Download citation
Download citation
link to html
The title compound, C21H32O3, also known as dimethyl­incisterol A3, was isolated from halo­tolerant fungus THW-18. It is composed of three fused rings and a side chain. In the crystal structure, the mol­ecules inter­act with each other via O—H...O hydrogen bonds, resulting in an extended chain along the b axis. The absolute configuration was assigned from the measured optical rotation and reference to the literature.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807047307/av3110sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807047307/av3110Isup2.hkl
Contains datablock I

CCDC reference: 667262

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.045
  • wR factor = 0.113
  • Data-to-parameter ratio = 8.8

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT220_ALERT_2_B Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.86 Ratio PLAT222_ALERT_3_B Large Non-Solvent H Ueq(max)/Ueq(min) ... 4.69 Ratio
Alert level C STRVA01_ALERT_4_C Flack test results are meaningless. From the CIF: _refine_ls_abs_structure_Flack 0.000 From the CIF: _refine_ls_abs_structure_Flack_su 10.000 PLAT032_ALERT_4_C Std. Uncertainty in Flack Parameter too High ... 10.00 PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C15 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C16 PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 6 PLAT850_ALERT_2_C Check Flack Parameter Exact Value 0.00 and su .. 10.00
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 25.01 From the CIF: _reflns_number_total 1965 Count of symmetry unique reflns 1969 Completeness (_total/calc) 99.80% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no PLAT791_ALERT_1_G Confirm the Absolute Configuration of C4 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C7 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C8 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C11 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C12 = . R PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 7 ALERT level G = General alerts; check 6 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Dimethylincisterol A3, (I), was first reported as an intermediate to synthesize the (17R)-17-methylincisterol (De Riccardis et al., 1995), and then was isolated from a marine sponge Homaxinella sp. in 2005 (Mansoor et al., 2005). This title compound and related compounds are of interest because of their biological activities (Togashi et al., 1998; Mansoor et al., 2005; Kawagishi et al., 2006). We isolated (I) as a part of our ongoing study characterizing bioactive metabolites from various halotolerant microorganisms. This is our first report about the title compound isolated from halotolerant fungus THW-18 and the results of its X-ray crystallographic study (Fig. 1).

The five-membered N3—C4—C5—C6—C7 ring adopts a twist conformation, and the six-membered N2—C3—C4—N3—C8—C9 ring adopts a half-chair conformation. The corresponding puckering parameters (Cremer & Pople, 1975) are Q = 0.462 (4) Å, φ = 192.5 (5)° and Q = 0.564 (4) Å, θ = 6.1 (4)°, φ = 264 (3)°.

It was not possible to determined the absolute configuration of compound (I) by anomalous dispersion effects, but the positive optical rotation suggested that this compound was dimethylincisterol A3 (Mansoor et al., 2005; Kawagishi et al., 2006).

As shown in Fig. 2, the compounds are linked into a 1-D ribbon along [010] by the O3—H3A···O2i hydrogen bond. (symmetry code: i = 3 - x, 1/2 + y, 1 - z).

Related literature top

For general background, see: Mansoor et al. (2005); Togashi et al. (1998); Kawagishi et al. (2006); De Riccardis et al. (1995). For related literature, see: Cremer & Pople (1975).

Experimental top

The isolated halotolerant fungal strain THW-18, was isolated from the sediments collected in Hongdao salt field, Qingdao, China. The working strain was cultured under static conditions at 303 K for 45 days in two hundred and fifty 1000-ml conical flasks containing the liquid medium (300 ml/flask) composed of maltose (8 g/L), mannitol (8 g/L), glucose (4 g/L), monosodium glutamate (10 g/L), KH2PO4 (0.5 g/L), yeast extract paste (3 g/L), maize paste (1 g/L), and sea salt (100 g/L) after adjusting its pH to 6.5. The fermented whole broth (75 L) was filtered through cheese cloth to separate into supernatant and mycelia. The mycelia were extracted three times with acetone and the acetone solution was concentrated under reduced pressure to afford crude extract (42 g). The crude extract, which was subjected to chromatography over silica gel column using a stepwise gradient elution of petroleum ether-CHCl3—MeOH, to yield five fractions (Fr.1-Fr.5). Fr.2 was subjected to Sephadex LH-20 eluting with CHCl3—MeOH (1:1), followed by chromatographing on a silica gel column eluting with CHCl3—MeOH (30:1) to afford three subfractions (Fr.2–2-1-Fr.2–2-3). The title compound (23 mg) was purified by extensive preparative HPLC using MeOH-H2O (9:1) from Fr.2–2-2. The single crystals were obtained by slow evaporation of a petroleum ether-acetone (1:1) solution at room temperature on the third day.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of 0.93–0.98 (C—H) and 0.82 Å (O—H), and with Uiso(H) values of 1.2Ueq(C) and 1.5Ueq(Cmethyl, O). As mentioned above, the absolute configuration could not be determined crystallographically and Friedel pairs were merged.

Structure description top

Dimethylincisterol A3, (I), was first reported as an intermediate to synthesize the (17R)-17-methylincisterol (De Riccardis et al., 1995), and then was isolated from a marine sponge Homaxinella sp. in 2005 (Mansoor et al., 2005). This title compound and related compounds are of interest because of their biological activities (Togashi et al., 1998; Mansoor et al., 2005; Kawagishi et al., 2006). We isolated (I) as a part of our ongoing study characterizing bioactive metabolites from various halotolerant microorganisms. This is our first report about the title compound isolated from halotolerant fungus THW-18 and the results of its X-ray crystallographic study (Fig. 1).

The five-membered N3—C4—C5—C6—C7 ring adopts a twist conformation, and the six-membered N2—C3—C4—N3—C8—C9 ring adopts a half-chair conformation. The corresponding puckering parameters (Cremer & Pople, 1975) are Q = 0.462 (4) Å, φ = 192.5 (5)° and Q = 0.564 (4) Å, θ = 6.1 (4)°, φ = 264 (3)°.

It was not possible to determined the absolute configuration of compound (I) by anomalous dispersion effects, but the positive optical rotation suggested that this compound was dimethylincisterol A3 (Mansoor et al., 2005; Kawagishi et al., 2006).

As shown in Fig. 2, the compounds are linked into a 1-D ribbon along [010] by the O3—H3A···O2i hydrogen bond. (symmetry code: i = 3 - x, 1/2 + y, 1 - z).

For general background, see: Mansoor et al. (2005); Togashi et al. (1998); Kawagishi et al. (2006); De Riccardis et al. (1995). For related literature, see: Cremer & Pople (1975).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. A view showing the ribbon extending along [010], formed by O—H···O hydrogen bonds (dashed lines). [Symmetry codes: (i) 3 - x, 1/2 + y, 1 - z; (ii) 3 - x, -1/2 + y, 1 - z]
(3aS,5aR,6R,8aR)-3a-Hydroxy-5a-methyl-6-[(1R,2E,4R)-1,4,5-trimethyl-2-hexen- 1-yl]-3a,4,5,5a,6,7,8,8a-octahydro-2H-cyclopenta[e]benzofuran-2-one top
Crystal data top
C21H32O3F(000) = 364
Mr = 332.47Dx = 1.080 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 8.0506 (9) ÅCell parameters from 2840 reflections
b = 6.7640 (8) Åθ = 2.3–22.1°
c = 18.858 (2) ŵ = 0.07 mm1
β = 95.639 (2)°T = 298 K
V = 1021.9 (2) Å3Flake, colourless
Z = 20.56 × 0.51 × 0.18 mm
Data collection top
Bruker APEX area-detector
diffractometer
1965 independent reflections
Radiation source: fine-focus sealed tube1247 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
φ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 99
Tmin = 0.962, Tmax = 0.988k = 88
5311 measured reflectionsl = 2213
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0482P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1965 reflectionsΔρmax = 0.13 e Å3
224 parametersΔρmin = 0.15 e Å3
1 restraintAbsolute structure: Flack, H. D. (1983). Acta Cryst. A39, 876–881.
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0 (10)
Crystal data top
C21H32O3V = 1021.9 (2) Å3
Mr = 332.47Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.0506 (9) ŵ = 0.07 mm1
b = 6.7640 (8) ÅT = 298 K
c = 18.858 (2) Å0.56 × 0.51 × 0.18 mm
β = 95.639 (2)°
Data collection top
Bruker APEX area-detector
diffractometer
1965 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1247 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.988Rint = 0.049
5311 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.113Δρmax = 0.13 e Å3
S = 1.05Δρmin = 0.15 e Å3
1965 reflectionsAbsolute structure: Flack, H. D. (1983). Acta Cryst. A39, 876–881.
224 parametersAbsolute structure parameter: 0 (10)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.4534 (3)0.2461 (4)0.46674 (13)0.0650 (8)
O21.4101 (3)0.2856 (5)0.58115 (15)0.0768 (9)
O31.4982 (3)0.4173 (5)0.36379 (13)0.0699 (8)
H31.52170.52220.38420.105*
C11.3731 (4)0.3295 (6)0.5192 (2)0.0601 (10)
C21.2432 (4)0.4584 (6)0.48848 (19)0.0558 (10)
H21.17210.53300.51380.067*
C31.2414 (4)0.4536 (5)0.41862 (18)0.0471 (9)
C41.3778 (4)0.3200 (6)0.39805 (19)0.0526 (10)
C51.3090 (4)0.1516 (6)0.3518 (2)0.0615 (11)
H5A1.25160.05950.38040.074*
H5B1.40020.08160.33300.074*
C61.1873 (4)0.2264 (6)0.28980 (18)0.0576 (10)
H6A1.24920.30180.25740.069*
H6B1.13800.11370.26380.069*
C71.0479 (4)0.3558 (5)0.31402 (17)0.0447 (8)
C81.1314 (4)0.5317 (5)0.35810 (18)0.0462 (9)
H81.20340.59990.32700.055*
C90.9890 (4)0.6699 (6)0.36851 (19)0.0589 (10)
H9A1.02850.80450.37600.071*
H9B0.93090.62950.40880.071*
C100.8755 (4)0.6518 (6)0.29844 (19)0.0601 (10)
H10A0.87950.77240.27090.072*
H10B0.76100.62890.30820.072*
C110.9407 (4)0.4739 (5)0.25643 (17)0.0515 (9)
H111.01690.52790.22390.062*
C120.7992 (4)0.3695 (6)0.21038 (19)0.0614 (11)
H120.72510.30990.24270.074*
C130.6990 (5)0.5150 (7)0.16491 (19)0.0665 (11)
H130.75260.57640.12940.080*
C140.5453 (5)0.5652 (7)0.1695 (2)0.0693 (12)
H140.49140.49640.20330.083*
C150.4421 (5)0.7175 (7)0.1283 (2)0.0797 (14)
H150.50700.76970.09120.096*
C160.2811 (6)0.6235 (10)0.0917 (3)0.1076 (19)
H160.21980.56260.12850.129*
C170.1679 (7)0.7832 (14)0.0527 (3)0.172 (3)
H17A0.22800.84880.01800.258*
H17B0.13580.87810.08670.258*
H17C0.06990.72160.02930.258*
C180.9365 (4)0.2377 (6)0.35926 (19)0.0560 (10)
H18A0.90080.11850.33460.084*
H18B0.84060.31540.36770.084*
H18C0.99770.20470.40390.084*
C190.8610 (6)0.2045 (7)0.1650 (2)0.0952 (16)
H19A0.76880.15070.13500.143*
H19B0.91100.10240.19530.143*
H19C0.94240.25630.13590.143*
C200.4074 (8)0.8880 (10)0.1784 (3)0.145 (3)
H20A0.33620.84240.21300.217*
H20B0.35350.99410.15120.217*
H20C0.51080.93430.20240.217*
C210.3219 (7)0.4647 (13)0.0398 (3)0.155 (3)
H21A0.38170.52210.00330.233*
H21B0.22040.40610.01850.233*
H21C0.38960.36490.06460.233*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0597 (15)0.0751 (19)0.0595 (15)0.0205 (16)0.0030 (13)0.0023 (15)
O20.0836 (18)0.089 (2)0.0568 (16)0.0033 (17)0.0014 (14)0.0036 (16)
O30.0504 (14)0.095 (2)0.0679 (17)0.0066 (15)0.0228 (13)0.0126 (15)
C10.055 (2)0.064 (3)0.061 (3)0.003 (2)0.007 (2)0.004 (2)
C20.053 (2)0.058 (2)0.058 (2)0.004 (2)0.0127 (18)0.009 (2)
C30.0423 (18)0.045 (2)0.055 (2)0.0029 (18)0.0094 (17)0.005 (2)
C40.0448 (19)0.058 (2)0.056 (2)0.008 (2)0.0100 (18)0.002 (2)
C50.059 (2)0.058 (2)0.068 (2)0.014 (2)0.007 (2)0.019 (2)
C60.057 (2)0.056 (2)0.060 (2)0.010 (2)0.0078 (19)0.012 (2)
C70.0447 (18)0.040 (2)0.0503 (19)0.0036 (17)0.0103 (17)0.0011 (17)
C80.0440 (18)0.044 (2)0.053 (2)0.0012 (18)0.0121 (17)0.0024 (18)
C90.064 (2)0.040 (2)0.072 (3)0.008 (2)0.005 (2)0.001 (2)
C100.067 (2)0.051 (2)0.062 (2)0.008 (2)0.007 (2)0.003 (2)
C110.055 (2)0.052 (2)0.049 (2)0.001 (2)0.0124 (17)0.006 (2)
C120.061 (2)0.068 (3)0.055 (2)0.001 (2)0.002 (2)0.001 (2)
C130.064 (2)0.087 (3)0.049 (2)0.005 (3)0.007 (2)0.011 (2)
C140.062 (3)0.092 (3)0.054 (2)0.003 (3)0.005 (2)0.012 (2)
C150.077 (3)0.104 (4)0.059 (3)0.017 (3)0.011 (2)0.010 (3)
C160.077 (3)0.162 (6)0.082 (3)0.027 (4)0.002 (3)0.020 (4)
C170.127 (5)0.234 (9)0.146 (5)0.070 (7)0.028 (4)0.012 (7)
C180.058 (2)0.045 (2)0.066 (2)0.0025 (19)0.010 (2)0.005 (2)
C190.108 (3)0.092 (4)0.080 (3)0.015 (3)0.020 (3)0.022 (3)
C200.180 (6)0.135 (6)0.117 (4)0.070 (5)0.005 (4)0.031 (4)
C210.148 (5)0.170 (7)0.136 (5)0.034 (6)0.046 (4)0.051 (6)
Geometric parameters (Å, º) top
O1—C11.357 (4)C11—H110.9800
O1—C41.464 (4)C12—C131.490 (5)
O2—C11.213 (4)C12—C191.520 (5)
O3—C41.383 (4)C12—H120.9800
O3—H30.8200C13—C141.294 (5)
C1—C21.439 (5)C13—H130.9300
C2—C31.317 (4)C14—C151.493 (6)
C2—H20.9300C14—H140.9300
C3—C81.472 (4)C15—C201.534 (7)
C3—C41.503 (5)C15—C161.544 (7)
C4—C51.507 (5)C15—H150.9800
C5—C61.536 (5)C16—C211.512 (8)
C5—H5A0.9700C16—C171.551 (9)
C5—H5B0.9700C16—H160.9800
C6—C71.528 (4)C17—H17A0.9600
C6—H6A0.9700C17—H17B0.9600
C6—H6B0.9700C17—H17C0.9600
C7—C181.524 (5)C18—H18A0.9600
C7—C111.542 (5)C18—H18B0.9600
C7—C81.565 (5)C18—H18C0.9600
C8—C91.507 (5)C19—H19A0.9600
C8—H80.9800C19—H19B0.9600
C9—C101.536 (4)C19—H19C0.9600
C9—H9A0.9700C20—H20A0.9600
C9—H9B0.9700C20—H20B0.9600
C10—C111.560 (5)C20—H20C0.9600
C10—H10A0.9700C21—H21A0.9600
C10—H10B0.9700C21—H21B0.9600
C11—C121.535 (5)C21—H21C0.9600
C1—O1—C4108.5 (3)C7—C11—H11107.0
C4—O3—H3109.5C10—C11—H11107.0
O2—C1—O1120.7 (4)C13—C12—C19110.5 (3)
O2—C1—C2129.5 (4)C13—C12—C11110.6 (3)
O1—C1—C2109.7 (3)C19—C12—C11113.0 (3)
C3—C2—C1108.9 (3)C13—C12—H12107.5
C3—C2—H2125.5C19—C12—H12107.5
C1—C2—H2125.5C11—C12—H12107.5
C2—C3—C8135.5 (3)C14—C13—C12127.0 (4)
C2—C3—C4109.7 (3)C14—C13—H13116.5
C8—C3—C4114.5 (3)C12—C13—H13116.5
O3—C4—O1109.0 (3)C13—C14—C15129.3 (4)
O3—C4—C3113.4 (3)C13—C14—H14115.4
O1—C4—C3103.2 (3)C15—C14—H14115.4
O3—C4—C5108.9 (3)C14—C15—C20108.9 (3)
O1—C4—C5110.6 (3)C14—C15—C16110.4 (4)
C3—C4—C5111.6 (3)C20—C15—C16112.9 (4)
C4—C5—C6111.2 (3)C14—C15—H15108.2
C4—C5—H5A109.4C20—C15—H15108.2
C6—C5—H5A109.4C16—C15—H15108.2
C4—C5—H5B109.4C21—C16—C15110.8 (4)
C6—C5—H5B109.4C21—C16—C17110.1 (5)
H5A—C5—H5B108.0C15—C16—C17110.7 (6)
C7—C6—C5113.2 (3)C21—C16—H16108.4
C7—C6—H6A108.9C15—C16—H16108.4
C5—C6—H6A108.9C17—C16—H16108.4
C7—C6—H6B108.9C16—C17—H17A109.5
C5—C6—H6B108.9C16—C17—H17B109.5
H6A—C6—H6B107.8H17A—C17—H17B109.5
C18—C7—C6110.9 (3)C16—C17—H17C109.5
C18—C7—C11110.2 (3)H17A—C17—H17C109.5
C6—C7—C11117.6 (3)H17B—C17—H17C109.5
C18—C7—C8110.3 (3)C7—C18—H18A109.5
C6—C7—C8107.7 (2)C7—C18—H18B109.5
C11—C7—C899.3 (3)H18A—C18—H18B109.5
C3—C8—C9121.9 (3)C7—C18—H18C109.5
C3—C8—C7109.5 (3)H18A—C18—H18C109.5
C9—C8—C7104.4 (2)H18B—C18—H18C109.5
C3—C8—H8106.7C12—C19—H19A109.5
C9—C8—H8106.7C12—C19—H19B109.5
C7—C8—H8106.7H19A—C19—H19B109.5
C8—C9—C10103.6 (3)C12—C19—H19C109.5
C8—C9—H9A111.0H19A—C19—H19C109.5
C10—C9—H9A111.0H19B—C19—H19C109.5
C8—C9—H9B111.0C15—C20—H20A109.5
C10—C9—H9B111.0C15—C20—H20B109.5
H9A—C9—H9B109.0H20A—C20—H20B109.5
C9—C10—C11107.3 (3)C15—C20—H20C109.5
C9—C10—H10A110.3H20A—C20—H20C109.5
C11—C10—H10A110.3H20B—C20—H20C109.5
C9—C10—H10B110.3C16—C21—H21A109.5
C11—C10—H10B110.3C16—C21—H21B109.5
H10A—C10—H10B108.5H21A—C21—H21B109.5
C12—C11—C7119.6 (3)C16—C21—H21C109.5
C12—C11—C10112.0 (3)H21A—C21—H21C109.5
C7—C11—C10103.6 (3)H21B—C21—H21C109.5
C12—C11—H11107.0
C4—O1—C1—O2177.5 (3)C11—C7—C8—C3179.2 (2)
C4—O1—C1—C20.3 (4)C18—C7—C8—C968.6 (3)
O2—C1—C2—C3176.2 (4)C6—C7—C8—C9170.2 (3)
O1—C1—C2—C30.7 (4)C11—C7—C8—C947.1 (3)
C1—C2—C3—C8172.0 (4)C3—C8—C9—C10160.2 (3)
C1—C2—C3—C41.4 (4)C7—C8—C9—C1035.8 (4)
C1—O1—C4—O3119.8 (3)C8—C9—C10—C1110.5 (4)
C1—O1—C4—C31.1 (4)C18—C7—C11—C1248.5 (4)
C1—O1—C4—C5120.5 (3)C6—C7—C11—C1279.9 (4)
C2—C3—C4—O3116.3 (4)C8—C7—C11—C12164.4 (3)
C8—C3—C4—O368.8 (4)C18—C7—C11—C1076.9 (3)
C2—C3—C4—O11.5 (4)C6—C7—C11—C10154.6 (3)
C8—C3—C4—O1173.4 (3)C8—C7—C11—C1038.9 (3)
C2—C3—C4—C5120.3 (3)C9—C10—C11—C12148.9 (3)
C8—C3—C4—C554.7 (4)C9—C10—C11—C718.7 (4)
O3—C4—C5—C676.4 (4)C7—C11—C12—C13172.9 (3)
O1—C4—C5—C6163.7 (3)C10—C11—C12—C1351.6 (4)
C3—C4—C5—C649.5 (4)C7—C11—C12—C1962.7 (4)
C4—C5—C6—C753.5 (4)C10—C11—C12—C19176.0 (3)
C5—C6—C7—C1864.2 (4)C19—C12—C13—C14121.2 (5)
C5—C6—C7—C11167.6 (3)C11—C12—C13—C14112.9 (5)
C5—C6—C7—C856.6 (4)C12—C13—C14—C15176.2 (4)
C2—C3—C8—C97.5 (6)C13—C14—C15—C20111.3 (6)
C4—C3—C8—C9179.3 (3)C13—C14—C15—C16124.2 (5)
C2—C3—C8—C7114.6 (5)C14—C15—C16—C2161.1 (6)
C4—C3—C8—C758.7 (4)C20—C15—C16—C21176.7 (5)
C18—C7—C8—C363.4 (3)C14—C15—C16—C17176.5 (4)
C6—C7—C8—C357.8 (3)C20—C15—C16—C1754.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.821.962.771 (4)171
Symmetry code: (i) x+3, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC21H32O3
Mr332.47
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)8.0506 (9), 6.7640 (8), 18.858 (2)
β (°) 95.639 (2)
V3)1021.9 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.56 × 0.51 × 0.18
Data collection
DiffractometerBruker APEX area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.962, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
5311, 1965, 1247
Rint0.049
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.113, 1.05
No. of reflections1965
No. of parameters224
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.15
Absolute structureFlack, H. D. (1983). Acta Cryst. A39, 876–881.
Absolute structure parameter0 (10)

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP (Siemens, 1994), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
O1—C11.357 (4)O3—C41.383 (4)
O1—C41.464 (4)O3—H30.8200
O2—C11.213 (4)C13—C141.294 (5)
C1—O1—C4108.5 (3)C18—C7—C8110.3 (3)
C4—O3—H3109.5C6—C7—C8107.7 (2)
O2—C1—O1120.7 (4)C11—C7—C899.3 (3)
C2—C3—C8135.5 (3)C3—C8—C9121.9 (3)
C2—C3—C4109.7 (3)C3—C8—C7109.5 (3)
O3—C4—O1109.0 (3)C9—C8—C7104.4 (2)
O1—C4—C3103.2 (3)C14—C13—C12127.0 (4)
O1—C4—C5110.6 (3)C14—C13—H13116.5
C18—C7—C6110.9 (3)C12—C13—H13116.5
C18—C7—C11110.2 (3)C13—C14—C15129.3 (4)
C6—C7—C11117.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.821.962.771 (4)171
Symmetry code: (i) x+3, y+1/2, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds