organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Naphthalene-2,3-diol–imidazole (1/1)

aDepartment of Chemical Engineering, Shandong Institute of Light Industry, Jinan, Shandong 250353, People's Republic of China
*Correspondence e-mail: ceswyt@sohu.com

(Received 5 August 2008; accepted 8 August 2008; online 13 August 2008)

In the title cocrystal, C10H8O2·C3H4N2, inter­molecular O—H⋯O and N—H⋯O hydrogen bonds connect the naphthalene-2,3-diol and imidazole mol­ecules into a two-dimensional supra­molecular framework.

Related literature

For other cocrystals of naphthalene-2,3-diol, see: Fritchie & Johnston (1975[Fritchie, C. J. & Johnston, R. M. (1975). Acta Cryst. B31, 454-461.]); Wang & Tang (2006[Wang, Y.-T. & Tang, G.-M. (2006). Acta Cryst. E62, o3833-o3834.]); Wang, Tang & Ng (2006[Wang, Y.-T., Tang, G.-M. & Ng, S. W. (2006). Acta Cryst. E62, o4429-o4430.]); Wang, Tang & Wan (2006[Wang, Y.-T., Tang, G.-M. & Wan, W.-Z. (2006). Acta Cryst. E62, o3396-o3397.]); Wells et al. (1974[Wells, J. L., Trus, B. L., Johnston, R. M., Marsh, R. E. & Fritchie, C. J. (1974). Acta Cryst. B30, 1127-1134.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8O2·C3H4N2

  • Mr = 228.25

  • Orthorhombic, P b c a

  • a = 12.0003 (17) Å

  • b = 7.7862 (11) Å

  • c = 25.863 (4) Å

  • V = 2416.6 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 (2) K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART diffractometer

  • Absorption correction: none

  • 18637 measured reflections

  • 2777 independent reflections

  • 2142 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.125

  • S = 1.04

  • 2777 reflections

  • 166 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯O2i 0.92 (2) 1.78 (2) 2.6877 (14) 166 (2)
O2—H2A⋯N1 1.03 (2) 1.57 (2) 2.5947 (15) 170 (2)
N2—H2B⋯O1ii 0.89 (2) 2.09 (3) 2.9185 (19) 156 (2)
Symmetry codes: (i) [x+2, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x-1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART; cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. ]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

During past decade, the field of molecular co-crystals have received considerable attention, for example, the design, construction, properties and the definition of molecular co-crystals, partly because co-crystallization reactions offer unique opportunities for examining the balance between and structural influence of intermolecular interactions. Recently, a lot of co-crystals containing some organic acids and bases, have been successfully synthesized and characterized by our research group. Especially, co-crystals containing naphthalene-2,7-diol with some organic bases have been prepared and reported (Wang & Tang, 2006; Wang, Tang & Ng, 2006; Wang, Tang & Wan, 2006). A series of supramolecular structures of self-assembly with different motifs have been obtained. There are a few co-crystals about naphthalene-2,3-diol (ndo) as organic acid; some interesting structures have been generated through supramolecular self-assemblies (Fritchie & Johnston, 1975; Wells, et al., 1974). To study a series of co-crystals containing ndo and to further explore its properties, we have selected the structure of the co-crystal, (I), of ndo and imidazole.

A view of the title structure is shown in Fig. 1. The asymmetric unit consists of one independent ndo molecule and one independent molecule of imidazole. In the crystal structure of the title compound, intermolecular O—H···O and N—H···O hydrogen bonds connect naphthalene-2,3-diol molecules and imidazole molecules into a linear ribbon motif, which are further extended to two-dimensional supramolecular framwork through N—H···O hydrogen bonds (Table 1, Fig. 2).

Related literature top

For other cocrystals of naphthalene-2,3-diol, see: Fritchie & Johnston (1975); Wang & Tang (2006); Wang, Tang & Ng (2006); Wang, Tang & Wan (2006); Wells et al. (1974).

Experimental top

A mixture of naphthalene-2,3-diol (80 mg, 0.5 mmol) and imidazole (34 mg, 0.5 mmol) was recrystallized from methanol (5 ml) and water (1 ml) (yield: 102 mg, 90%), from which a yellow needle suitable for x-ray diffraction was selected. Analysis found (%): C 68.21; H, 5.33; N, 12.21; requires (%): C, 68.41; H, 5.30; N, 12.27.

Refinement top

All H atoms were located in a difference Fourier map. Carbon-bound hydrogen atoms were positioned geometrically (C—H = 0.93 A °), and were included in the refinement in the riding-model approximation, with Uiso(H) = 1.2Ueq(C). Oxygen- and nitrogen-bound hydrogen atoms were restrained and refined independently, with isotropic displacement parameters, giving final O—H and N—H distances in the range 0.895 (5)–0.911 (9), 0.897 (10) A °, respectively.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A drawing of (I), with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram of (I); hydrogen bonds are shown by dashed lines.
Naphthalene-2,3-diol–imidazole (1/1) top
Crystal data top
C10H8O2·C3H4N2F(000) = 960
Mr = 228.25Dx = 1.255 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5055 reflections
a = 12.0003 (17) Åθ = 2.3–26.3°
b = 7.7862 (11) ŵ = 0.09 mm1
c = 25.863 (4) ÅT = 296 K
V = 2416.6 (6) Å3Column, yellow
Z = 80.30 × 0.30 × 0.20 mm
Data collection top
Bruker SMART
diffractometer
2142 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 27.6°, θmin = 1.6°
ϕ and ω scansh = 1315
18637 measured reflectionsk = 109
2777 independent reflectionsl = 3333
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0675P)2 + 0.2922P]
where P = (Fo2 + 2Fc2)/3
2777 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.16 e Å3
3 restraintsΔρmin = 0.20 e Å3
Crystal data top
C10H8O2·C3H4N2V = 2416.6 (6) Å3
Mr = 228.25Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.0003 (17) ŵ = 0.09 mm1
b = 7.7862 (11) ÅT = 296 K
c = 25.863 (4) Å0.30 × 0.30 × 0.20 mm
Data collection top
Bruker SMART
diffractometer
2142 reflections with I > 2σ(I)
18637 measured reflectionsRint = 0.031
2777 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0413 restraints
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.16 e Å3
2777 reflectionsΔρmin = 0.20 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.75477 (8)0.63170 (13)0.59205 (4)0.0517 (3)
H1B0.8003 (12)0.7228 (17)0.5918 (7)0.074 (5)*
O20.60386 (7)0.39458 (12)0.57667 (4)0.0519 (3)
H2A0.5427 (12)0.333 (2)0.5673 (8)0.094 (6)*
C10.63552 (11)0.78573 (16)0.65109 (5)0.0438 (3)
H1A0.69090.86650.65750.053*
C20.65645 (10)0.65273 (15)0.61825 (4)0.0396 (3)
C30.57423 (10)0.52524 (15)0.60887 (4)0.0404 (3)
C40.47199 (11)0.54089 (16)0.63144 (5)0.0455 (3)
H40.41760.45870.62470.055*
C50.44700 (11)0.67966 (17)0.66483 (5)0.0443 (3)
C60.34112 (12)0.6975 (2)0.68858 (6)0.0570 (4)
H60.28490.61940.68090.068*
C70.32087 (14)0.8271 (2)0.72241 (6)0.0671 (5)
H70.25140.83590.73810.081*
C80.40329 (16)0.9469 (2)0.73374 (6)0.0705 (5)
H80.38861.03450.75720.085*
C90.50538 (14)0.9372 (2)0.71078 (5)0.0594 (4)
H90.55921.01950.71830.071*
C100.53038 (11)0.80258 (16)0.67555 (4)0.0435 (3)
C110.40496 (13)0.1697 (2)0.50288 (5)0.0577 (4)
H110.42950.23190.47440.069*
C120.31524 (16)0.0138 (3)0.54918 (7)0.0804 (5)
H120.26710.10070.55970.096*
C130.38620 (14)0.0743 (2)0.57906 (6)0.0673 (4)
H130.39550.05830.61440.081*
N10.44264 (9)0.19072 (14)0.54994 (4)0.0504 (3)
N20.32741 (12)0.0486 (2)0.50092 (5)0.0682 (4)
H2B0.2928 (17)0.018 (3)0.4716 (6)0.113 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0449 (5)0.0484 (6)0.0619 (6)0.0061 (4)0.0087 (4)0.0098 (4)
O20.0416 (5)0.0462 (5)0.0678 (6)0.0014 (4)0.0028 (4)0.0219 (4)
C10.0484 (7)0.0386 (7)0.0445 (6)0.0042 (5)0.0078 (5)0.0028 (5)
C20.0384 (6)0.0395 (7)0.0409 (6)0.0014 (5)0.0018 (5)0.0006 (5)
C30.0417 (7)0.0356 (6)0.0439 (6)0.0030 (5)0.0058 (5)0.0050 (5)
C40.0405 (7)0.0401 (7)0.0561 (7)0.0026 (5)0.0010 (5)0.0056 (6)
C50.0454 (7)0.0442 (7)0.0432 (6)0.0066 (6)0.0012 (5)0.0003 (5)
C60.0497 (8)0.0621 (9)0.0593 (8)0.0064 (7)0.0059 (6)0.0005 (7)
C70.0620 (10)0.0788 (11)0.0605 (9)0.0202 (9)0.0108 (7)0.0058 (8)
C80.0773 (12)0.0754 (11)0.0588 (9)0.0247 (9)0.0010 (8)0.0242 (8)
C90.0659 (10)0.0562 (9)0.0560 (8)0.0088 (7)0.0103 (7)0.0176 (7)
C100.0505 (7)0.0406 (7)0.0394 (6)0.0072 (5)0.0069 (5)0.0025 (5)
C110.0628 (9)0.0592 (9)0.0511 (7)0.0000 (7)0.0112 (7)0.0014 (6)
C120.0776 (12)0.0805 (12)0.0830 (12)0.0316 (10)0.0031 (9)0.0055 (10)
C130.0733 (11)0.0780 (11)0.0506 (8)0.0107 (9)0.0028 (7)0.0013 (7)
N10.0504 (6)0.0479 (6)0.0528 (6)0.0003 (5)0.0107 (5)0.0094 (5)
N20.0618 (8)0.0771 (10)0.0656 (8)0.0072 (7)0.0184 (7)0.0204 (7)
Geometric parameters (Å, º) top
O1—C21.3705 (15)C7—C81.390 (3)
O1—H1B0.895 (9)C7—H70.9300
O2—C31.3620 (14)C8—C91.363 (2)
O2—H2A0.911 (9)C8—H80.9300
C1—C21.3627 (17)C9—C101.4207 (18)
C1—C101.4176 (18)C9—H90.9300
C1—H1A0.9300C11—N11.3089 (17)
C2—C31.4204 (17)C11—N21.326 (2)
C3—C41.3642 (17)C11—H110.9300
C4—C51.4154 (18)C12—C131.339 (2)
C4—H40.9300C12—N21.347 (2)
C5—C101.4120 (19)C12—H120.9300
C5—C61.4180 (18)C13—N11.359 (2)
C6—C71.358 (2)C13—H130.9300
C6—H60.9300N2—H2B0.897 (10)
C2—O1—H1B115.7 (11)C9—C8—C7120.68 (14)
C3—O2—H2A110.3 (13)C9—C8—H8119.7
C2—C1—C10120.83 (11)C7—C8—H8119.7
C2—C1—H1A119.6C8—C9—C10120.65 (15)
C10—C1—H1A119.6C8—C9—H9119.7
C1—C2—O1123.90 (11)C10—C9—H9119.7
C1—C2—C3120.63 (11)C5—C10—C1118.71 (11)
O1—C2—C3115.47 (10)C5—C10—C9118.44 (13)
O2—C3—C4124.27 (11)C1—C10—C9122.85 (13)
O2—C3—C2116.43 (11)N1—C11—N2111.53 (14)
C4—C3—C2119.29 (11)N1—C11—H11124.2
C3—C4—C5121.32 (12)N2—C11—H11124.2
C3—C4—H4119.3C13—C12—N2106.33 (15)
C5—C4—H4119.3C13—C12—H12126.8
C10—C5—C4119.15 (12)N2—C12—H12126.8
C10—C5—C6118.92 (12)C12—C13—N1109.81 (15)
C4—C5—C6121.92 (13)C12—C13—H13125.1
C7—C6—C5120.81 (15)N1—C13—H13125.1
C7—C6—H6119.6C11—N1—C13105.05 (12)
C5—C6—H6119.6C11—N2—C12107.28 (12)
C6—C7—C8120.46 (15)C11—N2—H2B123.1 (15)
C6—C7—H7119.8C12—N2—H2B129.6 (15)
C8—C7—H7119.8
C10—C1—C2—O1177.81 (11)C7—C8—C9—C101.2 (2)
C10—C1—C2—C31.71 (18)C4—C5—C10—C12.02 (18)
C1—C2—C3—O2178.13 (11)C6—C5—C10—C1179.01 (11)
O1—C2—C3—O22.31 (16)C4—C5—C10—C9177.49 (12)
C1—C2—C3—C42.72 (18)C6—C5—C10—C91.48 (18)
O1—C2—C3—C4176.84 (11)C2—C1—C10—C50.67 (18)
O2—C3—C4—C5179.59 (12)C2—C1—C10—C9178.82 (12)
C2—C3—C4—C51.33 (19)C8—C9—C10—C50.2 (2)
C3—C4—C5—C101.02 (19)C8—C9—C10—C1179.33 (14)
C3—C4—C5—C6179.96 (13)N2—C12—C13—N10.1 (2)
C10—C5—C6—C72.1 (2)N2—C11—N1—C130.76 (18)
C4—C5—C6—C7176.80 (14)C12—C13—N1—C110.39 (19)
C5—C6—C7—C81.1 (2)N1—C11—N2—C120.8 (2)
C6—C7—C8—C90.6 (3)C13—C12—N2—C110.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O2i0.92 (2)1.78 (2)2.6877 (14)166 (2)
O2—H2A···N11.03 (2)1.57 (2)2.5947 (15)170 (2)
N2—H2B···O1ii0.89 (2)2.09 (3)2.9185 (19)156 (2)
Symmetry codes: (i) x+2, y1/2, z1/2; (ii) x1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC10H8O2·C3H4N2
Mr228.25
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)12.0003 (17), 7.7862 (11), 25.863 (4)
V3)2416.6 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
18637, 2777, 2142
Rint0.031
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.125, 1.04
No. of reflections2777
No. of parameters166
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.20

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O2i0.92 (2)1.78 (2)2.6877 (14)166 (2)
O2—H2A···N11.03 (2)1.57 (2)2.5947 (15)170 (2)
N2—H2B···O1ii0.89 (2)2.09 (3)2.9185 (19)156 (2)
Symmetry codes: (i) x+2, y1/2, z1/2; (ii) x1, y+1/2, z+3/2.
 

Acknowledgements

This work was supported by the Starting Fund of Shandong Institute of Light Industry (to Y-TW).

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFritchie, C. J. & Johnston, R. M. (1975). Acta Cryst. B31, 454–461.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y.-T. & Tang, G.-M. (2006). Acta Cryst. E62, o3833–o3834.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, Y.-T., Tang, G.-M. & Ng, S. W. (2006). Acta Cryst. E62, o4429–o4430.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, Y.-T., Tang, G.-M. & Wan, W.-Z. (2006). Acta Cryst. E62, o3396–o3397.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWells, J. L., Trus, B. L., Johnston, R. M., Marsh, R. E. & Fritchie, C. J. (1974). Acta Cryst. B30, 1127–1134.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds