Download citation
Download citation
link to html
In the crystal structure of the title compound, C12H9NO3, the mol­ecules are linked through weak inter­molecular C—H...O hydrogen bonds, forming a two-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805039322/lh6544sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805039322/lh6544Isup2.hkl
Contains datablock I

CCDC reference: 296604

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.044
  • wR factor = 0.134
  • Data-to-parameter ratio = 15.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ?
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

The title compound, (I), is a derivative of pyridylaldehyde, which readily forms Schiff base compounds by condensation with amines.

In (I), all the bond lengths are within normal ranges (Allen et al., 1987). The dihedral angle between the plane of atoms O2/C11/O3 and the quinoline ring is 82.9 (2)° (Fig. 1). The conformation of the acetoxy group is desecribed by the torsion angle of −169.42 (17)° for C9—O2—C11—C12.

In the crystal structure, molecules are linked via weak intermolecular C—H···O hydrogen bonds to form a two-dimensional sheet perpendicular to the c axis (Table 1).

Experimental top

One drop of concentrated sulfuric acid was added to a mixture of 2-methyl-8-hydroxyquinoline (15.9 g, 0.1 mol) and acetic anhydride (10.2 g, 9.4 ml, 0.1 mol) in a 250 ml Erlenmeyer flask. The mixture was warmed rapidly and stirred gently by hand. After 5 min, the clear solution was poured onto crushed ice (about 200 ml). The solid was filtered off and washed with water (200 ml). The compound obtained was 2-methyl-8-acetoxyquionoline (18.6 g, 93%; m.p. 394–395 K). To a dioxane supension (40 ml) of freshly sublimed selenium dioxide (5.8 g), a dioxane solution (50 ml) of 2-methyl-8-acetoxyquionoline (11.4 g) was added with stirring over a water bath at 323–328 K for 3 h. The mixture was filtered after being allowed to stand for 2 h. The dioxane was distilled off to give light-yellow [Colourless below?] crystals of (I) (9.0 g; m.p. 367–368 K).

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93–0.96 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of (I). Displacement ellipsoids are drawn at the 30% probability level.
2-Formylquinolin-8-yl acetate top
Crystal data top
C12H9NO3F(000) = 896
Mr = 215.20Dx = 1.341 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3212 reflections
a = 19.743 (3) Åθ = 2.3–24.9°
b = 7.863 (1) ŵ = 0.10 mm1
c = 14.771 (2) ÅT = 298 K
β = 111.66 (2)°Block, colourless
V = 2131.1 (6) Å30.53 × 0.46 × 0.41 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
2315 independent reflections
Radiation source: fine-focus sealed tube1225 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2425
Tmin = 0.950, Tmax = 0.961k = 810
6309 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.0577P)2 + 0.2105P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2315 reflectionsΔρmax = 0.18 e Å3
147 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0073 (10)
Crystal data top
C12H9NO3V = 2131.1 (6) Å3
Mr = 215.20Z = 8
Monoclinic, C2/cMo Kα radiation
a = 19.743 (3) ŵ = 0.10 mm1
b = 7.863 (1) ÅT = 298 K
c = 14.771 (2) Å0.53 × 0.46 × 0.41 mm
β = 111.66 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2315 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1225 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.961Rint = 0.045
6309 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.00Δρmax = 0.18 e Å3
2315 reflectionsΔρmin = 0.15 e Å3
147 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.49901 (9)0.3345 (2)0.06274 (13)0.0936 (6)
O20.36311 (8)0.76088 (17)0.29079 (10)0.0607 (4)
O30.38384 (8)0.98008 (19)0.20739 (11)0.0740 (5)
N10.38935 (8)0.57120 (19)0.15299 (11)0.0504 (4)
C10.47836 (12)0.4333 (3)0.10849 (17)0.0664 (6)
H10.51320.48800.16090.080*
C20.40071 (11)0.4739 (2)0.08687 (14)0.0517 (5)
C30.34551 (12)0.4121 (3)0.00338 (15)0.0591 (6)
H30.35670.34580.04130.071*
C40.27550 (12)0.4505 (2)0.01135 (15)0.0594 (6)
H40.23810.41110.06670.071*
C50.25934 (10)0.5498 (2)0.05699 (15)0.0513 (5)
C60.18791 (11)0.5936 (3)0.04871 (18)0.0648 (6)
H60.14830.55570.00450.078*
C70.17674 (12)0.6905 (3)0.1177 (2)0.0730 (7)
H70.12940.71870.11110.088*
C80.23503 (13)0.7488 (3)0.19863 (18)0.0671 (6)
H80.22630.81410.24570.080*
C90.30466 (11)0.7102 (2)0.20868 (15)0.0528 (5)
C100.31877 (10)0.6083 (2)0.13869 (13)0.0468 (5)
C110.40329 (12)0.8948 (3)0.27912 (16)0.0572 (6)
C120.47099 (13)0.9152 (3)0.36568 (15)0.0743 (7)
H12A0.50710.83650.36190.111*
H12B0.46110.89290.42350.111*
H12C0.48881.02930.36780.111*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0852 (13)0.0961 (13)0.1035 (14)0.0277 (10)0.0395 (11)0.0138 (10)
O20.0672 (10)0.0644 (9)0.0526 (9)0.0017 (7)0.0246 (8)0.0006 (7)
O30.0743 (11)0.0739 (11)0.0673 (11)0.0068 (8)0.0186 (9)0.0131 (8)
N10.0443 (10)0.0531 (10)0.0511 (10)0.0015 (7)0.0147 (8)0.0025 (8)
C10.0580 (15)0.0665 (15)0.0733 (15)0.0114 (11)0.0225 (12)0.0016 (12)
C20.0508 (13)0.0491 (11)0.0527 (12)0.0019 (9)0.0164 (10)0.0023 (9)
C30.0634 (15)0.0534 (13)0.0559 (13)0.0000 (10)0.0168 (12)0.0042 (10)
C40.0612 (15)0.0496 (12)0.0546 (13)0.0122 (10)0.0063 (11)0.0025 (10)
C50.0454 (12)0.0460 (11)0.0579 (13)0.0049 (9)0.0135 (10)0.0122 (10)
C60.0443 (13)0.0617 (14)0.0809 (16)0.0055 (10)0.0142 (12)0.0163 (12)
C70.0474 (14)0.0717 (16)0.105 (2)0.0042 (11)0.0343 (15)0.0234 (14)
C80.0661 (16)0.0646 (14)0.0817 (17)0.0057 (11)0.0403 (14)0.0078 (12)
C90.0515 (13)0.0543 (12)0.0555 (13)0.0004 (10)0.0232 (11)0.0066 (10)
C100.0414 (12)0.0456 (11)0.0517 (12)0.0006 (8)0.0154 (10)0.0095 (9)
C110.0588 (14)0.0595 (14)0.0567 (14)0.0069 (11)0.0254 (12)0.0056 (11)
C120.0698 (16)0.0783 (17)0.0658 (15)0.0018 (12)0.0147 (13)0.0051 (12)
Geometric parameters (Å, º) top
O1—C11.195 (2)C5—C61.412 (3)
O2—C111.367 (2)C5—C101.414 (3)
O2—C91.389 (2)C6—C71.354 (3)
O3—C111.191 (2)C6—H60.9300
N1—C21.324 (2)C7—C81.396 (3)
N1—C101.362 (2)C7—H70.9300
C1—C21.481 (3)C8—C91.361 (3)
C1—H10.9300C8—H80.9300
C2—C31.397 (3)C9—C101.415 (3)
C3—C41.352 (3)C11—C121.478 (3)
C3—H30.9300C12—H12A0.9600
C4—C51.403 (3)C12—H12B0.9600
C4—H40.9300C12—H12C0.9600
C11—O2—C9116.42 (15)C6—C7—H7119.4
C2—N1—C10116.86 (16)C8—C7—H7119.4
O1—C1—C2124.1 (2)C9—C8—C7120.0 (2)
O1—C1—H1118.0C9—C8—H8120.0
C2—C1—H1118.0C7—C8—H8120.0
N1—C2—C3124.25 (18)C8—C9—O2120.7 (2)
N1—C2—C1114.17 (18)C8—C9—C10120.7 (2)
C3—C2—C1121.6 (2)O2—C9—C10118.47 (17)
C4—C3—C2118.9 (2)N1—C10—C5122.84 (18)
C4—C3—H3120.6N1—C10—C9118.31 (17)
C2—C3—H3120.6C5—C10—C9118.86 (18)
C3—C4—C5119.94 (19)O3—C11—O2122.3 (2)
C3—C4—H4120.0O3—C11—C12126.9 (2)
C5—C4—H4120.0O2—C11—C12110.85 (19)
C4—C5—C6123.9 (2)C11—C12—H12A109.5
C4—C5—C10117.23 (18)C11—C12—H12B109.5
C6—C5—C10118.8 (2)H12A—C12—H12B109.5
C7—C6—C5120.5 (2)C11—C12—H12C109.5
C7—C6—H6119.8H12A—C12—H12C109.5
C5—C6—H6119.8H12B—C12—H12C109.5
C6—C7—C8121.2 (2)
C10—N1—C2—C31.8 (3)C11—O2—C9—C8104.8 (2)
C10—N1—C2—C1177.92 (16)C11—O2—C9—C1079.2 (2)
O1—C1—C2—N1172.6 (2)C2—N1—C10—C51.0 (3)
O1—C1—C2—C37.2 (3)C2—N1—C10—C9179.17 (16)
N1—C2—C3—C41.2 (3)C4—C5—C10—N10.4 (3)
C1—C2—C3—C4178.58 (18)C6—C5—C10—N1179.49 (16)
C2—C3—C4—C50.4 (3)C4—C5—C10—C9179.40 (16)
C3—C4—C5—C6178.78 (18)C6—C5—C10—C90.7 (3)
C3—C4—C5—C101.1 (3)C8—C9—C10—N1178.98 (17)
C4—C5—C6—C7179.8 (2)O2—C9—C10—N12.9 (3)
C10—C5—C6—C70.3 (3)C8—C9—C10—C51.2 (3)
C5—C6—C7—C80.3 (3)O2—C9—C10—C5177.26 (15)
C6—C7—C8—C90.8 (3)C9—O2—C11—O310.7 (3)
C7—C8—C9—O2177.19 (17)C9—O2—C11—C12169.42 (17)
C7—C8—C9—C101.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.932.573.486 (3)168
C12—H12C···O1ii0.962.593.447 (3)149
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H9NO3
Mr215.20
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)19.743 (3), 7.863 (1), 14.771 (2)
β (°) 111.66 (2)
V3)2131.1 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.53 × 0.46 × 0.41
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.950, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
6309, 2315, 1225
Rint0.045
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.134, 1.00
No. of reflections2315
No. of parameters147
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.15

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SAINT, SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.932.573.486 (3)168
C12—H12C···O1ii0.962.593.447 (3)149
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1, y+1, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds