Download citation
Download citation
link to html
The title compound (systematic name: 7-furan-3-yl-6-hydr­oxy-4,4,8,10,13-penta­methyl-1,8,9,10,11,12,13,15,16,17-deca­hydro-2H,4H-20-oxacyclo­propa[14,15]cyclo­penta­[a]phenanthrene-3,7-dione), C26H32O5, is a semi-synthetic derivative of cedrelone, a natural compound isolated from Toona ciliata. The orientation of the furan ring and the ring conformations are the same as for cedrelone itself, with the exception of ring A. Rings A, B, C and D adopt sofa, half-chair, twist and envelope conformations, respectively. The crystal structure involves intra­molecular O—H...O and inter­molecular C—H...O and O—H...O hydrogen bonds. All the hydrogen bonds in the crystal structure contribute to the formation of a macrocyclic ring motif R44(28).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807042535/wn2196sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807042535/wn2196Isup2.hkl
Contains datablock I

CCDC reference: 663693

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.062
  • wR factor = 0.189
  • Data-to-parameter ratio = 7.6

checkCIF/PLATON results

No syntax errors found



Alert level C GOODF01_ALERT_2_C The least squares goodness of fit parameter lies outside the range 0.80 <> 2.00 Goodness of fit given = 0.797 PLAT089_ALERT_3_C Poor Data / Parameter Ratio (Zmax .LT. 18) ..... 7.56 PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT180_ALERT_3_C Check Cell Rounding: # of Values Ending with 0 = 3 PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.30 PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 6 PLAT412_ALERT_2_C Short Intra XH3 .. XHn H19A .. H30C .. 1.80 Ang. PLAT601_ALERT_2_C Structure Contains Solvent Accessible VOIDS of . 48.00 A   3
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 67.45 From the CIF: _reflns_number_total 2161 Count of symmetry unique reflns 2172 Completeness (_total/calc) 99.49% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT791_ALERT_1_G Confirm the Absolute Configuration of C8 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C9 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C10 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C13 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C14 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C15 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C17 = . S PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 11 ALERT level G = General alerts; check 9 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

A tetranortriterpenoid, cedrelone, has been previously isolated from Toona ciliata and its three dimensional structure was reported earlier (Zeumer et al., 2000). It possesses half the antifeedant activity of the most potent azadirachtin-A from Azadirachta indica. The title compound (Fig. 1), a semisynthetic derivative of cedrelone, differs from the parent molecule simply by having single bond C1—C2 rather than C1C2. Except for ring A, the ring conformations in the title compound are the same as in cedrelone (Zeumer et al., 2000). The orientation of the furan ring is defined by the torsion angle C16—C17—C20—C22 = 179.8 (4)°; the corresponding value in cedrelone is 168.3 (4)°.

Ring A exists in a sofa conformation (Cremer & Pople, 1975) [QT = 0.688 (4) Å, φ2 = -48 (3)°, q2 = 0.677 (4) Å], and a mirror plane passes through atoms C3 and C10; in cedrelone itself, ring A adopts a distorted half-chair conformation. Ring B [QT =0.522 (4) Å, φ2=32.3 (5)°,q2 =0.435 (3) Å] adopts a half-chair conformation. Ring C adopts a twist conformation [QT =0.760 (3) Å, φ2 =88.1 (3) °, q2 =0.757 (3) Å]. The atoms C8 and C9 deviate from the mean plane of the other four atoms by 0.385 (3) Å and -0.407 (3) Å respectively. Ring D is in an envelope conformation [φ2 = -145.1 (3)°,q2 = 0.204 (4) Å] and ring E is planar (Nardelli, 1995). Ring pairs A/B, B/C and C/D are in quasi-trans fusion as evident from the endocyclic torsion angles of ring junction atoms. Thus, for rings A/B C4—C5—C10—C1 = -51.8 (4)° and C6—C5—C10—C9 = 9.8 (5)\5; for rings B/C C7—C8—C9—C10 = 63.5 (4)° and C14—C8—C9—C11 = -37.9 (4)°; for rings C/D C12—C13—C14—C8 = 58.5 (4)° and C17—C13—C14—C15 = -19.0 (4)°.

The packing of the molecules (Fig. 2) reveals that the crystal structure is stabilized by a network of hydrogen bonds (Table 1). The hydrogen bond C12—H12A···O15(-x+2,y+1/2,-z) forms an infinite chain, graph set motif C(9). A ring motif S(5) is formed by the hydrogen bond O6—H6···O7. In addition, R22(9) is generated through C2—H2A···O7(1+x,y,z) and O6—H6···O3(-1+x,y,z). All the observed hydrogen bonds in the crystal structure together form a macrocyclic ring motif R44(28).

Related literature top

Many cedrelone derivatives have been reported (Hodges et al., 1963). The three-dimensional structure of cedrelone itself has previously been reported (Zeumer et al., 2000). For related literature, see: Bernstein et al. (1995); Cremer & Pople (1975); Narayanan et al. (1980).

Experimental top

Acetic acid (5 ml) was placed in a 25 ml Erylenmeyer flask fitted with microwave and reflux condenser with guard tube. To this cedrelone (141 mg, 0.33 mmol) and activated zinc was added. The mixture was then subjected to microwave radiation. After completion of the reaction, the solution was passed through a celite bed, followed by acetic acid and was removed by vacuum distillation. The title compound was purified by short flash (under nitrogen) column chromatography.

Refinement top

In the absence of significant anomalous scattering effects, 2161 Friedel equivalents were merged. The enantiomer employed in the refined model was chosen to agree with the accepted configuration of tetranortriterpenoids (Narayanan et al., 1980).

Hydrogen atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93, 0.96, 0.97 and 0.98 Å for Csp2, methyl, methylene and methine, respectively; O—H = 0.82 Å. These C—H and O—H bonds were allowed to rotate freely about the C—C and C—O bonds. Uiso(H) = xUeq(carrier atom) where x = 1.5 for methyl and O, 1.2 for all other H atoms.

Structure description top

A tetranortriterpenoid, cedrelone, has been previously isolated from Toona ciliata and its three dimensional structure was reported earlier (Zeumer et al., 2000). It possesses half the antifeedant activity of the most potent azadirachtin-A from Azadirachta indica. The title compound (Fig. 1), a semisynthetic derivative of cedrelone, differs from the parent molecule simply by having single bond C1—C2 rather than C1C2. Except for ring A, the ring conformations in the title compound are the same as in cedrelone (Zeumer et al., 2000). The orientation of the furan ring is defined by the torsion angle C16—C17—C20—C22 = 179.8 (4)°; the corresponding value in cedrelone is 168.3 (4)°.

Ring A exists in a sofa conformation (Cremer & Pople, 1975) [QT = 0.688 (4) Å, φ2 = -48 (3)°, q2 = 0.677 (4) Å], and a mirror plane passes through atoms C3 and C10; in cedrelone itself, ring A adopts a distorted half-chair conformation. Ring B [QT =0.522 (4) Å, φ2=32.3 (5)°,q2 =0.435 (3) Å] adopts a half-chair conformation. Ring C adopts a twist conformation [QT =0.760 (3) Å, φ2 =88.1 (3) °, q2 =0.757 (3) Å]. The atoms C8 and C9 deviate from the mean plane of the other four atoms by 0.385 (3) Å and -0.407 (3) Å respectively. Ring D is in an envelope conformation [φ2 = -145.1 (3)°,q2 = 0.204 (4) Å] and ring E is planar (Nardelli, 1995). Ring pairs A/B, B/C and C/D are in quasi-trans fusion as evident from the endocyclic torsion angles of ring junction atoms. Thus, for rings A/B C4—C5—C10—C1 = -51.8 (4)° and C6—C5—C10—C9 = 9.8 (5)\5; for rings B/C C7—C8—C9—C10 = 63.5 (4)° and C14—C8—C9—C11 = -37.9 (4)°; for rings C/D C12—C13—C14—C8 = 58.5 (4)° and C17—C13—C14—C15 = -19.0 (4)°.

The packing of the molecules (Fig. 2) reveals that the crystal structure is stabilized by a network of hydrogen bonds (Table 1). The hydrogen bond C12—H12A···O15(-x+2,y+1/2,-z) forms an infinite chain, graph set motif C(9). A ring motif S(5) is formed by the hydrogen bond O6—H6···O7. In addition, R22(9) is generated through C2—H2A···O7(1+x,y,z) and O6—H6···O3(-1+x,y,z). All the observed hydrogen bonds in the crystal structure together form a macrocyclic ring motif R44(28).

Many cedrelone derivatives have been reported (Hodges et al., 1963). The three-dimensional structure of cedrelone itself has previously been reported (Zeumer et al., 2000). For related literature, see: Bernstein et al. (1995); Cremer & Pople (1975); Narayanan et al. (1980).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 and PARST97 (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with 30% probability displacement ellipsoids and the atomic numbering scheme. Hydrogen atoms have been omitted.
[Figure 2] Fig. 2. A view of the packing in the crystal structure, showing the R44(28) ring. Dashed lines indicate hydrogen bonding. H atoms not involved in hydrogen bonding have been omitted.
7-furan-3-yl-6-hydroxy-4,4,8,10,13-pentamethyl-1,8,9,10,11,12,13,15,16,17- decahydro-2H,4H-20-oxacyclopropa[14,15]cyclopenta[a]phenanthrene- 3,7-dione top
Crystal data top
C26H32O5F(000) = 456
Mr = 424.52Dx = 1.239 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
a = 8.302 (4) ÅCell parameters from 25 reflections
b = 10.150 (2) Åθ = 15–30°
c = 13.560 (5) ŵ = 0.68 mm1
β = 95.330 (3)°T = 293 K
V = 1137.7 (7) Å3Rod, colourless
Z = 20.30 × 0.23 × 0.21 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.087
Radiation source: fine-focus sealed tubeθmax = 67.5°, θmin = 3.3°
Graphite monochromatorh = 09
non–profiled ω/2θ scansk = 012
2591 measured reflectionsl = 1616
2161 independent reflections3 standard reflections every 200 reflections
1974 reflections with I > 2σ(I) intensity decay: 3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.189H-atom parameters constrained
S = 0.80 w = 1/[σ2(Fo2) + (0.199P)2 + 0.4014P]
where P = (Fo2 + 2Fc2)/3
2161 reflections(Δ/σ)max < 0.001
286 parametersΔρmax = 0.25 e Å3
1 restraintΔρmin = 0.34 e Å3
Crystal data top
C26H32O5V = 1137.7 (7) Å3
Mr = 424.52Z = 2
Monoclinic, P21Cu Kα radiation
a = 8.302 (4) ŵ = 0.68 mm1
b = 10.150 (2) ÅT = 293 K
c = 13.560 (5) Å0.30 × 0.23 × 0.21 mm
β = 95.330 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.087
2591 measured reflections3 standard reflections every 200 reflections
2161 independent reflections intensity decay: 3%
1974 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0621 restraint
wR(F2) = 0.189H-atom parameters constrained
S = 0.80Δρmax = 0.25 e Å3
2161 reflectionsΔρmin = 0.34 e Å3
286 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O31.5868 (3)0.4276 (5)0.4887 (2)0.0712 (11)
O60.9552 (3)0.3939 (4)0.4596 (2)0.0630 (9)
H60.85860.37580.45350.095*
O70.7759 (3)0.2519 (4)0.3276 (2)0.0597 (8)
O150.9023 (4)0.0169 (3)0.1327 (2)0.0562 (8)
O230.4733 (4)0.2782 (4)0.2042 (3)0.0756 (10)
C11.3541 (5)0.4167 (4)0.2475 (3)0.0504 (9)
H1A1.27530.48570.23120.060*
H1B1.39970.39170.18680.060*
C21.4901 (5)0.4715 (5)0.3212 (3)0.0552 (10)
H2A1.59290.43700.30430.066*
H2B1.49330.56660.31450.066*
C31.4699 (5)0.4379 (5)0.4265 (3)0.0543 (10)
C41.2979 (4)0.4246 (5)0.4560 (3)0.0538 (10)
C51.1889 (4)0.3489 (4)0.3773 (2)0.0426 (8)
C61.0297 (4)0.3354 (4)0.3850 (3)0.0471 (9)
C70.9206 (4)0.2529 (4)0.3168 (2)0.0444 (8)
C80.9996 (4)0.1674 (4)0.2466 (3)0.0414 (8)
C91.1337 (4)0.2540 (4)0.2070 (2)0.0402 (8)
H91.07820.33630.18710.048*
C101.2675 (4)0.2968 (4)0.2875 (2)0.0392 (7)
C111.1805 (4)0.1959 (5)0.1099 (2)0.0467 (8)
H11A1.20080.10220.11820.056*
H11B1.27920.23720.09230.056*
C121.0432 (4)0.2181 (5)0.0258 (3)0.0505 (9)
H12A1.05490.30520.00220.061*
H12B1.05380.15400.02620.061*
C130.8738 (4)0.2059 (4)0.0624 (3)0.0444 (8)
C140.8874 (4)0.1230 (4)0.1566 (3)0.0439 (8)
C150.7478 (5)0.0347 (5)0.1551 (3)0.0548 (10)
H150.70270.01050.21690.066*
C160.6376 (5)0.0597 (5)0.0623 (3)0.0610 (11)
H16A0.55000.11870.07520.073*
H16B0.59240.02190.03480.073*
C170.7501 (4)0.1237 (4)0.0076 (3)0.0493 (9)
H170.81140.05220.03510.059*
C180.7977 (5)0.3403 (4)0.0818 (3)0.0520 (9)
H18A0.78870.39120.02180.078*
H18B0.86460.38640.13200.078*
H18C0.69210.32740.10360.078*
C191.3932 (4)0.1871 (4)0.3153 (3)0.0486 (9)
H19A1.33990.11240.34100.073*
H19B1.47390.21960.36460.073*
H19C1.44380.16130.25740.073*
C200.6656 (5)0.1966 (5)0.0939 (3)0.0541 (9)
C210.5047 (5)0.2089 (7)0.1179 (3)0.0687 (13)
H210.42570.17480.08080.082*
C220.7396 (6)0.2648 (5)0.1704 (4)0.0666 (12)
H220.84990.27570.17470.080*
C230.6198 (7)0.3102 (5)0.2348 (4)0.0716 (14)
H230.63480.35690.29230.086*
C281.2986 (5)0.3573 (8)0.5571 (3)0.0775 (16)
H28A1.36000.40950.60630.116*
H28B1.34670.27160.55410.116*
H28C1.18950.34870.57430.116*
C291.2402 (6)0.5703 (6)0.4622 (5)0.0755 (15)
H29A1.23700.61020.39790.113*
H29B1.31400.61810.50770.113*
H29C1.13410.57230.48490.113*
C301.0586 (5)0.0445 (4)0.3070 (3)0.0511 (9)
H30A1.11040.01530.26510.077*
H30B0.96780.00160.33220.077*
H30C1.13420.07090.36130.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0370 (14)0.101 (3)0.0708 (18)0.0006 (17)0.0225 (13)0.0111 (19)
O60.0343 (13)0.091 (2)0.0628 (16)0.0005 (15)0.0003 (11)0.0290 (16)
O70.0232 (12)0.082 (2)0.0742 (17)0.0001 (14)0.0049 (10)0.0155 (16)
O150.0564 (17)0.0424 (14)0.0668 (17)0.0008 (13)0.0096 (13)0.0048 (12)
O230.0601 (19)0.075 (2)0.085 (2)0.0165 (18)0.0323 (16)0.0062 (19)
C10.0315 (17)0.058 (2)0.060 (2)0.0098 (17)0.0086 (15)0.0033 (18)
C20.0330 (18)0.058 (2)0.071 (2)0.0062 (18)0.0121 (15)0.002 (2)
C30.0367 (19)0.062 (2)0.061 (2)0.0051 (18)0.0128 (15)0.0082 (19)
C40.0306 (18)0.072 (3)0.055 (2)0.0025 (19)0.0158 (14)0.0133 (19)
C50.0311 (16)0.0515 (19)0.0429 (16)0.0036 (16)0.0091 (12)0.0012 (15)
C60.0336 (16)0.061 (2)0.0448 (16)0.0009 (17)0.0049 (12)0.0070 (16)
C70.0284 (16)0.056 (2)0.0479 (17)0.0004 (16)0.0008 (12)0.0012 (16)
C80.0255 (14)0.0461 (19)0.0511 (17)0.0025 (15)0.0043 (12)0.0021 (15)
C90.0243 (15)0.0468 (18)0.0481 (16)0.0006 (15)0.0044 (12)0.0013 (15)
C100.0260 (14)0.0438 (17)0.0461 (16)0.0030 (14)0.0062 (12)0.0007 (14)
C110.0301 (15)0.061 (2)0.0483 (17)0.0009 (17)0.0027 (13)0.0041 (17)
C120.0378 (18)0.064 (2)0.0475 (18)0.0063 (18)0.0073 (13)0.0010 (17)
C130.0336 (17)0.0467 (18)0.0504 (17)0.0047 (15)0.0093 (13)0.0034 (16)
C140.0288 (16)0.0430 (19)0.058 (2)0.0015 (15)0.0051 (13)0.0040 (16)
C150.0432 (19)0.059 (2)0.060 (2)0.021 (2)0.0044 (15)0.0022 (19)
C160.046 (2)0.065 (3)0.069 (2)0.014 (2)0.0117 (17)0.009 (2)
C170.0391 (19)0.051 (2)0.0547 (19)0.0077 (17)0.0134 (14)0.0054 (17)
C180.0413 (19)0.0432 (19)0.067 (2)0.0006 (17)0.0164 (15)0.0061 (18)
C190.0234 (15)0.056 (2)0.064 (2)0.0078 (16)0.0068 (13)0.0006 (18)
C200.0399 (19)0.053 (2)0.065 (2)0.0002 (18)0.0192 (16)0.0077 (19)
C210.042 (2)0.091 (4)0.069 (2)0.010 (2)0.0145 (17)0.009 (3)
C220.056 (2)0.062 (3)0.076 (3)0.009 (2)0.025 (2)0.013 (2)
C230.074 (3)0.054 (2)0.079 (3)0.007 (2)0.035 (2)0.012 (2)
C280.047 (2)0.126 (5)0.056 (2)0.001 (3)0.0131 (17)0.003 (3)
C290.049 (2)0.075 (3)0.099 (3)0.002 (2)0.008 (2)0.036 (3)
C300.0405 (18)0.050 (2)0.061 (2)0.0072 (18)0.0040 (15)0.0051 (18)
Geometric parameters (Å, º) top
O3—C31.230 (5)C12—H12A0.9700
O6—C61.369 (5)C12—H12B0.9700
O6—H60.8200C13—C141.525 (5)
O7—C71.223 (4)C13—C181.537 (6)
O15—C151.444 (6)C13—C171.572 (5)
O15—C141.465 (5)C14—C151.464 (5)
O23—C231.360 (7)C15—C161.507 (6)
O23—C211.370 (6)C15—H150.9800
C1—C101.538 (5)C16—C171.535 (6)
C1—C21.541 (5)C16—H16A0.9700
C1—H1A0.9700C16—H16B0.9700
C1—H1B0.9700C17—C201.502 (5)
C2—C31.491 (6)C17—H170.9800
C2—H2A0.9700C18—H18A0.9600
C2—H2B0.9700C18—H18B0.9600
C3—C41.524 (6)C18—H18C0.9600
C4—C281.531 (7)C19—H19A0.9600
C4—C51.538 (5)C19—H19B0.9600
C4—C291.559 (8)C19—H19C0.9600
C5—C61.343 (5)C20—C211.351 (6)
C5—C101.529 (5)C20—C221.433 (7)
C6—C71.491 (5)C21—H210.9300
C7—O71.223 (4)C22—C231.342 (6)
C7—C81.486 (5)C22—H220.9300
C8—C141.532 (5)C23—H230.9300
C8—C301.548 (5)C28—H28A0.9600
C8—C91.553 (5)C28—H28B0.9600
C9—C111.525 (5)C28—H28C0.9600
C9—C101.546 (4)C29—H29A0.9600
C9—H90.9800C29—H29B0.9600
C10—C191.548 (5)C29—H29C0.9600
C11—C121.552 (5)C30—H30A0.9600
C11—H11A0.9700C30—H30B0.9600
C11—H11B0.9700C30—H30C0.9600
C12—C131.539 (5)
C6—O6—H6109.5C12—C13—C17114.4 (3)
C15—O15—C1460.4 (3)C15—C14—O1559.1 (3)
C23—O23—C21106.2 (3)C15—C14—C13109.2 (3)
C10—C1—C2113.3 (3)O15—C14—C13110.5 (3)
C10—C1—H1A108.9C15—C14—C8127.9 (3)
C2—C1—H1A108.9O15—C14—C8113.8 (3)
C10—C1—H1B108.9C13—C14—C8119.8 (3)
C2—C1—H1B108.9O15—C15—C1460.5 (2)
H1A—C1—H1B107.7O15—C15—C16111.6 (3)
C3—C2—C1113.4 (3)C14—C15—C16109.1 (4)
C3—C2—H2A108.9O15—C15—H15120.4
C1—C2—H2A108.9C14—C15—H15120.4
C3—C2—H2B108.9C16—C15—H15120.4
C1—C2—H2B108.9C15—C16—C17103.3 (3)
H2A—C2—H2B107.7C15—C16—H16A111.1
O3—C3—C2121.6 (4)C17—C16—H16A111.1
O3—C3—C4120.7 (4)C15—C16—H16B111.1
C2—C3—C4117.6 (3)C17—C16—H16B111.1
C3—C4—C28110.4 (3)H16A—C16—H16B109.1
C3—C4—C5111.5 (3)C20—C17—C16115.0 (3)
C28—C4—C5110.5 (4)C20—C17—C13116.2 (3)
C3—C4—C29103.3 (4)C16—C17—C13104.6 (3)
C28—C4—C29110.5 (5)C20—C17—H17106.8
C5—C4—C29110.3 (3)C16—C17—H17106.8
C6—C5—C10121.5 (3)C13—C17—H17106.8
C6—C5—C4121.1 (3)C13—C18—H18A109.5
C10—C5—C4117.3 (3)C13—C18—H18B109.5
C5—C6—O6121.9 (3)H18A—C18—H18B109.5
C5—C6—C7123.7 (3)C13—C18—H18C109.5
O6—C6—C7114.3 (3)H18A—C18—H18C109.5
O7—C7—C8124.6 (3)H18B—C18—H18C109.5
O7—C7—C6118.5 (3)C10—C19—H19A109.5
C8—C7—C6116.6 (3)C10—C19—H19B109.5
C7—C8—C14114.2 (3)H19A—C19—H19B109.5
C7—C8—C30105.5 (3)C10—C19—H19C109.5
C14—C8—C30108.9 (3)H19A—C19—H19C109.5
C7—C8—C9105.3 (3)H19B—C19—H19C109.5
C14—C8—C9107.1 (3)C21—C20—C22105.1 (4)
C30—C8—C9115.9 (3)C21—C20—C17127.8 (4)
C11—C9—C10119.6 (3)C22—C20—C17127.0 (4)
C11—C9—C8109.1 (3)C20—C21—O23111.0 (5)
C10—C9—C8114.0 (3)C20—C21—H21124.5
C11—C9—H9104.1O23—C21—H21124.5
C10—C9—H9104.1C23—C22—C20107.2 (4)
C8—C9—H9104.1C23—C22—H22126.4
C5—C10—C1104.8 (3)C20—C22—H22126.4
C5—C10—C9109.1 (2)C22—C23—O23110.4 (5)
C1—C10—C9107.6 (3)C22—C23—H23124.8
C5—C10—C19112.5 (3)O23—C23—H23124.8
C1—C10—C19109.2 (3)C4—C28—H28A109.5
C9—C10—C19113.2 (3)C4—C28—H28B109.5
C9—C11—C12110.5 (3)H28A—C28—H28B109.5
C9—C11—H11A109.6C4—C28—H28C109.5
C12—C11—H11A109.6H28A—C28—H28C109.5
C9—C11—H11B109.6H28B—C28—H28C109.5
C12—C11—H11B109.6C4—C29—H29A109.5
H11A—C11—H11B108.1C4—C29—H29B109.5
C13—C12—C11112.4 (3)H29A—C29—H29B109.5
C13—C12—H12A109.1C4—C29—H29C109.5
C11—C12—H12A109.1H29A—C29—H29C109.5
C13—C12—H12B109.1H29B—C29—H29C109.5
C11—C12—H12B109.1C8—C30—H30A109.5
H12A—C12—H12B107.8C8—C30—H30B109.5
C14—C13—C18110.3 (3)H30A—C30—H30B109.5
C14—C13—C12108.4 (3)C8—C30—H30C109.5
C18—C13—C12112.7 (3)H30A—C30—H30C109.5
C14—C13—C17101.9 (3)H30B—C30—H30C109.5
C18—C13—C17108.6 (3)
C10—C1—C2—C323.4 (5)C9—C11—C12—C1336.7 (5)
C1—C2—C3—O3152.0 (5)C11—C12—C13—C1422.8 (5)
C1—C2—C3—C431.6 (6)C11—C12—C13—C1899.6 (4)
O3—C3—C4—C2817.6 (7)C11—C12—C13—C17135.7 (4)
C2—C3—C4—C28165.9 (5)C15—O15—C14—C13100.7 (3)
O3—C3—C4—C5141.0 (5)C15—O15—C14—C8121.2 (4)
C2—C3—C4—C542.5 (6)C18—C13—C14—C1596.1 (4)
O3—C3—C4—C29100.5 (5)C12—C13—C14—C15140.0 (3)
C2—C3—C4—C2976.0 (5)C17—C13—C14—C1519.0 (4)
C3—C4—C5—C6174.6 (4)C18—C13—C14—O15159.3 (3)
C28—C4—C5—C662.1 (5)C12—C13—C14—O1576.8 (4)
C29—C4—C5—C660.4 (6)C17—C13—C14—O1544.2 (4)
C3—C4—C5—C102.0 (5)C18—C13—C14—C865.3 (4)
C28—C4—C5—C10121.3 (4)C12—C13—C14—C858.5 (4)
C29—C4—C5—C10116.2 (4)C17—C13—C14—C8179.5 (3)
C10—C5—C6—O6172.9 (4)C7—C8—C14—C1567.0 (5)
C4—C5—C6—O63.6 (6)C30—C8—C14—C1550.7 (5)
C10—C5—C6—C79.5 (6)C9—C8—C14—C15176.8 (4)
C4—C5—C6—C7174.0 (4)C7—C8—C14—O15135.4 (4)
C5—C6—C7—O7176.8 (4)C30—C8—C14—O1517.7 (4)
O6—C6—C7—O75.5 (6)C9—C8—C14—O15108.4 (4)
C5—C6—C7—C89.0 (6)C7—C8—C14—C1390.6 (4)
O6—C6—C7—C8168.8 (4)C30—C8—C14—C13151.7 (3)
O7—C7—C8—C1426.4 (5)C9—C8—C14—C1325.6 (4)
C6—C7—C8—C14159.7 (3)C14—O15—C15—C16100.4 (4)
O7—C7—C8—C3093.2 (4)C13—C14—C15—O15103.0 (3)
C6—C7—C8—C3080.7 (4)C8—C14—C15—O1597.5 (4)
O7—C7—C8—C9143.6 (4)O15—C14—C15—C16104.6 (4)
C6—C7—C8—C942.5 (4)C13—C14—C15—C161.6 (5)
C7—C8—C9—C11159.9 (3)C8—C14—C15—C16157.9 (4)
C14—C8—C9—C1137.9 (4)O15—C15—C16—C1742.8 (5)
C30—C8—C9—C1183.8 (4)C14—C15—C16—C1722.2 (5)
C7—C8—C9—C1063.5 (4)C15—C16—C17—C20162.2 (4)
C14—C8—C9—C10174.6 (3)C15—C16—C17—C1333.5 (5)
C30—C8—C9—C1052.8 (4)C14—C13—C17—C20160.1 (3)
C6—C5—C10—C1124.8 (4)C18—C13—C17—C2043.8 (4)
C4—C5—C10—C151.8 (4)C12—C13—C17—C2083.1 (5)
C6—C5—C10—C99.8 (5)C14—C13—C17—C1632.2 (4)
C4—C5—C10—C9166.8 (3)C18—C13—C17—C1684.1 (4)
C6—C5—C10—C19116.7 (4)C12—C13—C17—C16149.0 (4)
C4—C5—C10—C1966.7 (4)C16—C17—C20—C211.9 (7)
C2—C1—C10—C563.1 (4)C13—C17—C20—C21124.5 (5)
C2—C1—C10—C9179.2 (3)C16—C17—C20—C22179.8 (4)
C2—C1—C10—C1957.6 (4)C13—C17—C20—C2257.6 (6)
C11—C9—C10—C5179.0 (3)C22—C20—C21—O230.8 (6)
C8—C9—C10—C547.3 (4)C17—C20—C21—O23177.5 (4)
C11—C9—C10—C167.8 (4)C23—O23—C21—C200.1 (6)
C8—C9—C10—C1160.4 (3)C21—C20—C22—C231.2 (6)
C11—C9—C10—C1952.8 (4)C17—C20—C22—C23177.1 (4)
C8—C9—C10—C1978.9 (4)C20—C22—C23—O231.2 (6)
C10—C9—C11—C12154.6 (3)C21—O23—C23—C220.7 (6)
C8—C9—C11—C1271.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O3i0.822.413.139 (4)149
C12—H12A···O15ii0.972.583.499 (5)159
C2—H2A···O7iii0.972.423.251 (6)144
O6—H6···O70.822.182.646 (4)116
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1/2, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC26H32O5
Mr424.52
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)8.302 (4), 10.150 (2), 13.560 (5)
β (°) 95.330 (3)
V3)1137.7 (7)
Z2
Radiation typeCu Kα
µ (mm1)0.68
Crystal size (mm)0.30 × 0.23 × 0.21
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2591, 2161, 1974
Rint0.087
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.189, 0.80
No. of reflections2161
No. of parameters286
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.34

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), SHELXL97 and PARST97 (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O3i0.822.413.139 (4)149.1
C12—H12A···O15ii0.972.583.499 (5)158.9
C2—H2A···O7iii0.972.423.251 (6)143.7
O6—H6···O70.822.182.646 (4)116.2
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1/2, z; (iii) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds