organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 4-methyl­benzoate

aDepartment of Chemistry, Quaid-i-Azam University Islamabad, Pakistan, and bDepartment Chemie, Fakultät für Naturwissenschaften, Universität Paderborn, Warburgerstrasse 100, D-33098 Paderborn, Germany
*Correspondence e-mail: aamersaeed@yahoo.com

(Received 29 March 2008; accepted 1 April 2008; online 10 April 2008)

The structure of the title compound, C9H10O2, is related to that of 4-methyl­phenyl 4-methyl­benzoate and ethyl­ene di-4-methyl­benzoate showing similar bond parameters. The mol­ecule is planar, the dihedral angle between the aromatic ring and the –COOMe group being 0.95 (6)°. The cystal structure exhibits inter­molecular C—H⋯O contacts that link mol­ecules into infinite chains extended in the [001] direction.

Related literature

For related literature, see: Deguire & Brisse (1988[Deguire, S. & Brisse, F. (1988). Can. J. Chem. 66, 2545-2552.]); Gowda et al. (2007[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007). Acta Cryst. E63, o3867.]; Gray & Whalley (1971[Gray, R. W. & Whalley, W. B. (1971). J. Chem. Soc. C, pp. 3575-3577.]); Harris & Mantle (2001[Harris, J. P. & Mantle, P. G. (2001). Phytochemistry, 58, 709-716.]); Saeed & Rama (1994[Saeed, A. & Rama, N. H. (1994). J. Sci. I. R. Iran, 5, 173-175.]); Simpson (1978[Simpson, T. J. (1978). J. Chem. Soc. Chem. Commun. pp. 627-628.]).

[Scheme 1]

Experimental

Crystal data
  • C9H10O2

  • Mr = 150.17

  • Monoclinic, P 21 /c

  • a = 5.9134 (11) Å

  • b = 7.6048 (14) Å

  • c = 17.484 (3) Å

  • β = 97.783 (4)°

  • V = 779.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 120 (2) K

  • 0.45 × 0.43 × 0.39 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.961, Tmax = 0.967

  • 6617 measured reflections

  • 1855 independent reflections

  • 1482 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.124

  • S = 1.06

  • 1855 reflections

  • 102 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯O2i 0.98 2.51 3.4930 (16) 177
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title ester is an important intermediate in the synthesis of a variety of natural products. These include the sclerotiorin group of fungal metabolites (Gray & Whalley, 1971), isochromans related to sclerotiorin pigments (Saeed & Rama, 1994) and isocoumarins like the 7-methylmellein (Harris & Mantle, 2001) and stellatin (Simpson, 1978).

Related literature top

For related literature, see: Deguire & Brisse (1988); Gowda et al. (2007; Gray & Whalley (1971); Harris & Mantle (2001); Saeed & Rama (1994); Simpson (1978).

Experimental top

The title ester was prepared from commercial p-toluic acid according to standard procedure.

Refinement top

Hydrogen atoms were located in difference syntheses, refined at idealized positions riding on the carbon or nitrogen atoms (C–H = 0.88–0.99 Å) with isotropic displacement parameters Uiso(H) = 1.2U(Ceq).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing viewed along [100] with intermolecular hydrogen bonding pattern indicated as dashed lines. H-atoms not involved in hydrogen bonding are omitted.
Methyl 4-methylbenzoate top
Crystal data top
C9H10O2F(000) = 320
Mr = 150.17Dx = 1.280 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 806 reflections
a = 5.9134 (11) Åθ = 2.4–27.8°
b = 7.6048 (14) ŵ = 0.09 mm1
c = 17.484 (3) ÅT = 120 K
β = 97.783 (4)°Block, colourless
V = 779.0 (2) Å30.45 × 0.43 × 0.39 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
1855 independent reflections
Radiation source: sealed tube1482 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ and ω scansθmax = 27.9°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 77
Tmin = 0.961, Tmax = 0.967k = 109
6617 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: difference Fourier map
wR(F2) = 0.124H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0752P)2 + 0.0208P]
where P = (Fo2 + 2Fc2)/3
1855 reflections(Δ/σ)max < 0.001
102 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C9H10O2V = 779.0 (2) Å3
Mr = 150.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.9134 (11) ŵ = 0.09 mm1
b = 7.6048 (14) ÅT = 120 K
c = 17.484 (3) Å0.45 × 0.43 × 0.39 mm
β = 97.783 (4)°
Data collection top
Bruker SMART APEX
diffractometer
1855 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1482 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.967Rint = 0.039
6617 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.06Δρmax = 0.31 e Å3
1855 reflectionsΔρmin = 0.20 e Å3
102 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.39091 (14)0.28701 (11)0.44793 (5)0.0280 (2)
O20.68910 (15)0.15425 (13)0.51751 (5)0.0325 (3)
C10.2956 (2)0.31740 (17)0.51874 (7)0.0320 (3)
H1A0.27930.20500.54480.048*
H1B0.14560.37320.50680.048*
H1C0.39740.39460.55260.048*
C20.59091 (19)0.20144 (15)0.45593 (6)0.0234 (3)
C30.67753 (18)0.17434 (15)0.38071 (6)0.0223 (3)
C40.55841 (19)0.23124 (15)0.31083 (7)0.0247 (3)
H4A0.41540.28880.30980.030*
C50.6496 (2)0.20350 (15)0.24261 (7)0.0262 (3)
H5A0.56750.24260.19520.031*
C60.8588 (2)0.11953 (15)0.24239 (7)0.0244 (3)
C70.97615 (19)0.06389 (15)0.31291 (7)0.0253 (3)
H7A1.11950.00680.31400.030*
C80.88716 (19)0.09050 (15)0.38126 (7)0.0242 (3)
H8A0.96930.05150.42870.029*
C90.9593 (2)0.08897 (17)0.16858 (7)0.0312 (3)
H9A1.12130.12130.17640.047*
H9B0.87820.16130.12730.047*
H9C0.94380.03550.15420.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0268 (5)0.0322 (5)0.0260 (4)0.0042 (3)0.0071 (3)0.0018 (3)
O20.0343 (5)0.0389 (5)0.0234 (5)0.0042 (4)0.0004 (4)0.0016 (3)
C10.0340 (7)0.0342 (7)0.0299 (7)0.0024 (5)0.0121 (5)0.0009 (5)
C20.0249 (6)0.0201 (6)0.0248 (6)0.0033 (4)0.0022 (5)0.0003 (4)
C30.0236 (6)0.0203 (6)0.0232 (6)0.0031 (4)0.0031 (4)0.0006 (4)
C40.0214 (5)0.0252 (6)0.0271 (6)0.0008 (4)0.0022 (4)0.0024 (4)
C50.0271 (6)0.0281 (6)0.0222 (6)0.0019 (5)0.0006 (5)0.0029 (4)
C60.0275 (6)0.0210 (6)0.0251 (6)0.0058 (4)0.0049 (4)0.0010 (4)
C70.0231 (6)0.0215 (6)0.0316 (6)0.0008 (4)0.0042 (5)0.0002 (4)
C80.0245 (6)0.0221 (6)0.0251 (6)0.0017 (4)0.0000 (4)0.0032 (4)
C90.0355 (7)0.0320 (7)0.0271 (6)0.0005 (5)0.0079 (5)0.0018 (5)
Geometric parameters (Å, º) top
O1—C21.3405 (14)C5—C61.3927 (17)
O1—C11.4468 (14)C5—H5A0.9500
O2—C21.2065 (14)C6—C71.3962 (17)
C1—H1A0.9800C6—C91.5101 (16)
C1—H1B0.9800C7—C81.3843 (16)
C1—H1C0.9800C7—H7A0.9500
C2—C31.4890 (16)C8—H8A0.9500
C3—C81.3929 (16)C9—H9A0.9800
C3—C41.3940 (16)C9—H9B0.9800
C4—C51.3899 (16)C9—H9C0.9800
C4—H4A0.9500
C2—O1—C1115.38 (9)C4—C5—H5A119.3
O1—C1—H1A109.5C6—C5—H5A119.3
O1—C1—H1B109.5C5—C6—C7118.16 (10)
H1A—C1—H1B109.5C5—C6—C9121.71 (11)
O1—C1—H1C109.5C7—C6—C9120.13 (11)
H1A—C1—H1C109.5C8—C7—C6121.10 (10)
H1B—C1—H1C109.5C8—C7—H7A119.5
O2—C2—O1123.28 (10)C6—C7—H7A119.5
O2—C2—C3124.43 (11)C7—C8—C3120.20 (10)
O1—C2—C3112.28 (9)C7—C8—H8A119.9
C8—C3—C4119.46 (10)C3—C8—H8A119.9
C8—C3—C2118.00 (10)C6—C9—H9A109.5
C4—C3—C2122.54 (10)C6—C9—H9B109.5
C5—C4—C3119.76 (11)H9A—C9—H9B109.5
C5—C4—H4A120.1C6—C9—H9C109.5
C3—C4—H4A120.1H9A—C9—H9C109.5
C4—C5—C6121.33 (10)H9B—C9—H9C109.5
C1—O1—C2—O21.07 (16)C3—C4—C5—C60.00 (17)
C1—O1—C2—C3179.72 (9)C4—C5—C6—C70.20 (17)
O2—C2—C3—C80.70 (18)C4—C5—C6—C9179.94 (10)
O1—C2—C3—C8178.50 (10)C5—C6—C7—C80.28 (17)
O2—C2—C3—C4179.94 (11)C9—C6—C7—C8179.98 (10)
O1—C2—C3—C40.74 (16)C6—C7—C8—C30.16 (17)
C8—C3—C4—C50.12 (17)C4—C3—C8—C70.05 (17)
C2—C3—C4—C5179.36 (10)C2—C3—C8—C7179.32 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···O2i0.982.513.4930 (16)177
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC9H10O2
Mr150.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)5.9134 (11), 7.6048 (14), 17.484 (3)
β (°) 97.783 (4)
V3)779.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.45 × 0.43 × 0.39
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.961, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
6617, 1855, 1482
Rint0.039
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.124, 1.06
No. of reflections1855
No. of parameters102
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.20

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
O1—C21.3405 (14)C2—C31.4890 (16)
O1—C11.4468 (14)C6—C91.5101 (16)
O2—C21.2065 (14)
C2—O1—C1115.38 (9)O2—C2—C3124.43 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···O2i0.982.513.4930 (16)176.8
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

AS gratefully acknowledges a research grant from Quaid-I-Azam University, Islamabad.

References

First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeguire, S. & Brisse, F. (1988). Can. J. Chem. 66, 2545–2552.  CrossRef CAS Web of Science Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007). Acta Cryst. E63, o3867.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGray, R. W. & Whalley, W. B. (1971). J. Chem. Soc. C, pp. 3575–3577.  Google Scholar
First citationHarris, J. P. & Mantle, P. G. (2001). Phytochemistry, 58, 709–716.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSaeed, A. & Rama, N. H. (1994). J. Sci. I. R. Iran, 5, 173–175.  CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSimpson, T. J. (1978). J. Chem. Soc. Chem. Commun. pp. 627–628.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds