organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(E)-1-Naphthyl­diazen­yl]phenol

aDepartment of Chemistry, Moscow State University, 119992 Moscow, Russian Federation
*Correspondence e-mail: aslanov@struct.chem.msu.ru

(Received 27 February 2009; accepted 17 March 2009; online 25 March 2009)

The title compound (C. I. Solvent Yellow 8), C16H12N2O, crystallizes with two crystallographically independent mol­ecules in the asymmetric unit. The planarity of both mol­ecules is slightly distorted, the dihedral angles between the benzene ring and the naphthalene system being 9.04 (8) and 5.69 (3)°. In the crystal, O—H⋯N hydrogen bonds between the hydr­oxy groups and azo N atoms link the two symmetry-independent mol­ecules into a polymeric chain propagating in [001].

Related literature

For the crystal structures of similar azo compounds, see: Alder et al. (2001[Alder, M. J., Bates, V. M., Cross, W. I., Flower, K. R. & Pritchard, R. G. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 2669-2675.]); Petek et al. (2006[Petek, H., Erşahin, F., Albayrak, Ç., Ağar, E. & Şenel, İ. (2006). Acta Cryst. E62, o5874-o5875.]). For details of the synthetic procedure, see: Fierz-David & Blangey (1949[Fierz-David, H. E. & Blangey, L. (1949). Fundamental Processes of Dye Chemistry, pp. 236-240. London: Interscience.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12N2O

  • Mr = 248.28

  • Monoclinic, P 21 /c

  • a = 10.877 (3) Å

  • b = 19.402 (4) Å

  • c = 13.062 (4) Å

  • β = 107.91 (2)°

  • V = 2623.0 (12) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.64 mm−1

  • T = 293 K

  • 0.42 × 0.25 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 4759 measured reflections

  • 4759 independent reflections

  • 3656 reflections with I > 2σ(I)

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.085

  • S = 1.27

  • 4759 reflections

  • 345 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.10 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N11 0.82 2.03 2.8380 (15) 167
O11—H11⋯N1i 0.82 2.04 2.8485 (15) 170
Symmetry code: (i) x, y, z+1.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software ; data reduction: PROFIT (Streltsov & Zavodnik, 1989[Streltsov, V. A. & Zavodnik, V. E. (1989). Sov. Phys. Crystallogr. 34, 824-828.]) routine of WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Related literature top

For the crystal structures of similar azo compounds, see: Alder et al. (2001); Petek et al. (2006). For details of the synthetic procedure, see: Fierz-David & Blangey (1949).

Experimental top

The title compound was prepared by coupling of 1-naphthyldiazonium chloride with phenol. For details of the synthetic procedure, see Fierz-David & Blangey (1949). Single crystals were grown by slow evaporation of ethanol solution.

Refinement top

H atoms were located in a difference map and refined freely, but at the final stage they were positioned geometrically and refined using a riding model with C—H = 0.93 Å, O—H = 0.82 Å and with Uiso (H) = 1.2 times Ueq (C), Uiso (H) = 1.5 times Ueq (O)

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: PROFIT (Streltsov & Zavodnik, 1989) routine of WinGX (Farrugia, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Hydrogen-bonded chain in the structure of the title compound.
4-[(E)-1-Naphthyldiazenyl]phenol top
Crystal data top
C16H12N2OF(000) = 1040
Mr = 248.28Dx = 1.257 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 10.877 (3) Åθ = 30.2–33.6°
b = 19.402 (4) ŵ = 0.64 mm1
c = 13.062 (4) ÅT = 293 K
β = 107.91 (2)°Prism, yellow
V = 2623.0 (12) Å30.42 × 0.25 × 0.20 mm
Z = 8
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.000
Radiation source: fine-focus sealed tubeθmax = 68.0°, θmin = 4.2°
Graphite monochromatorh = 1312
Nonprofiled ω scansk = 023
4759 measured reflectionsl = 015
4759 independent reflections3 standard reflections every 120 min
3656 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.27 w = 1/[σ2(Fo2) + (0.03P)2]
where P = (Fo2 + 2Fc2)/3
4759 reflections(Δ/σ)max < 0.001
345 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.10 e Å3
Crystal data top
C16H12N2OV = 2623.0 (12) Å3
Mr = 248.28Z = 8
Monoclinic, P21/cCu Kα radiation
a = 10.877 (3) ŵ = 0.64 mm1
b = 19.402 (4) ÅT = 293 K
c = 13.062 (4) Å0.42 × 0.25 × 0.20 mm
β = 107.91 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.000
4759 measured reflections3 standard reflections every 120 min
4759 independent reflections intensity decay: none
3656 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.27Δρmax = 0.12 e Å3
4759 reflectionsΔρmin = 0.10 e Å3
345 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.18879 (11)0.46571 (5)0.37796 (7)0.0747 (3)
H10.16830.43380.41050.112*
N10.45502 (10)0.37955 (5)0.10200 (8)0.0539 (3)
N20.50101 (11)0.31958 (6)0.11285 (8)0.0579 (3)
C10.25559 (13)0.44076 (7)0.31377 (9)0.0567 (3)
C20.28294 (13)0.37149 (7)0.30773 (10)0.0600 (3)
H20.25560.33960.34930.072*
C30.35060 (13)0.34981 (7)0.24013 (10)0.0582 (3)
H30.36950.30330.23630.070*
C40.39057 (12)0.39743 (6)0.17775 (9)0.0513 (3)
C50.36279 (13)0.46612 (7)0.18396 (10)0.0589 (3)
H50.38830.49790.14120.071*
C60.29752 (13)0.48811 (7)0.25289 (10)0.0607 (3)
H60.28160.53480.25850.073*
C110.56587 (12)0.30151 (7)0.03673 (9)0.0544 (3)
C120.62216 (14)0.34891 (7)0.01214 (11)0.0641 (4)
H120.61940.39550.00390.077*
C130.68388 (15)0.32749 (9)0.08621 (12)0.0761 (4)
H130.72080.35990.12030.091*
C140.68996 (15)0.25910 (9)0.10836 (12)0.0767 (4)
H140.72930.24550.15900.092*
C150.64858 (17)0.13775 (9)0.07262 (14)0.0855 (5)
H150.69100.12310.12060.103*
C160.59915 (19)0.09030 (9)0.02100 (16)0.0989 (6)
H160.60730.04360.03370.119*
C170.53563 (18)0.11151 (8)0.05166 (14)0.0888 (5)
H170.50130.07850.08690.107*
C180.52309 (15)0.17902 (7)0.07175 (11)0.0699 (4)
H180.48050.19200.12050.084*
C190.57439 (13)0.23028 (7)0.01893 (10)0.0575 (3)
C200.63794 (14)0.20886 (8)0.05609 (11)0.0659 (4)
O110.37735 (11)0.47277 (5)0.92527 (7)0.0719 (3)
H110.40000.44230.97060.108*
N110.12406 (11)0.37129 (6)0.51921 (8)0.0625 (3)
N120.08804 (11)0.30945 (7)0.51060 (8)0.0641 (3)
C210.31596 (13)0.44433 (7)0.82836 (10)0.0568 (3)
C220.29846 (13)0.37419 (7)0.81230 (10)0.0588 (3)
H220.33020.34410.86980.071*
C230.23447 (13)0.34851 (7)0.71195 (10)0.0586 (3)
H230.22200.30130.70180.070*
C240.18851 (13)0.39336 (7)0.62584 (9)0.0564 (3)
C250.20741 (15)0.46323 (8)0.64187 (10)0.0712 (4)
H250.17770.49330.58410.085*
C260.27000 (16)0.48893 (7)0.74295 (10)0.0730 (4)
H260.28120.53620.75350.088*
C310.02504 (13)0.28701 (8)0.40362 (10)0.0657 (4)
C320.02955 (14)0.33091 (10)0.32012 (11)0.0815 (5)
H320.02840.37820.33200.098*
C330.08743 (17)0.30435 (13)0.21628 (13)0.1033 (7)
H330.12280.33430.15920.124*
C340.09212 (17)0.23539 (13)0.19873 (14)0.1049 (7)
H340.13030.21890.12940.126*
C350.04644 (18)0.11655 (13)0.26655 (17)0.1062 (7)
H350.08530.09920.19780.127*
C360.0031 (2)0.07283 (12)0.3486 (2)0.1144 (7)
H360.00120.02560.33600.137*
C370.06123 (18)0.09785 (10)0.45268 (17)0.1014 (6)
H370.09440.06710.50900.122*
C380.06965 (15)0.16661 (9)0.47226 (14)0.0815 (5)
H380.10940.18240.54180.098*
C390.01899 (13)0.21457 (9)0.38867 (11)0.0700 (4)
C400.04044 (15)0.18807 (11)0.28312 (13)0.0851 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0950 (8)0.0714 (7)0.0727 (6)0.0091 (6)0.0481 (6)0.0031 (5)
N10.0556 (6)0.0481 (6)0.0588 (6)0.0007 (5)0.0187 (5)0.0034 (5)
N20.0634 (7)0.0510 (7)0.0607 (6)0.0037 (5)0.0213 (5)0.0004 (5)
C10.0590 (8)0.0618 (9)0.0520 (6)0.0035 (7)0.0207 (6)0.0006 (6)
C20.0631 (8)0.0568 (8)0.0641 (7)0.0053 (7)0.0253 (6)0.0061 (6)
C30.0623 (8)0.0456 (8)0.0680 (7)0.0022 (6)0.0220 (7)0.0019 (6)
C40.0548 (7)0.0496 (8)0.0504 (6)0.0002 (6)0.0175 (5)0.0014 (5)
C50.0708 (9)0.0509 (8)0.0601 (7)0.0007 (7)0.0277 (6)0.0049 (6)
C60.0735 (9)0.0498 (8)0.0629 (7)0.0062 (7)0.0271 (7)0.0024 (6)
C110.0540 (8)0.0527 (8)0.0553 (6)0.0048 (6)0.0152 (6)0.0004 (6)
C120.0628 (9)0.0582 (9)0.0753 (8)0.0044 (7)0.0271 (7)0.0032 (7)
C130.0730 (10)0.0827 (12)0.0831 (9)0.0056 (9)0.0393 (8)0.0097 (8)
C140.0645 (10)0.0946 (13)0.0763 (9)0.0135 (9)0.0294 (8)0.0080 (9)
C150.0751 (11)0.0751 (12)0.1001 (12)0.0149 (9)0.0180 (9)0.0255 (10)
C160.0918 (14)0.0594 (12)0.1306 (16)0.0150 (10)0.0123 (12)0.0217 (11)
C170.0942 (13)0.0550 (10)0.1092 (13)0.0036 (9)0.0192 (10)0.0030 (9)
C180.0743 (10)0.0532 (9)0.0796 (9)0.0048 (7)0.0198 (8)0.0023 (7)
C190.0518 (8)0.0539 (8)0.0613 (7)0.0067 (6)0.0095 (6)0.0031 (6)
C200.0551 (8)0.0685 (10)0.0689 (8)0.0096 (7)0.0115 (6)0.0128 (7)
O110.0950 (8)0.0586 (6)0.0556 (5)0.0139 (6)0.0134 (5)0.0038 (4)
N110.0614 (7)0.0716 (8)0.0549 (6)0.0077 (6)0.0186 (5)0.0020 (6)
N120.0598 (7)0.0743 (8)0.0563 (6)0.0110 (6)0.0149 (5)0.0050 (6)
C210.0629 (8)0.0538 (8)0.0543 (7)0.0084 (6)0.0191 (6)0.0030 (6)
C220.0616 (8)0.0542 (8)0.0567 (7)0.0013 (7)0.0125 (6)0.0035 (6)
C230.0585 (8)0.0505 (8)0.0638 (7)0.0006 (6)0.0146 (6)0.0032 (6)
C240.0583 (8)0.0609 (9)0.0516 (6)0.0058 (7)0.0190 (6)0.0007 (6)
C250.0958 (12)0.0601 (9)0.0555 (7)0.0102 (8)0.0199 (7)0.0108 (7)
C260.1015 (12)0.0518 (9)0.0632 (8)0.0140 (8)0.0215 (8)0.0039 (7)
C310.0500 (8)0.0912 (12)0.0538 (7)0.0130 (7)0.0127 (6)0.0054 (7)
C320.0581 (9)0.1153 (14)0.0648 (8)0.0132 (9)0.0095 (7)0.0071 (9)
C330.0673 (11)0.171 (2)0.0614 (9)0.0193 (13)0.0040 (8)0.0106 (12)
C340.0623 (10)0.187 (2)0.0624 (10)0.0302 (13)0.0142 (8)0.0293 (13)
C350.0665 (12)0.144 (2)0.1131 (15)0.0354 (13)0.0348 (11)0.0668 (14)
C360.0790 (14)0.1076 (18)0.160 (2)0.0263 (12)0.0424 (14)0.0554 (16)
C370.0806 (13)0.0863 (14)0.1322 (16)0.0141 (10)0.0253 (11)0.0219 (12)
C380.0669 (10)0.0848 (12)0.0875 (10)0.0135 (9)0.0158 (8)0.0152 (9)
C390.0472 (8)0.0973 (12)0.0653 (8)0.0144 (8)0.0172 (6)0.0201 (8)
C400.0526 (9)0.1284 (16)0.0755 (10)0.0249 (10)0.0214 (7)0.0365 (11)
Geometric parameters (Å, º) top
O1—C11.3564 (14)O11—C211.3539 (14)
O1—H10.8200O11—H110.8200
N1—N21.2573 (13)N11—N121.2566 (15)
N1—C41.4204 (15)N11—C241.4192 (15)
N2—C111.4286 (15)N12—C311.4223 (16)
C1—C61.3811 (17)C21—C261.3785 (18)
C1—C21.3840 (18)C21—C221.3811 (17)
C2—C31.3776 (17)C22—C231.3746 (17)
C2—H20.9300C22—H220.9300
C3—C41.3872 (16)C23—C241.3879 (17)
C3—H30.9300C23—H230.9300
C4—C51.3746 (17)C24—C251.3774 (18)
C5—C61.3747 (17)C25—C261.3793 (19)
C5—H50.9300C25—H250.9300
C6—H60.9300C26—H260.9300
C11—C121.3670 (17)C31—C321.367 (2)
C11—C191.4091 (17)C31—C391.418 (2)
C12—C131.3995 (18)C32—C331.406 (2)
C12—H120.9300C32—H320.9300
C13—C141.364 (2)C33—C341.356 (3)
C13—H130.9300C33—H330.9300
C14—C201.405 (2)C34—C401.412 (3)
C14—H140.9300C34—H340.9300
C15—C161.347 (2)C35—C361.343 (3)
C15—C201.407 (2)C35—C401.403 (3)
C15—H150.9300C35—H350.9300
C16—C171.397 (2)C36—C371.399 (3)
C16—H160.9300C36—H360.9300
C17—C181.351 (2)C37—C381.356 (2)
C17—H170.9300C37—H370.9300
C18—C191.4189 (18)C38—C391.411 (2)
C18—H180.9300C38—H380.9300
C19—C201.4239 (18)C39—C401.4265 (19)
C1—O1—H1109.5C21—O11—H11109.5
N2—N1—C4114.33 (10)N12—N11—C24114.97 (11)
N1—N2—C11114.41 (10)N11—N12—C31115.02 (12)
O1—C1—C6116.94 (12)O11—C21—C26116.91 (12)
O1—C1—C2123.18 (12)O11—C21—C22123.29 (12)
C6—C1—C2119.89 (12)C26—C21—C22119.80 (12)
C3—C2—C1119.97 (12)C23—C22—C21120.51 (12)
C3—C2—H2120.0C23—C22—H22119.7
C1—C2—H2120.0C21—C22—H22119.7
C2—C3—C4119.92 (12)C22—C23—C24119.74 (13)
C2—C3—H3120.0C22—C23—H23120.1
C4—C3—H3120.0C24—C23—H23120.1
C5—C4—C3119.79 (12)C25—C24—C23119.61 (12)
C5—C4—N1116.26 (11)C25—C24—N11116.85 (12)
C3—C4—N1123.89 (12)C23—C24—N11123.53 (12)
C4—C5—C6120.45 (12)C24—C25—C26120.53 (13)
C4—C5—H5119.8C24—C25—H25119.7
C6—C5—H5119.8C26—C25—H25119.7
C5—C6—C1119.95 (13)C21—C26—C25119.81 (14)
C5—C6—H6120.0C21—C26—H26120.1
C1—C6—H6120.0C25—C26—H26120.1
C12—C11—C19121.41 (12)C32—C31—C39121.16 (14)
C12—C11—N2123.22 (12)C32—C31—N12123.57 (15)
C19—C11—N2115.28 (11)C39—C31—N12115.26 (13)
C11—C12—C13120.13 (14)C31—C32—C33119.80 (18)
C11—C12—H12119.9C31—C32—H32120.1
C13—C12—H12119.9C33—C32—H32120.1
C14—C13—C12120.03 (14)C34—C33—C32120.48 (19)
C14—C13—H13120.0C34—C33—H33119.8
C12—C13—H13120.0C32—C33—H33119.8
C13—C14—C20121.25 (14)C33—C34—C40121.64 (17)
C13—C14—H14119.4C33—C34—H34119.2
C20—C14—H14119.4C40—C34—H34119.2
C16—C15—C20121.95 (17)C36—C35—C40120.91 (19)
C16—C15—H15119.0C36—C35—H35119.5
C20—C15—H15119.0C40—C35—H35119.5
C15—C16—C17119.73 (16)C35—C36—C37120.5 (2)
C15—C16—H16120.1C35—C36—H36119.8
C17—C16—H16120.1C37—C36—H36119.8
C18—C17—C16121.21 (17)C38—C37—C36120.6 (2)
C18—C17—H17119.4C38—C37—H37119.7
C16—C17—H17119.4C36—C37—H37119.7
C17—C18—C19120.45 (15)C37—C38—C39121.00 (17)
C17—C18—H18119.8C37—C38—H38119.5
C19—C18—H18119.8C39—C38—H38119.5
C11—C19—C18123.48 (12)C38—C39—C31123.82 (13)
C11—C19—C20118.05 (13)C38—C39—C40117.58 (16)
C18—C19—C20118.48 (13)C31—C39—C40118.59 (16)
C14—C20—C15122.78 (15)C35—C40—C34122.30 (18)
C14—C20—C19119.03 (13)C35—C40—C39119.44 (19)
C15—C20—C19118.17 (15)C34—C40—C39118.26 (18)
C4—N1—N2—C11180.00 (10)C24—N11—N12—C31179.16 (11)
O1—C1—C2—C3179.58 (13)O11—C21—C22—C23179.57 (12)
C6—C1—C2—C30.7 (2)C26—C21—C22—C230.6 (2)
C1—C2—C3—C40.4 (2)C21—C22—C23—C240.8 (2)
C2—C3—C4—C50.21 (19)C22—C23—C24—C250.1 (2)
C2—C3—C4—N1176.74 (12)C22—C23—C24—N11178.54 (12)
N2—N1—C4—C5166.80 (11)N12—N11—C24—C25167.83 (13)
N2—N1—C4—C316.15 (17)N12—N11—C24—C2313.54 (19)
C3—C4—C5—C61.1 (2)C23—C24—C25—C260.9 (2)
N1—C4—C5—C6178.26 (12)N11—C24—C25—C26179.57 (13)
C4—C5—C6—C12.2 (2)O11—C21—C26—C25179.50 (13)
O1—C1—C6—C5178.27 (12)C22—C21—C26—C250.3 (2)
C2—C1—C6—C52.0 (2)C24—C25—C26—C211.1 (2)
N1—N2—C11—C1226.47 (17)N11—N12—C31—C3219.79 (19)
N1—N2—C11—C19156.77 (11)N11—N12—C31—C39161.81 (12)
C19—C11—C12—C133.6 (2)C39—C31—C32—C333.1 (2)
N2—C11—C12—C13179.85 (12)N12—C31—C32—C33178.58 (13)
C11—C12—C13—C141.2 (2)C31—C32—C33—C341.5 (3)
C12—C13—C14—C201.6 (2)C32—C33—C34—C400.4 (3)
C20—C15—C16—C170.3 (3)C40—C35—C36—C370.4 (3)
C15—C16—C17—C180.3 (3)C35—C36—C37—C380.7 (3)
C16—C17—C18—C190.1 (2)C36—C37—C38—C390.7 (3)
C12—C11—C19—C18176.81 (13)C37—C38—C39—C31179.74 (15)
N2—C11—C19—C180.01 (18)C37—C38—C39—C400.4 (2)
C12—C11—C19—C203.18 (19)C32—C31—C39—C38177.83 (14)
N2—C11—C19—C20180.00 (11)N12—C31—C39—C380.6 (2)
C17—C18—C19—C11179.40 (14)C32—C31—C39—C402.8 (2)
C17—C18—C19—C200.6 (2)N12—C31—C39—C40178.75 (12)
C13—C14—C20—C15176.48 (15)C36—C35—C40—C34179.71 (18)
C13—C14—C20—C191.9 (2)C36—C35—C40—C390.1 (3)
C16—C15—C20—C14179.36 (16)C33—C34—C40—C35178.93 (17)
C16—C15—C20—C191.0 (2)C33—C34—C40—C390.7 (3)
C11—C19—C20—C140.44 (19)C38—C39—C40—C350.1 (2)
C18—C19—C20—C14179.55 (13)C31—C39—C40—C35179.49 (14)
C11—C19—C20—C15178.90 (13)C38—C39—C40—C34179.71 (14)
C18—C19—C20—C151.09 (19)C31—C39—C40—C340.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N110.822.032.8380 (15)167
O11—H11···N1i0.822.042.8485 (15)170
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC16H12N2O
Mr248.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.877 (3), 19.402 (4), 13.062 (4)
β (°) 107.91 (2)
V3)2623.0 (12)
Z8
Radiation typeCu Kα
µ (mm1)0.64
Crystal size (mm)0.42 × 0.25 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4759, 4759, 3656
Rint0.000
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.085, 1.27
No. of reflections4759
No. of parameters345
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.10

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), PROFIT (Streltsov & Zavodnik, 1989) routine of WinGX (Farrugia, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N110.822.032.8380 (15)166.5
O11—H11···N1i0.822.042.8485 (15)170.0
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

KAP and AVY would like to thank ICDD for financial assistance (grant No. 93–05).

References

First citationAlder, M. J., Bates, V. M., Cross, W. I., Flower, K. R. & Pritchard, R. G. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 2669–2675.  Web of Science CSD CrossRef Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFierz-David, H. E. & Blangey, L. (1949). Fundamental Processes of Dye Chemistry, pp. 236–240. London: Interscience.  Google Scholar
First citationPetek, H., Erşahin, F., Albayrak, Ç., Ağar, E. & Şenel, İ. (2006). Acta Cryst. E62, o5874–o5875.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStreltsov, V. A. & Zavodnik, V. E. (1989). Sov. Phys. Crystallogr. 34, 824–828.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds