0267 (14)0.0371 (17)0.0256 (15)0.0034 (13)0.0029 (11)0.0068 (13)
C60.0180 (13)0.0408 (17)0.0317 (15)0.0032 (13)0.0004 (11)0.0024 (13)
C70.0169 (13)0.0305 (16)0.0318 (15)0.0028 (12)0.0061 (11)0.0077 (13)
C80.0238 (14)0.0290 (15)0.0235 (14)0.0010 (12)0.0086 (11)0.0013 (12)
C90.0257 (15)0.0352 (17)0.0333 (15)0.0080 (13)0.0024 (12)0.0097 (13)
C100.0159 (12)0.0271 (15)0.0286 (14)0.0013 (11)0.0049 (11)0.0010 (12)
C110.0187 (14)0.0328 (16)0.0426 (17)0.0077 (13)0.0060 (12)0.0086 (14)
C120.0265 (15)0.0326 (16)0.0330 (15)0.0030 (13)0.0038 (12)0.0081 (13)
C130.0191 (13)0.0329 (16)0.0266 (14)0.0009 (12)0.0027 (11)0.0024 (12)
C140.0195 (14)0.0415 (17)0.0358 (16)0.0075 (13)0.0061 (12)0.0023 (14)
C150.0255 (15)0.0367 (17)0.0228 (14)0.0047 (13)0.0010 (11)0.0052 (13)
O10.0294 (10)0.0526 (13)0.0222 (10)0.0137 (10)0.0042 (8)0.0001 (10)
O20.0211 (9)0.0208 (10)0.0296 (10)0.0030 (8)0.0094 (8)0.0028 (8)
O30.0207 (9)0.0230 (10)0.0208 (9)0.0008 (8)0.0002 (7)0.0022 (8)
O40.0226 (9)0.0323 (11)0.0218 (10)0.0029 (8)0.0039 (7)0.0063 (8)
O50.0202 (9)0.0427 (12)0.0359 (11)0.0064 (9)0.0083 (8)0.0118 (9)
O60.0297 (11)0.0466 (14)0.0424 (13)0.0023 (10)0.0097 (10)0.0129 (11)
O70.0266 (11)0.0649 (16)0.0349 (12)0.0102 (11)0.0120 (9)0.0035 (11)
O80.0373 (11)0.0276 (11)0.0199 (10)0.0020 (10)0.0003 (8)0.0014 (9)
O90.0263 (10)0.0260 (11)0.0284 (11)0.0038 (8)0.0077 (9)0.0054 (9)
O100.0287 (11)0.0273 (11)0.0223 (10)0.0050 (9)0.0018 (8)0.0025 (9)
Ni10.01854 (18)0.02068 (18)0.01820 (18)0.00061 (15)0.00355 (12)0.00130 (14)
Geometric parameters (Å, º) top
C1—O41.253 (3)C10—O51.376 (3)
C1—O31.279 (3)C10—C111.384 (4)
C1—C41.499 (3)C11—C121.377 (4)
C2—O11.249 (3)C11—H110.9300
C2—O21.268 (3)C12—C131.387 (4)
C2—C31.516 (3)C12—H120.9300
C3—C81.396 (3)C13—C141.385 (4)
C3—C41.405 (3)C13—C151.479 (4)
C4—C51.389 (3)C14—H140.9300
C5—C61.381 (4)C15—O71.223 (3)
C5—H50.9300C15—O61.310 (3)
C6—C71.376 (4)O2—Ni12.0708 (17)
C6—H60.9300O3—Ni12.0817 (17)
C7—C81.381 (4)O4—Ni1i2.0491 (17)
C7—O51.393 (3)O8—Ni12.0600 (18)
C8—H80.9300O9—Ni12.0405 (19)
C9—C141.378 (4)O10—Ni12.0490 (18)
C9—C101.386 (4)Ni1—O4i2.0491 (17)
C9—H90.9300
O4—C1—O3123.9 (2)C14—C13—C15120.1 (2)
O4—C1—C4117.6 (2)C12—C13—C15120.9 (3)
O3—C1—C4118.5 (2)C9—C14—C13120.3 (2)
O1—C2—O2123.3 (2)C9—C14—H14119.9
O1—C2—C3118.1 (2)C13—C14—H14119.9
O2—C2—C3118.5 (2)O7—C15—O6122.7 (3)
C8—C3—C4119.3 (2)O7—C15—C13123.0 (3)
C8—C3—C2116.5 (2)O6—C15—C13114.3 (2)
C4—C3—C2124.1 (2)C2—O2—Ni1119.60 (15)
C5—C4—C3119.1 (2)C1—O3—Ni1118.68 (16)
C5—C4—C1118.1 (2)C1—O4—Ni1i128.60 (16)
C3—C4—C1122.8 (2)C10—O5—C7120.9 (2)
C6—C5—C4121.4 (2)C15—O6—H6A113 (3)
C6—C5—H5119.3Ni1—O8—H8A122 (2)
C4—C5—H5119.3Ni1—O8—H8B114 (3)
C7—C6—C5119.1 (2)H8A—O8—H8B105.6 (15)
C7—C6—H6120.4Ni1—O9—H9B117 (2)
C5—C6—H6120.4Ni1—O9—H9A110 (2)
C6—C7—C8121.2 (2)H9B—O9—H9A109.2 (16)
C6—C7—O5116.9 (2)Ni1—O10—H10B125.5 (19)
C8—C7—O5121.7 (2)Ni1—O10—H10A102 (2)
C7—C8—C3120.0 (2)H10B—O10—H10A109.7 (16)
C7—C8—H8120.0O9—Ni1—O1089.55 (8)
C3—C8—H8120.0O9—Ni1—O4i88.86 (7)
C14—C9—C10120.0 (3)O10—Ni1—O4i89.61 (7)
C14—C9—H9120.0O9—Ni1—O893.61 (8)
C10—C9—H9120.0O10—Ni1—O8175.12 (8)
O5—C10—C11124.5 (2)O4i—Ni1—O886.73 (8)
O5—C10—C9115.0 (2)O9—Ni1—O291.72 (7)
C11—C10—C9120.4 (2)O10—Ni1—O290.52 (7)
C12—C11—C10119.0 (2)O4i—Ni1—O2179.40 (7)
C12—C11—H11120.5O8—Ni1—O293.11 (7)
C10—C11—H11120.5O9—Ni1—O3174.95 (7)
C11—C12—C13121.3 (3)O10—Ni1—O394.25 (7)
C11—C12—H12119.3O4i—Ni1—O394.47 (7)
C13—C12—H12119.3O8—Ni1—O382.82 (7)
C14—C13—C12119.0 (2)O2—Ni1—O384.94 (7)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O1ii0.85 (1)1.73 (1)2.579 (3)176 (4)
O8—H8A···O10iii0.85 (1)2.41 (3)2.967 (3)124 (3)
O8—H8B···O2iv0.86 (1)2.07 (2)2.841 (3)150 (4)
O9—H9B···O3v0.84 (1)2.14 (2)2.889 (2)149 (3)
O8—H8A···O7vi0.85 (1)2.12 (2)2.867 (3)146 (3)
O10—H10B···O1vii0.84 (1)1.96 (1)2.770 (3)164 (3)
Symmetry codes: (ii) x+3, y, z; (iii) x, y+1/2, z1/2; (iv) x+2, y1/2, z+1/2; (v) x+2, y+1/2, z+1/2; (vi) x1, y, z; (vii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni2(C15H8O7)2(H2O)6]
Mr825.90
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)14.4173 (9), 9.5002 (6), 11.2857 (7)
β (°) 92.632 (1)
V3)1544.14 (17)
Z2
Radiation typeMo Kα
µ (mm1)1.32
Crystal size (mm)0.18 × 0.12 × 0.05
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.798, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
7457, 2716, 2245
Rint0.030
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.069, 1.02
No. of reflections2716
No. of parameters263
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.31

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O1i0.846 (10)1.734 (11)2.579 (3)176 (4)
O8—H8A···O10ii0.851 (10)2.41 (3)2.967 (3)124 (3)
O8—H8B···O2iii0.857 (10)2.07 (2)2.841 (3)150 (4)
O9—H9B···O3iv0.841 (10)2.135 (18)2.889 (2)149 (3)
O8—H8A···O7v0.851 (10)2.12 (2)2.867 (3)146 (3)
O10—H10B···O1vi0.838 (10)1.955 (13)2.770 (3)164 (3)
Symmetry codes: (i) x+3, y, z; (ii) x, y+1/2, z1/2; (iii) x+2, y1/2, z+1/2; (iv) x+2, y+1/2, z+1/2; (v) x1, y, z; (vi) x, y+1/2, z+1/2.
 

Acknowledgements

The project was supported by the Excellent Young Scholars of Higher University of Heilongjiang Province, China (1155G57), the Natural Science Foundation of Heilongjiang Province, China (B201016), the Doctoral Research Fund of Mudanjiang Teachers College, China (MSB: 200902) and the Research Fund of Mudanjiang Teachers College, China (KY: 200902).

References

First citationBruker (2001). SAINT-Plus . Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEvans, O. R., Xiong, R., Wang, Z., Wong, G. K. & Lin, W. (1999). Angew. Chem. Int. Ed. 38, 536–538.  CrossRef CAS Google Scholar
First citationHökelek, T., Süzen, Y., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009). Acta Cryst. E65, m1015–m1016.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, S.-L., Lan, Y.-Q., Ma, J.-F., Yang, J., Wei, G.-H., Zhang, L.-P. & Su, Z.-M. (2008). Cryst. Growth Des. 8, 675–684.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H., Zhang, D., Sun, D., Chen, Y., Wang, K., Ni, Z., Tian, L. & Jiang, J. (2010). Inorg. Chem. 12, 1096–1102.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds