Download citation
Download citation
link to html
Single crystals of the title compound, undeca­strontium indium nona­anti­monide, have been synthesized from a high-temperature reaction using a stoichiometric ratio of the elements Sr and Sb and excess In to act as a self-flux. The noncentrosymmetric structure has been determined from single-crystal X-ray diffraction data and has been found to be of the Ca11InSb9 structure type (Pearson code oI84). The structure can be visualized as being built of 11 Sr2+ cations, an [InSb4]9- tetra­hedron, an [Sb2]4- dimer and three Sb3- anions. One of six crystallographically independent Sr atoms, one of five Sb atoms and the In atom are located on positions with ..2 symmetry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807040615/wm2135sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807040615/wm2135Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 120 K
  • Mean [sigma](b-Sb) = 0.001 Å
  • R factor = 0.022
  • wR factor = 0.034
  • Data-to-parameter ratio = 31.6

checkCIF/PLATON results

No syntax errors found



Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 27.10 From the CIF: _reflns_number_total 3124 Count of symmetry unique reflns 1627 Completeness (_total/calc) 192.01% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1497 Fraction of Friedel pairs measured 0.920 Are heavy atom types Z>Si present yes PLAT033_ALERT_2_G Flack Parameter Value Deviates 2 * su from zero. 0.02 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 0 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The flux method was successfully applied for the synthesis of Yb11GaSb9 (Bobev et al., 2005), Yb11InSb9 and Eu11GaSb9 (Xia et al., 2007). The electronic structure and the properties of Yb11GaSb9 (Bobev et al., 2005) are shown to be consistent with the Zintl concept (Zintl, 1939) and confirm that this class of compounds are small band-gap semiconductors or poor metals, as Eu11InSb9 and Yb11InSb9 (Xia et al., 2007), whereas the Ca-analogs are reported to be semiconductors with larger band-gaps (Young & Kauzlarich, 1995). The close structural relationship between the Ca11InSb9 structure type (Cordier et al., 1985a) and that of the monoclinic Ca21Mn4Bi18 structure has been discussed in an earlier publication (Xia and Bobev, 2007). In connection with these studies, we undertook a similar synthetic approach in the Sr—In—Sb system.

Sr11InSb9 is a new member of the orthorhombic Ca11InSb9 structure type (Pearson's code oI84; Villars & Calvert, 1991). Its structure is very complex and has 12 crystallographically unique sites in the asymmetric unit. Thus it is difficult to explain in terms of packing of spheres; however, it can be rationalized simply using the Zintl formalism (Zintl, 1939). According to these rules and assuming a complete valence electron transfer from the less electronegative element, Sr, to the more electronegative In and Sb, one can visualize the structure as being built of eleven Sr2+ cations, an [InSb4]9- tetrahedron, an [Sb2]4- dimer, and three Sb3- anions (Fig. 1).

The In—Sb bonding in the In centered tetrahedron has a covalent character with In—Sb distances ranging between 2.9213 (7) and 2.9312 (6) Å. These values are comparable to the In—Sb distances in the isotypic and isoelectronic Eu11InSb9, 2.913 (2) and 2.932 (2) Å (Xia et al., 2007). We note that since Eu is divalent in Eu11InSb9 and since the ionic radii of Sr2+ and Eu2+ are nearly the same (Shannon, 1976), such comparison is straightforward. Not surprisingly, the Sb—Sb distance in Sr11InSb9 (2.8437 (9) Å) matches closely the Sb—Sb distance in the Eu analog (2.823 (2) Å) and also signifies strong covalent bonding. The interactions between the Sr2+ cations and the anions are more electrostatic in nature as evidenced by the larger coordination numbers and distances.

Related literature top

Sr11InSb9 is a Zintl (1939) compound and crystallizes in the Ca11InSb9 structure type (Cordier et al., 1985a). The latter compound is reported to be a semiconductor with a large band gap (Young & Kauzlarich, 1995). The title compound is isotypic with Yb11GaSb9 (Bobev et al., 2005), Yb11InSb9 and Eu11GaSb9 (Xia et al., 2007), all with Pearson code oI84 (Villars & Calvert, 1991). The relationship between the Ca11InSb9 structure type and that of Ca21Mn4Bi18 has been discussed by Xia & Bobev (2007). Ionic radii were taken from Shannon (1976). Crystals of Sr5In2Sb6 (Cordier et al., 1985b) were also present in the reaction mixture.

Experimental top

Handling of the raw materials and the reaction products was done inside an Ar filled glove box. The reaction was carried out by loading the elements in an alumina crucible: Sr (Aldrich, pieces, distilled 99.99%), In (Alfa, shot, 99.99%), and Sb (Alfa, shot, 99.99%) in a ratio of 11:75:9. The large excess of In was intended as a metal flux. The crucible with the reaction mixture was then flame sealed under vacuum in a silica ampoule which was then placed in a furnace and heated to 1273 K at a rate of 300 K/h. The reaction proceeded at this temperature for 24 h before being cooled to 873 K at a rate of 10 K/h. At 873 K the ampoule was removed and the In flux was decanted. The main product of the reaction consisted of black crystals with irregular shapes, which were later determined to be the title compound. Also present were silver-metallic crystals with needle-like habit, which were found to be Sr5In2Sb6 (Cordier et al., 1985b). Note that Sr11InSb9 crystals decompose in air.

Refinement top

The full occupancies for all sites were verified by freeing the site occupation factor for an individual atom, while other remaining parameters were kept fixed. This proved that all positions are fully occupied with corresponding deviations from full occupancy within 3σ. The maximum peak and deepest hole are located 1.36 Å away from Sr6 and 0.73 Å away from Sb4, respectively.

Structure description top

The flux method was successfully applied for the synthesis of Yb11GaSb9 (Bobev et al., 2005), Yb11InSb9 and Eu11GaSb9 (Xia et al., 2007). The electronic structure and the properties of Yb11GaSb9 (Bobev et al., 2005) are shown to be consistent with the Zintl concept (Zintl, 1939) and confirm that this class of compounds are small band-gap semiconductors or poor metals, as Eu11InSb9 and Yb11InSb9 (Xia et al., 2007), whereas the Ca-analogs are reported to be semiconductors with larger band-gaps (Young & Kauzlarich, 1995). The close structural relationship between the Ca11InSb9 structure type (Cordier et al., 1985a) and that of the monoclinic Ca21Mn4Bi18 structure has been discussed in an earlier publication (Xia and Bobev, 2007). In connection with these studies, we undertook a similar synthetic approach in the Sr—In—Sb system.

Sr11InSb9 is a new member of the orthorhombic Ca11InSb9 structure type (Pearson's code oI84; Villars & Calvert, 1991). Its structure is very complex and has 12 crystallographically unique sites in the asymmetric unit. Thus it is difficult to explain in terms of packing of spheres; however, it can be rationalized simply using the Zintl formalism (Zintl, 1939). According to these rules and assuming a complete valence electron transfer from the less electronegative element, Sr, to the more electronegative In and Sb, one can visualize the structure as being built of eleven Sr2+ cations, an [InSb4]9- tetrahedron, an [Sb2]4- dimer, and three Sb3- anions (Fig. 1).

The In—Sb bonding in the In centered tetrahedron has a covalent character with In—Sb distances ranging between 2.9213 (7) and 2.9312 (6) Å. These values are comparable to the In—Sb distances in the isotypic and isoelectronic Eu11InSb9, 2.913 (2) and 2.932 (2) Å (Xia et al., 2007). We note that since Eu is divalent in Eu11InSb9 and since the ionic radii of Sr2+ and Eu2+ are nearly the same (Shannon, 1976), such comparison is straightforward. Not surprisingly, the Sb—Sb distance in Sr11InSb9 (2.8437 (9) Å) matches closely the Sb—Sb distance in the Eu analog (2.823 (2) Å) and also signifies strong covalent bonding. The interactions between the Sr2+ cations and the anions are more electrostatic in nature as evidenced by the larger coordination numbers and distances.

Sr11InSb9 is a Zintl (1939) compound and crystallizes in the Ca11InSb9 structure type (Cordier et al., 1985a). The latter compound is reported to be a semiconductor with a large band gap (Young & Kauzlarich, 1995). The title compound is isotypic with Yb11GaSb9 (Bobev et al., 2005), Yb11InSb9 and Eu11GaSb9 (Xia et al., 2007), all with Pearson code oI84 (Villars & Calvert, 1991). The relationship between the Ca11InSb9 structure type and that of Ca21Mn4Bi18 has been discussed by Xia & Bobev (2007). Ionic radii were taken from Shannon (1976). Crystals of Sr5In2Sb6 (Cordier et al., 1985b) were also present in the reaction mixture.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Bruker, 2002); program(s) used to refine structure: SHELXTL (Bruker, 2002); molecular graphics: XP in SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXTL (Bruker, 2002).

Figures top
[Figure 1] Fig. 1. A view of the structure of Sr11InSb9 along the c axis. Thermal ellipsoids are drawn at the 90% probability level. The Sr, In and Sb atoms are represented in red, green and light blue color, respectively.
undecastrontium indium nonaantimonide top
Crystal data top
Sr11InSb9F(000) = 3704
Mr = 2174.39Dx = 5.086 Mg m3
Orthorhombic, Iba2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: I 2 -2cCell parameters from 3124 reflections
a = 12.3885 (13) Åθ = 2.3–27.1°
b = 13.1003 (14) ŵ = 29.64 mm1
c = 17.4966 (18) ÅT = 120 K
V = 2839.6 (5) Å3Irregular, black
Z = 40.08 × 0.05 × 0.04 mm
Data collection top
Bruker SMART APEX
diffractometer
3124 independent reflections
Radiation source: fine-focus sealed tube2972 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω scansθmax = 27.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1515
Tmin = 0.172, Tmax = 0.308k = 1616
15129 measured reflectionsl = 2222
Refinement top
Refinement on F2 w = 1/[σ2(Fo2) + (0.001P)2]
where P = (Fo2 + 2Fc2)/3
Least-squares matrix: full(Δ/σ)max < 0.001
R[F2 > 2σ(F2)] = 0.022Δρmax = 0.90 e Å3
wR(F2) = 0.034Δρmin = 1.01 e Å3
S = 0.90Extinction correction: SHELXTL (Bruker, 2002)
3124 reflectionsExtinction coefficient: 0.000020 (3)
99 parametersAbsolute structure: Flack (1983), 1496 Friedel pairs
1 restraintAbsolute structure parameter: 0.017 (6)
Crystal data top
Sr11InSb9V = 2839.6 (5) Å3
Mr = 2174.39Z = 4
Orthorhombic, Iba2Mo Kα radiation
a = 12.3885 (13) ŵ = 29.64 mm1
b = 13.1003 (14) ÅT = 120 K
c = 17.4966 (18) Å0.08 × 0.05 × 0.04 mm
Data collection top
Bruker SMART APEX
diffractometer
3124 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2972 reflections with I > 2σ(I)
Tmin = 0.172, Tmax = 0.308Rint = 0.046
15129 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0221 restraint
wR(F2) = 0.034Δρmax = 0.90 e Å3
S = 0.90Δρmin = 1.01 e Å3
3124 reflectionsAbsolute structure: Flack (1983), 1496 Friedel pairs
99 parametersAbsolute structure parameter: 0.017 (6)
Special details top

Experimental. Crystals were selected in the glove box and cut in a Paratone N oil bath to the desired dimensions. A suitable crystal was then chosen mounted on the tip of a glass fiber and quickly placed under the cold nitrogen stream (ca 150 K) in a Bruker SMART CCD-based diffractometer.

Data collection is performed with four batch runs at φ = 0.00 ° (450 frames), at φ = 90.00 ° (450 frames), at φ = 180.00 ° (450 frames), and at φ = 270.00 (450 frames). Frame width = 0.40 ° in ω. Data are merged, corrected for decay, and treated with multi-scan absorption corrections.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr10.42681 (6)0.22217 (5)0.65758 (5)0.01021 (16)
Sr20.68413 (6)0.05401 (6)0.62855 (4)0.01204 (16)
Sr30.41024 (6)0.22651 (6)0.34159 (4)0.01095 (17)
Sr40.68627 (7)0.05890 (6)0.36909 (5)0.01248 (17)
Sr50.84036 (5)0.17355 (5)0.99994 (6)0.01271 (14)
Sr60.00000.00000.67821 (6)0.0126 (2)
Sb10.87132 (3)0.11611 (3)0.50258 (4)0.01040 (10)
Sb20.00000.50000.25098 (5)0.00951 (14)
Sb30.17692 (4)0.17776 (4)0.68278 (3)0.01071 (11)
Sb40.46656 (4)0.10383 (3)0.49699 (3)0.01059 (10)
Sb50.14600 (4)0.13808 (4)0.31116 (3)0.01019 (11)
In10.00000.00000.39295 (4)0.01094 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.0093 (4)0.0111 (4)0.0103 (4)0.0002 (3)0.0005 (3)0.0007 (3)
Sr20.0110 (4)0.0122 (4)0.0129 (4)0.0004 (3)0.0026 (3)0.0013 (3)
Sr30.0109 (4)0.0118 (4)0.0101 (4)0.0007 (3)0.0004 (3)0.0005 (3)
Sr40.0110 (4)0.0133 (4)0.0132 (4)0.0009 (3)0.0022 (3)0.0020 (3)
Sr50.0142 (3)0.0144 (4)0.0095 (3)0.0010 (3)0.0000 (3)0.0006 (4)
Sr60.0100 (5)0.0099 (5)0.0179 (6)0.0008 (4)0.0000.000
Sb10.0097 (2)0.0122 (2)0.0092 (2)0.00036 (18)0.0001 (3)0.0003 (2)
Sb20.0094 (3)0.0108 (3)0.0084 (3)0.0000 (4)0.0000.000
Sb30.0096 (2)0.0123 (2)0.0102 (3)0.0004 (2)0.0004 (2)0.0011 (2)
Sb40.0119 (2)0.0109 (2)0.0089 (2)0.00097 (18)0.0004 (3)0.0003 (2)
Sb50.0093 (2)0.0121 (2)0.0091 (3)0.0006 (2)0.0005 (2)0.0004 (2)
In10.0103 (4)0.0116 (4)0.0109 (4)0.0009 (3)0.0000.000
Geometric parameters (Å, º) top
Sr1—Sb33.1806 (9)Sr5—Sr1xiv4.2183 (12)
Sr1—Sb43.2466 (10)Sr6—Sb33.1990 (5)
Sr1—Sb5i3.3742 (10)Sr6—Sb3xvi3.1990 (5)
Sr1—Sb3ii3.3932 (9)Sr6—Sb5xvii3.4575 (9)
Sr1—Sb2iii3.4589 (9)Sr6—Sb5xv3.4575 (9)
Sr1—Sb1iv3.5094 (10)Sr6—In1xv3.7572 (14)
Sr1—Sr6ii3.7682 (8)Sr6—Sr1xviii3.7682 (8)
Sr1—Sr3v3.8005 (10)Sr6—Sr1iv3.7682 (8)
Sr1—Sr2vi3.9034 (11)Sr6—Sb1xix3.7814 (11)
Sr1—Sr23.9081 (11)Sr6—Sb1vi3.7814 (11)
Sr1—Sr5vii4.2183 (11)Sr6—Sr2xix4.0704 (9)
Sr1—Sr2iv4.2301 (11)Sr6—Sr2vi4.0704 (9)
Sr2—Sb2iii3.2082 (10)Sr6—Sr5xx4.3371 (12)
Sr2—Sb13.3012 (10)Sb1—In1viii2.9213 (7)
Sr2—Sb43.6040 (10)Sb1—Sr1ii3.5094 (10)
Sr2—Sb4vi3.6137 (10)Sb1—Sr3ii3.5238 (10)
Sr2—Sb3vi3.6170 (9)Sb1—Sr5xxi3.6506 (9)
Sr2—Sb3ii3.6409 (10)Sb1—Sr6viii3.7813 (11)
Sr2—Sr1vi3.9034 (11)Sb1—Sr5vii3.8041 (9)
Sr2—Sb5v3.9812 (10)Sb1—Sr5ix3.8143 (9)
Sr2—Sr6viii4.0704 (9)Sb2—Sr4iv3.1924 (10)
Sr2—Sr5ix4.2067 (12)Sb2—Sr4xxii3.1924 (10)
Sr2—Sr1ii4.2301 (11)Sb2—Sr2x3.2081 (10)
Sr3—Sb3x3.2340 (10)Sb2—Sr2xxiii3.2081 (10)
Sr3—Sb43.2347 (10)Sb2—Sr1x3.4588 (9)
Sr3—Sb5ii3.4584 (9)Sb2—Sr1xxiii3.4588 (9)
Sr3—Sb53.5131 (9)Sb2—Sr3xxii3.5434 (9)
Sr3—Sb1iv3.5237 (10)Sb2—Sr3iv3.5434 (9)
Sr3—Sb2ii3.5434 (9)Sb3—Sr5xi3.2068 (11)
Sr3—Sr1xi3.8006 (10)Sb3—Sr3i3.2340 (10)
Sr3—In1ii3.8575 (8)Sb3—Sr1iv3.3932 (9)
Sr3—Sr4vi3.9550 (11)Sb3—Sr2vi3.6170 (9)
Sr3—Sr4iv3.9790 (11)Sb3—Sr2iv3.6408 (10)
Sr3—Sr44.0923 (11)Sb3—Sr4v3.9903 (10)
Sr3—Sr5xi4.2184 (12)Sb4—Sb4vi2.8437 (9)
Sr4—Sb2ii3.1924 (10)Sb4—Sr2vi3.6137 (10)
Sr4—Sb13.3574 (10)Sb4—Sr4vi3.6246 (10)
Sr4—Sb5vi3.4647 (10)Sb4—Sr5vii3.7722 (9)
Sr4—Sb43.5726 (10)Sb4—Sr5xi3.9107 (9)
Sr4—Sb4vi3.6246 (10)Sb5—In12.9311 (6)
Sr4—Sr3vi3.9550 (11)Sb5—Sr5xi3.3398 (11)
Sr4—Sr3ii3.9789 (11)Sb5—Sr1x3.3743 (10)
Sr4—In1viii3.9844 (9)Sb5—Sr6ix3.4575 (9)
Sr4—Sb3xi3.9903 (10)Sb5—Sr3iv3.4584 (9)
Sr4—Sr5vii4.1993 (12)Sb5—Sr4vi3.4647 (10)
Sr4—Sr5ix4.2613 (11)Sb5—Sr2xi3.9812 (10)
Sr5—Sb3v3.2068 (11)In1—Sb1vi2.9213 (7)
Sr5—Sb5v3.3398 (11)In1—Sb1xix2.9213 (7)
Sr5—In1xii3.5475 (9)In1—Sb5xvi2.9312 (6)
Sr5—Sb1xiii3.6506 (9)In1—Sr5xi3.5475 (9)
Sr5—Sb4xiv3.7722 (9)In1—Sr5xx3.5475 (9)
Sr5—Sb1xiv3.8041 (9)In1—Sr6ix3.7572 (14)
Sr5—Sb1xv3.8143 (9)In1—Sr3xviii3.8575 (8)
Sr5—Sb4v3.9108 (9)In1—Sr3iv3.8575 (8)
Sr5—Sr4xiv4.1993 (12)In1—Sr4xix3.9844 (9)
Sr5—Sr2xv4.2067 (12)In1—Sr4vi3.9844 (9)
Sr5—Sr3v4.2185 (12)
Sb3—Sr1—Sb4100.39 (2)Sb4xiv—Sr5—Sr2xv147.88 (3)
Sb3—Sr1—Sb5i74.26 (2)Sb1xiv—Sr5—Sr2xv100.93 (2)
Sb4—Sr1—Sb5i171.42 (3)Sb1xv—Sr5—Sr2xv48.302 (17)
Sb3—Sr1—Sb3ii160.29 (3)Sb4v—Sr5—Sr2xv52.715 (16)
Sb4—Sr1—Sb3ii99.12 (2)Sr4xiv—Sr5—Sr2xv147.88 (3)
Sb5i—Sr1—Sb3ii86.04 (2)Sb3v—Sr5—Sr3v127.10 (2)
Sb3—Sr1—Sb2iii92.05 (2)Sb5v—Sr5—Sr3v53.885 (19)
Sb4—Sr1—Sb2iii88.12 (2)In1xii—Sr5—Sr3v99.74 (3)
Sb5i—Sr1—Sb2iii98.65 (3)Sb1xiii—Sr5—Sr3v139.66 (3)
Sb3ii—Sr1—Sb2iii91.39 (2)Sb4xiv—Sr5—Sr3v109.30 (2)
Sb3—Sr1—Sb1iv91.54 (2)Sb1xiv—Sr5—Sr3v51.795 (17)
Sb4—Sr1—Sb1iv69.46 (2)Sb1xv—Sr5—Sr3v104.22 (2)
Sb5i—Sr1—Sb1iv103.62 (2)Sb4v—Sr5—Sr3v46.706 (17)
Sb3ii—Sr1—Sb1iv92.64 (2)Sr4xiv—Sr5—Sr3v56.416 (19)
Sb2iii—Sr1—Sb1iv157.58 (3)Sr2xv—Sr5—Sr3v97.43 (2)
Sb3—Sr1—Sr6ii113.43 (2)Sb3v—Sr5—Sr1xiv52.249 (19)
Sb4—Sr1—Sr6ii120.51 (3)Sb5v—Sr5—Sr1xiv131.08 (2)
Sb5i—Sr1—Sr6ii57.59 (2)In1xii—Sr5—Sr1xiv99.87 (2)
Sb3ii—Sr1—Sr6ii52.747 (13)Sb1xiii—Sr5—Sr1xiv52.369 (18)
Sb2iii—Sr1—Sr6ii134.78 (3)Sb4xiv—Sr5—Sr1xiv47.542 (16)
Sb1iv—Sr1—Sr6ii62.49 (2)Sb1xiv—Sr5—Sr1xiv103.23 (2)
Sb3—Sr1—Sr3v113.72 (2)Sb1xv—Sr5—Sr1xiv104.21 (2)
Sb4—Sr1—Sr3v131.28 (3)Sb4v—Sr5—Sr1xiv138.51 (3)
Sb5i—Sr1—Sr3v57.265 (19)Sr4xiv—Sr5—Sr1xiv98.04 (2)
Sb3ii—Sr1—Sr3v53.062 (19)Sr2xv—Sr5—Sr1xiv101.21 (3)
Sb2iii—Sr1—Sr3v58.21 (2)Sr3v—Sr5—Sr1xiv151.57 (2)
Sb1iv—Sr1—Sr3v138.56 (3)Sb3—Sr6—Sb3xvi177.13 (4)
Sr6ii—Sr1—Sr3v77.09 (2)Sb3—Sr6—Sb5xvii87.749 (19)
Sb3—Sr1—Sr2vi60.385 (19)Sb3xvi—Sr6—Sb5xvii90.321 (19)
Sb4—Sr1—Sr2vi59.880 (19)Sb3—Sr6—Sb5xv90.322 (19)
Sb5i—Sr1—Sr2vi120.82 (3)Sb3xvi—Sr6—Sb5xv87.749 (19)
Sb3ii—Sr1—Sr2vi134.15 (3)Sb5xvii—Sr6—Sb5xv95.44 (3)
Sb2iii—Sr1—Sr2vi51.232 (18)Sb3—Sr6—In1xv88.57 (2)
Sb1iv—Sr1—Sr2vi112.96 (3)Sb3xvi—Sr6—In1xv88.57 (2)
Sr6ii—Sr1—Sr2vi172.95 (3)Sb5xvii—Sr6—In1xv47.719 (16)
Sr3v—Sr1—Sr2vi108.13 (3)Sb5xv—Sr6—In1xv47.719 (16)
Sb3—Sr1—Sr2135.14 (3)Sb3—Sr6—Sr1xviii122.728 (16)
Sb4—Sr1—Sr259.643 (19)Sb3xvi—Sr6—Sr1xviii57.598 (16)
Sb5i—Sr1—Sr2128.86 (3)Sb5xvii—Sr6—Sr1xviii134.08 (3)
Sb3ii—Sr1—Sr259.32 (2)Sb5xv—Sr6—Sr1xviii55.475 (16)
Sb2iii—Sr1—Sr251.188 (17)In1xv—Sr6—Sr1xviii95.50 (2)
Sb1iv—Sr1—Sr2113.55 (3)Sb3—Sr6—Sr1iv57.598 (16)
Sr6ii—Sr1—Sr2111.14 (2)Sb3xvi—Sr6—Sr1iv122.728 (16)
Sr3v—Sr1—Sr271.65 (2)Sb5xvii—Sr6—Sr1iv55.475 (16)
Sr2vi—Sr1—Sr275.39 (2)Sb5xv—Sr6—Sr1iv134.08 (3)
Sb3—Sr1—Sr5vii144.63 (3)In1xv—Sr6—Sr1iv95.50 (2)
Sb4—Sr1—Sr5vii59.01 (2)Sr1xviii—Sr6—Sr1iv169.01 (4)
Sb5i—Sr1—Sr5vii121.86 (2)Sb3—Sr6—Sb1xix90.94 (2)
Sb3ii—Sr1—Sr5vii48.352 (18)Sb3xvi—Sr6—Sb1xix91.39 (2)
Sb2iii—Sr1—Sr5vii113.71 (2)Sb5xvii—Sr6—Sb1xix96.647 (14)
Sb1iv—Sr1—Sr5vii55.470 (17)Sb5xv—Sr6—Sb1xix167.89 (3)
Sr6ii—Sr1—Sr5vii65.50 (2)In1xv—Sr6—Sb1xix144.359 (13)
Sr3v—Sr1—Sr5vii100.71 (2)Sr1xviii—Sr6—Sb1xix114.34 (3)
Sr2vi—Sr1—Sr5vii117.12 (2)Sr1iv—Sr6—Sb1xix55.401 (16)
Sr2—Sr1—Sr5vii62.599 (19)Sb3—Sr6—Sb1vi91.39 (2)
Sb3—Sr1—Sr2iv56.749 (18)Sb3xvi—Sr6—Sb1vi90.94 (2)
Sb4—Sr1—Sr2iv109.57 (2)Sb5xvii—Sr6—Sb1vi167.89 (3)
Sb5i—Sr1—Sr2iv61.937 (18)Sb5xv—Sr6—Sb1vi96.647 (14)
Sb3ii—Sr1—Sr2iv113.38 (2)In1xv—Sr6—Sb1vi144.359 (13)
Sb2iii—Sr1—Sr2iv145.72 (3)Sr1xviii—Sr6—Sb1vi55.401 (16)
Sb1iv—Sr1—Sr2iv49.425 (17)Sr1iv—Sr6—Sb1vi114.34 (3)
Sr6ii—Sr1—Sr2iv60.858 (17)Sb1xix—Sr6—Sb1vi71.28 (3)
Sr3v—Sr1—Sr2iv117.96 (2)Sb3—Sr6—Sr2xix122.512 (16)
Sr2vi—Sr1—Sr2iv112.12 (2)Sb3xvi—Sr6—Sr2xix58.210 (15)
Sr2—Sr1—Sr2iv162.72 (3)Sb5xvii—Sr6—Sr2xix63.240 (15)
Sr5vii—Sr1—Sr2iv100.55 (2)Sb5xv—Sr6—Sr2xix137.52 (2)
Sb2iii—Sr2—Sb1178.44 (3)In1xv—Sr6—Sr2xix102.325 (18)
Sb2iii—Sr2—Sb486.25 (2)Sr1xviii—Sr6—Sr2xix112.258 (18)
Sb1—Sr2—Sb493.11 (2)Sr1iv—Sr6—Sr2xix65.186 (16)
Sb2iii—Sr2—Sb4vi86.09 (2)Sb1xix—Sr6—Sr2xix49.557 (15)
Sb1—Sr2—Sb4vi94.51 (2)Sb1vi—Sr6—Sr2xix107.56 (3)
Sb4—Sr2—Sb4vi46.406 (18)Sb3—Sr6—Sr2vi58.210 (15)
Sb2iii—Sr2—Sb3vi88.74 (2)Sb3xvi—Sr6—Sr2vi122.513 (16)
Sb1—Sr2—Sb3vi92.74 (2)Sb5xvii—Sr6—Sr2vi137.52 (2)
Sb4—Sr2—Sb3vi132.49 (3)Sb5xv—Sr6—Sr2vi63.240 (15)
Sb4vi—Sr2—Sb3vi86.14 (2)In1xv—Sr6—Sr2vi102.325 (19)
Sb2iii—Sr2—Sb3ii91.23 (2)Sr1xviii—Sr6—Sr2vi65.186 (16)
Sb1—Sr2—Sb3ii87.33 (2)Sr1iv—Sr6—Sr2vi112.258 (18)
Sb4—Sr2—Sb3ii88.47 (2)Sb1xix—Sr6—Sr2vi107.56 (3)
Sb4vi—Sr2—Sb3ii134.88 (3)Sb1vi—Sr6—Sr2vi49.557 (15)
Sb3vi—Sr2—Sb3ii138.89 (3)Sr2xix—Sr6—Sr2vi155.35 (4)
Sb2iii—Sr2—Sr1vi57.205 (18)Sb3—Sr6—Sr5xx135.40 (3)
Sb1—Sr2—Sr1vi124.24 (3)Sb3xvi—Sr6—Sr5xx47.463 (18)
Sb4—Sr2—Sr1vi89.29 (2)Sb5xvii—Sr6—Sr5xx121.303 (14)
Sb4vi—Sr2—Sr1vi50.998 (18)Sb5xv—Sr6—Sr5xx116.624 (14)
Sb3vi—Sr2—Sr1vi49.860 (18)In1xv—Sr6—Sr5xx135.988 (15)
Sb3ii—Sr2—Sr1vi148.43 (3)Sr1xviii—Sr6—Sr5xx62.257 (18)
Sb2iii—Sr2—Sr157.150 (18)Sr1iv—Sr6—Sr5xx109.13 (2)
Sb1—Sr2—Sr1121.39 (3)Sb1xix—Sr6—Sr5xx55.539 (18)
Sb4—Sr2—Sr151.015 (19)Sb1vi—Sr6—Sr5xx52.908 (17)
Sb4vi—Sr2—Sr189.08 (2)Sr2xix—Sr6—Sr5xx59.948 (17)
Sb3vi—Sr2—Sr1145.82 (3)Sr2vi—Sr6—Sr5xx101.17 (2)
Sb3ii—Sr2—Sr153.280 (18)In1viii—Sb1—Sr2133.90 (2)
Sr1vi—Sr2—Sr1102.61 (2)In1viii—Sb1—Sr478.44 (2)
Sb2iii—Sr2—Sb5v84.32 (2)Sr2—Sb1—Sr485.97 (2)
Sb1—Sr2—Sb5v95.53 (2)In1viii—Sb1—Sr1ii135.63 (2)
Sb4—Sr2—Sb5v149.07 (3)Sr2—Sb1—Sr1ii76.73 (2)
Sb4vi—Sr2—Sb5v160.48 (3)Sr4—Sb1—Sr1ii143.72 (2)
Sb3vi—Sr2—Sb5v76.71 (2)In1viii—Sb1—Sr3ii72.85 (2)
Sb3ii—Sr2—Sb5v62.406 (17)Sr2—Sb1—Sr3ii140.72 (2)
Sr1vi—Sr2—Sb5v109.76 (2)Sr4—Sb1—Sr3ii70.61 (2)
Sr1—Sr2—Sb5v99.84 (2)Sr1ii—Sb1—Sr3ii103.75 (2)
Sb2iii—Sr2—Sr6viii120.18 (3)In1viii—Sb1—Sr5xxi64.221 (17)
Sb1—Sr2—Sr6viii60.66 (2)Sr2—Sb1—Sr5xxi138.30 (3)
Sb4—Sr2—Sr6viii152.47 (3)Sr4—Sb1—Sr5xxi134.85 (3)
Sb4vi—Sr2—Sr6viii122.22 (2)Sr1ii—Sb1—Sr5xxi72.16 (2)
Sb3vi—Sr2—Sr6viii48.743 (13)Sr3ii—Sb1—Sr5xxi74.66 (2)
Sb3ii—Sr2—Sr6viii97.80 (2)In1viii—Sb1—Sr6viii95.40 (2)
Sr1vi—Sr2—Sr6viii98.60 (2)Sr2—Sb1—Sr6viii69.78 (2)
Sr1—Sr2—Sr6viii148.70 (3)Sr4—Sb1—Sr6viii139.77 (2)
Sb5v—Sr2—Sr6viii50.847 (18)Sr1ii—Sb1—Sr6viii62.111 (18)
Sb2iii—Sr2—Sr5ix121.87 (2)Sr3ii—Sb1—Sr6viii145.822 (19)
Sb1—Sr2—Sr5ix59.623 (19)Sr5xxi—Sb1—Sr6viii71.380 (18)
Sb4—Sr2—Sr5ix97.51 (2)In1viii—Sb1—Sr5vii138.19 (3)
Sb4vi—Sr2—Sr5ix59.433 (18)Sr2—Sb1—Sr5vii72.68 (2)
Sb3vi—Sr2—Sr5ix47.663 (18)Sr4—Sb1—Sr5vii71.49 (2)
Sb3ii—Sr2—Sr5ix146.58 (3)Sr1ii—Sb1—Sr5vii72.97 (2)
Sr1vi—Sr2—Sr5ix64.83 (2)Sr3ii—Sb1—Sr5vii70.17 (2)
Sr1—Sr2—Sr5ix147.59 (3)Sr5xxi—Sb1—Sr5vii121.670 (15)
Sb5v—Sr2—Sr5ix112.47 (2)Sr6viii—Sb1—Sr5vii126.29 (3)
Sr6viii—Sr2—Sr5ix63.174 (19)In1viii—Sb1—Sr5ix61.896 (17)
Sb2iii—Sr2—Sr1ii125.31 (3)Sr2—Sb1—Sr5ix72.08 (2)
Sb1—Sr2—Sr1ii53.848 (19)Sr4—Sb1—Sr5ix72.59 (2)
Sb4—Sr2—Sr1ii118.86 (2)Sr1ii—Sb1—Sr5ix129.02 (3)
Sb4vi—Sr2—Sr1ii147.17 (3)Sr3ii—Sb1—Sr5ix125.88 (3)
Sb3vi—Sr2—Sr1ii102.25 (2)Sr5xxi—Sb1—Sr5ix107.658 (16)
Sb3ii—Sr2—Sr1ii46.933 (16)Sr6viii—Sb1—Sr5ix69.637 (17)
Sr1vi—Sr2—Sr1ii151.29 (3)Sr5vii—Sb1—Sr5ix130.627 (14)
Sr1—Sr2—Sr1ii99.985 (19)Sr4iv—Sb2—Sr4xxii99.32 (4)
Sb5v—Sr2—Sr1ii48.409 (16)Sr4iv—Sb2—Sr2x153.237 (17)
Sr6viii—Sr2—Sr1ii53.956 (15)Sr4xxii—Sb2—Sr2x88.370 (18)
Sr5ix—Sr2—Sr1ii103.21 (2)Sr4iv—Sb2—Sr2xxiii88.370 (18)
Sb3x—Sr3—Sb4170.71 (3)Sr4xxii—Sb2—Sr2xxiii153.237 (17)
Sb3x—Sr3—Sb5ii87.18 (2)Sr2x—Sb2—Sr2xxiii96.22 (4)
Sb4—Sr3—Sb5ii101.66 (2)Sr4iv—Sb2—Sr1x85.00 (2)
Sb3x—Sr3—Sb571.732 (19)Sr4xxii—Sb2—Sr1x134.33 (2)
Sb4—Sr3—Sb599.47 (2)Sr2x—Sb2—Sr1x71.66 (2)
Sb5ii—Sr3—Sb5158.87 (3)Sr2xxiii—Sb2—Sr1x71.56 (2)
Sb3x—Sr3—Sb1iv114.47 (3)Sr4iv—Sb2—Sr1xxiii134.33 (2)
Sb4—Sr3—Sb1iv69.41 (2)Sr4xxii—Sb2—Sr1xxiii85.00 (2)
Sb5ii—Sr3—Sb1iv86.48 (2)Sr2x—Sb2—Sr1xxiii71.56 (2)
Sb5—Sr3—Sb1iv100.75 (2)Sr2xxiii—Sb2—Sr1xxiii71.66 (2)
Sb3x—Sr3—Sb2ii92.58 (2)Sr1x—Sb2—Sr1xxiii123.61 (4)
Sb4—Sr3—Sb2ii83.82 (2)Sr4iv—Sb2—Sr3xxii71.70 (2)
Sb5ii—Sr3—Sb2ii95.49 (2)Sr4xxii—Sb2—Sr3xxii74.62 (2)
Sb5—Sr3—Sb2ii87.044 (19)Sr2x—Sb2—Sr3xxii134.96 (2)
Sb1iv—Sr3—Sb2ii152.95 (3)Sr2xxiii—Sb2—Sr3xxii83.74 (2)
Sb3x—Sr3—Sr1xi56.998 (19)Sr1x—Sb2—Sr3xxii146.491 (17)
Sb4—Sr3—Sr1xi126.16 (3)Sr1xxiii—Sb2—Sr3xxii65.730 (16)
Sb5ii—Sr3—Sr1xi55.156 (19)Sr4iv—Sb2—Sr3iv74.62 (2)
Sb5—Sr3—Sr1xi111.20 (2)Sr4xxii—Sb2—Sr3iv71.70 (2)
Sb1iv—Sr3—Sr1xi139.34 (3)Sr2x—Sb2—Sr3iv83.74 (2)
Sb2ii—Sr3—Sr1xi56.064 (19)Sr2xxiii—Sb2—Sr3iv134.96 (2)
Sb3x—Sr3—In1ii86.35 (2)Sr1x—Sb2—Sr3iv65.730 (16)
Sb4—Sr3—In1ii101.74 (2)Sr1xxiii—Sb2—Sr3iv146.491 (16)
Sb5ii—Sr3—In1ii46.846 (13)Sr3xxii—Sb2—Sr3iv126.84 (4)
Sb5—Sr3—In1ii127.60 (2)Sr1—Sb3—Sr6142.80 (2)
Sb1iv—Sr3—In1ii46.356 (16)Sr1—Sb3—Sr5xi85.97 (2)
Sb2ii—Sr3—In1ii142.33 (2)Sr6—Sb3—Sr5xi85.23 (3)
Sr1xi—Sr3—In1ii93.33 (2)Sr1—Sb3—Sr3i111.91 (3)
Sb3x—Sr3—Sr4vi111.73 (3)Sr6—Sb3—Sr3i94.30 (3)
Sb4—Sr3—Sr4vi59.55 (2)Sr5xi—Sb3—Sr3i147.30 (2)
Sb5ii—Sr3—Sr4vi139.37 (3)Sr1—Sb3—Sr1iv143.14 (2)
Sb5—Sr3—Sr4vi54.898 (18)Sr6—Sb3—Sr1iv69.655 (18)
Sb1iv—Sr3—Sr4vi114.49 (3)Sr5xi—Sb3—Sr1iv79.40 (2)
Sb2ii—Sr3—Sr4vi50.027 (18)Sr3i—Sb3—Sr1iv69.94 (2)
Sr1xi—Sr3—Sr4vi104.45 (3)Sr1—Sb3—Sr2vi69.75 (2)
In1ii—Sr3—Sr4vi159.54 (3)Sr6—Sb3—Sr2vi73.047 (18)
Sb3x—Sr3—Sr4iv66.24 (2)Sr5xi—Sb3—Sr2vi75.85 (2)
Sb4—Sr3—Sr4iv113.57 (3)Sr3i—Sb3—Sr2vi135.22 (2)
Sb5ii—Sr3—Sr4iv104.19 (2)Sr1iv—Sb3—Sr2vi136.45 (2)
Sb5—Sr3—Sr4iv66.52 (2)Sr1—Sb3—Sr2iv76.32 (2)
Sb1iv—Sr3—Sr4iv52.740 (17)Sr6—Sb3—Sr2iv135.47 (2)
Sb2ii—Sr3—Sr4iv149.83 (3)Sr5xi—Sb3—Sr2iv76.01 (2)
Sr1xi—Sr3—Sr4iv118.91 (3)Sr3i—Sb3—Sr2iv81.83 (2)
In1ii—Sr3—Sr4iv61.098 (17)Sr1iv—Sb3—Sr2iv67.40 (2)
Sr4vi—Sr3—Sr4iv116.26 (2)Sr2vi—Sb3—Sr2iv136.90 (2)
Sb3x—Sr3—Sr4126.02 (3)Sr1—Sb3—Sr4v76.78 (2)
Sb4—Sr3—Sr456.930 (19)Sr6—Sb3—Sr4v91.57 (2)
Sb5ii—Sr3—Sr465.64 (2)Sr5xi—Sb3—Sr4v146.78 (2)
Sb5—Sr3—Sr4128.28 (3)Sr3i—Sb3—Sr4v65.87 (2)
Sb1iv—Sr3—Sr4109.53 (2)Sr1iv—Sb3—Sr4v130.15 (2)
Sb2ii—Sr3—Sr448.779 (16)Sr2vi—Sb3—Sr4v71.615 (18)
Sr1xi—Sr3—Sr469.37 (2)Sr2iv—Sb3—Sr4v125.39 (2)
In1ii—Sr3—Sr4103.30 (2)Sb4vi—Sb4—Sr3122.558 (17)
Sr4vi—Sr3—Sr474.40 (2)Sb4vi—Sb4—Sr1120.068 (16)
Sr4iv—Sr3—Sr4161.36 (3)Sr3—Sb4—Sr1117.22 (2)
Sb3x—Sr3—Sr5xi112.48 (2)Sb4vi—Sb4—Sr467.693 (18)
Sb4—Sr3—Sr5xi61.64 (2)Sr3—Sb4—Sr473.72 (2)
Sb5ii—Sr3—Sr5xi143.80 (3)Sr1—Sb4—Sr4137.42 (2)
Sb5—Sr3—Sr5xi50.174 (18)Sb4vi—Sb4—Sr266.976 (18)
Sb1iv—Sr3—Sr5xi58.031 (18)Sr3—Sb4—Sr2142.01 (2)
Sb2ii—Sr3—Sr5xi112.77 (2)Sr1—Sb4—Sr269.34 (2)
Sr1xi—Sr3—Sr5xi160.88 (3)Sr4—Sb4—Sr278.488 (19)
In1ii—Sr3—Sr5xi102.23 (2)Sb4vi—Sb4—Sr2vi66.620 (19)
Sr4vi—Sr3—Sr5xi62.750 (19)Sr3—Sb4—Sr2vi135.10 (2)
Sr4iv—Sr3—Sr5xi61.549 (19)Sr1—Sb4—Sr2vi69.12 (2)
Sr4—Sr3—Sr5xi116.71 (2)Sr4—Sb4—Sr2vi134.29 (2)
Sb2ii—Sr4—Sb1176.25 (3)Sr2—Sb4—Sr2vi82.87 (3)
Sb2ii—Sr4—Sb5vi93.68 (2)Sb4vi—Sb4—Sr4vi65.767 (19)
Sb1—Sr4—Sb5vi87.72 (2)Sr3—Sb4—Sr4vi70.16 (2)
Sb2ii—Sr4—Sb483.95 (2)Sr1—Sb4—Sr4vi137.39 (2)
Sb1—Sr4—Sb492.73 (2)Sr4—Sb4—Sr4vi85.09 (3)
Sb5vi—Sr4—Sb4139.72 (3)Sr2—Sb4—Sr4vi132.72 (2)
Sb2ii—Sr4—Sb4vi83.10 (2)Sr2vi—Sb4—Sr4vi77.696 (18)
Sb1—Sr4—Sb4vi93.35 (2)Sb4vi—Sb4—Sr5vii123.70 (3)
Sb5vi—Sr4—Sb4vi93.20 (2)Sr3—Sb4—Sr5vii76.36 (2)
Sb4—Sr4—Sb4vi46.539 (18)Sr1—Sb4—Sr5vii73.45 (2)
Sb2ii—Sr4—Sr3vi58.277 (18)Sr4—Sb4—Sr5vii69.68 (2)
Sb1—Sr4—Sr3vi120.14 (3)Sr2—Sb4—Sr5vii69.94 (2)
Sb5vi—Sr4—Sr3vi56.052 (19)Sr2vi—Sb4—Sr5vii139.57 (3)
Sb4—Sr4—Sr3vi90.09 (2)Sr4vi—Sb4—Sr5vii142.60 (3)
Sb4vi—Sr4—Sr3vi50.294 (18)Sb4vi—Sb4—Sr5xi120.45 (2)
Sb2ii—Sr4—Sr3ii126.62 (3)Sr3—Sb4—Sr5xi71.66 (2)
Sb1—Sr4—Sr3ii56.65 (2)Sr1—Sb4—Sr5xi74.31 (2)
Sb5vi—Sr4—Sr3ii94.16 (2)Sr4—Sb4—Sr5xi141.95 (3)
Sb4—Sr4—Sr3ii119.38 (3)Sr2—Sb4—Sr5xi139.55 (3)
Sb4vi—Sr4—Sr3ii148.70 (3)Sr2vi—Sb4—Sr5xi67.85 (2)
Sr3vi—Sr4—Sr3ii149.77 (3)Sr4vi—Sb4—Sr5xi68.76 (2)
Sb2ii—Sr4—In1viii136.56 (3)Sr5vii—Sb4—Sr5xi115.834 (14)
Sb1—Sr4—In1viii45.916 (16)In1—Sb5—Sr5xi68.55 (2)
Sb5vi—Sr4—In1viii45.685 (15)In1—Sb5—Sr1x123.97 (2)
Sb4—Sr4—In1viii135.19 (3)Sr5xi—Sb5—Sr1x136.52 (2)
Sb4vi—Sr4—In1viii109.33 (2)In1—Sb5—Sr6ix71.51 (2)
Sr3vi—Sr4—In1viii97.15 (2)Sr5xi—Sb5—Sr6ix139.88 (2)
Sr3ii—Sr4—In1viii57.947 (17)Sr1x—Sb5—Sr6ix66.94 (2)
Sb2ii—Sr4—Sb3xi82.68 (2)In1—Sb5—Sr3iv73.754 (18)
Sb1—Sr4—Sb3xi101.02 (2)Sr5xi—Sb5—Sr3iv79.58 (2)
Sb5vi—Sr4—Sb3xi78.28 (2)Sr1x—Sb5—Sr3iv67.577 (18)
Sb4—Sr4—Sb3xi140.45 (3)Sr6ix—Sb5—Sr3iv85.992 (18)
Sb4vi—Sr4—Sb3xi162.89 (3)In1—Sb5—Sr4vi76.562 (19)
Sr3vi—Sr4—Sb3xi113.45 (2)Sr5xi—Sb5—Sr4vi77.52 (2)
Sr3ii—Sr4—Sb3xi47.883 (17)Sr1x—Sb5—Sr4vi142.88 (2)
In1viii—Sr4—Sb3xi75.34 (2)Sr6ix—Sb5—Sr4vi96.94 (2)
Sb2ii—Sr4—Sr356.602 (18)Sr3iv—Sb5—Sr4vi147.51 (2)
Sb1—Sr4—Sr3122.18 (3)In1—Sb5—Sr3134.79 (2)
Sb5vi—Sr4—Sr3150.04 (3)Sr5xi—Sb5—Sr375.94 (2)
Sb4—Sr4—Sr349.353 (18)Sr1x—Sb5—Sr3101.00 (2)
Sb4vi—Sr4—Sr387.23 (2)Sr6ix—Sb5—Sr3139.64 (2)
Sr3vi—Sr4—Sr3103.91 (2)Sr3iv—Sb5—Sr3126.475 (18)
Sr3ii—Sr4—Sr3100.919 (19)Sr4vi—Sb5—Sr369.05 (2)
In1viii—Sr4—Sr3158.65 (2)In1—Sb5—Sr2xi123.18 (2)
Sb3xi—Sr4—Sr392.84 (2)Sr5xi—Sb5—Sr2xi143.65 (2)
Sb2ii—Sr4—Sr5vii119.86 (2)Sr1x—Sb5—Sr2xi69.65 (2)
Sb1—Sr4—Sr5vii59.208 (19)Sr6ix—Sb5—Sr2xi65.912 (19)
Sb5vi—Sr4—Sr5vii145.92 (3)Sr3iv—Sb5—Sr2xi135.39 (2)
Sb4—Sr4—Sr5vii57.395 (18)Sr4vi—Sb5—Sr2xi73.244 (19)
Sb4vi—Sr4—Sr5vii96.50 (2)Sr3—Sb5—Sr2xi73.76 (2)
Sr3vi—Sr4—Sr5vii146.27 (3)Sb1vi—In1—Sb1xix97.92 (3)
Sr3ii—Sr4—Sr5vii62.03 (2)Sb1vi—In1—Sb5107.767 (15)
In1viii—Sr4—Sr5vii100.44 (2)Sb1xix—In1—Sb5109.632 (15)
Sb3xi—Sr4—Sr5vii98.80 (2)Sb1vi—In1—Sb5xvi109.632 (15)
Sr3—Sr4—Sr5vii63.297 (19)Sb1xix—In1—Sb5xvi107.768 (15)
Sb2ii—Sr4—Sr5ix119.92 (2)Sb5—In1—Sb5xvi121.55 (3)
Sb1—Sr4—Sr5ix58.662 (19)Sb1vi—In1—Sr5xi71.52 (2)
Sb5vi—Sr4—Sr5ix49.929 (19)Sb1xix—In1—Sr5xi67.92 (2)
Sb4—Sr4—Sr5ix97.03 (2)Sb5—In1—Sr5xi61.189 (19)
Sb4vi—Sr4—Sr5ix58.800 (18)Sb5xvi—In1—Sr5xi175.69 (2)
Sr3vi—Sr4—Sr5ix61.65 (2)Sb1vi—In1—Sr5xx67.92 (2)
Sr3ii—Sr4—Sr5ix104.92 (2)Sb1xix—In1—Sr5xx71.52 (2)
In1viii—Sr4—Sr5ix50.828 (15)Sb5—In1—Sr5xx175.69 (2)
Sb3xi—Sr4—Sr5ix121.84 (2)Sb5xvi—In1—Sr5xx61.190 (19)
Sr3—Sr4—Sr5ix145.18 (3)Sr5xi—In1—Sr5xx116.30 (4)
Sr5vii—Sr4—Sr5ix109.80 (3)Sb1vi—In1—Sr6ix131.039 (16)
Sb3v—Sr5—Sb5v172.93 (3)Sb1xix—In1—Sr6ix131.039 (16)
Sb3v—Sr5—In1xii125.08 (3)Sb5—In1—Sr6ix60.776 (17)
Sb5v—Sr5—In1xii50.264 (19)Sb5xvi—In1—Sr6ix60.775 (17)
Sb3v—Sr5—Sb1xiii93.22 (2)Sr5xi—In1—Sr6ix121.848 (18)
Sb5v—Sr5—Sb1xiii86.23 (2)Sr5xx—In1—Sr6ix121.848 (18)
In1xii—Sr5—Sb1xiii47.861 (14)Sb1vi—In1—Sr3xviii60.794 (16)
Sb3v—Sr5—Sb4xiv92.45 (2)Sb1xix—In1—Sr3xviii142.55 (2)
Sb5v—Sr5—Sb4xiv93.55 (2)Sb5—In1—Sr3xviii106.35 (2)
In1xii—Sr5—Sb4xiv97.74 (2)Sb5xvi—In1—Sr3xviii59.400 (16)
Sb1xiii—Sr5—Sb4xiv62.555 (16)Sr5xi—In1—Sr3xviii123.881 (18)
Sb3v—Sr5—Sb1xiv85.95 (2)Sr5xx—In1—Sr3xviii71.844 (18)
Sb5v—Sr5—Sb1xiv98.49 (2)Sr6ix—In1—Sr3xviii76.528 (16)
In1xii—Sr5—Sb1xiv148.75 (3)Sb1vi—In1—Sr3iv142.55 (2)
Sb1xiii—Sr5—Sb1xiv145.45 (2)Sb1xix—In1—Sr3iv60.794 (17)
Sb4xiv—Sr5—Sb1xiv82.951 (18)Sb5—In1—Sr3iv59.401 (16)
Sb3v—Sr5—Sb1xv90.67 (2)Sb5xvi—In1—Sr3iv106.35 (2)
Sb5v—Sr5—Sb1xv82.44 (2)Sr5xi—In1—Sr3iv71.844 (18)
In1xii—Sr5—Sb1xv46.585 (14)Sr5xx—In1—Sr3iv123.881 (18)
Sb1xiii—Sr5—Sb1xv72.325 (16)Sr6ix—In1—Sr3iv76.528 (16)
Sb4xiv—Sr5—Sb1xv134.87 (2)Sr3xviii—In1—Sr3iv153.06 (3)
Sb1xiv—Sr5—Sb1xv142.17 (2)Sb1vi—In1—Sr4xix134.58 (2)
Sb3v—Sr5—Sb4v87.26 (2)Sb1xix—In1—Sr4xix55.642 (15)
Sb5v—Sr5—Sb4v90.21 (2)Sb5—In1—Sr4xix115.55 (2)
In1xii—Sr5—Sb4v112.67 (2)Sb5xvi—In1—Sr4xix57.754 (16)
Sb1xiii—Sr5—Sb4v154.60 (2)Sr5xi—In1—Sr4xix118.359 (18)
Sb4xiv—Sr5—Sb4v142.84 (2)Sr5xx—In1—Sr4xix68.629 (18)
Sb1xiv—Sr5—Sb4v59.942 (15)Sr6ix—In1—Sr4xix83.985 (17)
Sb1xv—Sr5—Sb4v82.274 (16)Sr3xviii—In1—Sr4xix115.891 (17)
Sb3v—Sr5—Sr4xiv121.62 (3)Sr3iv—In1—Sr4xix60.955 (16)
Sb5v—Sr5—Sr4xiv65.22 (2)Sb1vi—In1—Sr4vi55.642 (15)
In1xii—Sr5—Sr4xiv106.92 (3)Sb1xix—In1—Sr4vi134.58 (2)
Sb1xiii—Sr5—Sr4xiv104.82 (2)Sb5—In1—Sr4vi57.753 (16)
Sb4xiv—Sr5—Sr4xiv52.922 (17)Sb5xvi—In1—Sr4vi115.55 (2)
Sb1xiv—Sr5—Sr4xiv49.300 (17)Sr5xi—In1—Sr4vi68.629 (18)
Sb1xv—Sr5—Sr4xiv147.65 (3)Sr5xx—In1—Sr4vi118.359 (18)
Sb4v—Sr5—Sr4xiv96.39 (2)Sr6ix—In1—Sr4vi83.985 (17)
Sb3v—Sr5—Sr2xv56.484 (19)Sr3xviii—In1—Sr4vi60.955 (16)
Sb5v—Sr5—Sr2xv116.98 (2)Sr3iv—In1—Sr4vi115.891 (17)
In1xii—Sr5—Sr2xv94.85 (2)Sr4xix—In1—Sr4vi167.97 (3)
Sb1xiii—Sr5—Sr2xv107.30 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y1/2, z+1/2; (iv) x1/2, y+1/2, z; (v) x+1, y, z+1/2; (vi) x+1, y, z; (vii) x+3/2, y+1/2, z1/2; (viii) x+1, y, z; (ix) x, y, z1/2; (x) x+1/2, y+1/2, z1/2; (xi) x+1, y, z1/2; (xii) x+1, y, z+1/2; (xiii) x+2, y, z+1/2; (xiv) x+3/2, y+1/2, z+1/2; (xv) x, y, z+1/2; (xvi) x, y, z; (xvii) x, y, z+1/2; (xviii) x+1/2, y1/2, z; (xix) x1, y, z; (xx) x1, y, z1/2; (xxi) x+2, y, z1/2; (xxii) x+1/2, y+1/2, z; (xxiii) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaSr11InSb9
Mr2174.39
Crystal system, space groupOrthorhombic, Iba2
Temperature (K)120
a, b, c (Å)12.3885 (13), 13.1003 (14), 17.4966 (18)
V3)2839.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)29.64
Crystal size (mm)0.08 × 0.05 × 0.04
Data collection
DiffractometerBruker SMART APEX
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.172, 0.308
No. of measured, independent and
observed [I > 2σ(I)] reflections
15129, 3124, 2972
Rint0.046
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.034, 0.90
No. of reflections3124
No. of parameters99
No. of restraints1
Δρmax, Δρmin (e Å3)0.90, 1.01
Absolute structureFlack (1983), 1496 Friedel pairs
Absolute structure parameter0.017 (6)

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), XP in SHELXTL (Bruker, 2002).

Selected bond lengths (Å) top
Sr1—Sb33.1806 (9)Sr3—Sb1iv3.5237 (10)
Sr1—Sb43.2466 (10)Sr3—Sb2ii3.5434 (9)
Sr1—Sb5i3.3742 (10)Sr4—Sb2ii3.1924 (10)
Sr1—Sb3ii3.3932 (9)Sr4—Sb13.3574 (10)
Sr1—Sb2iii3.4589 (9)Sr4—Sb5v3.4647 (10)
Sr1—Sb1iv3.5094 (10)Sr4—Sb43.5726 (10)
Sr2—Sb2iii3.2082 (10)Sr4—Sb4v3.6246 (10)
Sr2—Sb13.3012 (10)Sr5—Sb3vii3.2068 (11)
Sr2—Sb43.6040 (10)Sr5—Sb5vii3.3398 (11)
Sr2—Sb4v3.6137 (10)Sr5—In1viii3.5475 (9)
Sr2—Sb3v3.6170 (9)Sr5—Sb1ix3.6506 (9)
Sr2—Sb3ii3.6409 (10)Sr6—Sb33.1990 (5)
Sr3—Sb3vi3.2340 (10)Sr6—Sb3x3.1990 (5)
Sr3—Sb43.2347 (10)Sr6—Sb5xi3.4575 (9)
Sr3—Sb5ii3.4584 (9)Sb1—In1xii2.9213 (7)
Sr3—Sb53.5131 (9)Sb4—Sb4v2.8437 (9)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y1/2, z+1/2; (iv) x1/2, y+1/2, z; (v) x+1, y, z; (vi) x+1/2, y+1/2, z1/2; (vii) x+1, y, z+1/2; (viii) x+1, y, z+1/2; (ix) x+2, y, z+1/2; (x) x, y, z; (xi) x, y, z+1/2; (xii) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds