Download citation
Download citation
link to html
Pyridinium-3-carboxylic acid perchlorate was synthesized and separated as crystals. Differential scanning calorimetry (DSC) measurements show that this compound undergoes a reversible phase transition at ∼ 135 K with a wide hysteresis of 15 K. Dielectric measurements confirm the transition at ∼ 127 K. Measurement of the unit-cell parameters versus temperature shows that the values of the c axis and β angle change abruptly and remarkably at 129 (2) K, indicating that the system undergoes a first-order transition at Tc = 129 K. The crystal structures determined at 103 and 298 K are all monoclinic in P21/c, showing that the phase transition is isosymmetric. The crystal contains one-dimensional hydrogen-bonded chains of the pyridinium-3-carboxylic acid cations, which are further linked to perchlorate anions by hydrogen bonds to form well separated infinite planar layers. The most distinct differences between the structures of the higher-temperature phase and the lower-temperature phase are the change of the distance between the adjacent pyridinium ring planes within the hydrogen-bonded chains and the relative displacement between the hydrogen-bonded layers. Structural analysis shows that the driving force of the transition is the reorientation of the pyridinium-3-carboxylic acid cations. The degree of order of the perchlorate anions may be a secondary order parameter.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768110001576/hw5007sup1.cif
Contains datablocks 298K, 148K, 103K

fcf

Structure factor file (CIF format) https://doi.org/10.1107/S0108768110001576/hw5007298Ksup2.fcf
Contains datablock 298K

fcf

Structure factor file (CIF format) https://doi.org/10.1107/S0108768110001576/hw5007148Ksup3.fcf
Contains datablock 148K

fcf

Structure factor file (CIF format) https://doi.org/10.1107/S0108768110001576/hw5007103Ksup4.fcf
Contains datablock 103K

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108768110001576/hw5007sup5.pdf
IR and powder XRD spectra

CCDC references: 782732; 782733; 782734

Computing details top

For all structures, data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); diamond (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(298K) top
Crystal data top
C6H6NO2·ClO4F(000) = 456
Mr = 223.57Dx = 1.627 Mg m3
Monoclinic, p21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2128 reflections
a = 7.400 (7) Åθ = 3.7–27.5°
b = 16.996 (13) ŵ = 0.42 mm1
c = 7.865 (7) ÅT = 298 K
β = 112.717 (12)°Block, colorless
V = 912.4 (13) Å30.45 × 0.40 × 0.40 mm
Z = 4
Data collection top
Saturn724+ (4x4 bin mode)
diffractometer
2075 independent reflections
Radiation source: Rotating anode target1803 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.7°
CCD_Profile_fitting scansh = 99
Absorption correction: multi-scan
crystalclear (Rigaku, 2005)
k = 2122
Tmin = 0.867, Tmax = 1.000l = 1010
9560 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.077Hydrogen site location: difference Fourier map
wR(F2) = 0.216H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1194P)2 + 0.9244P]
where P = (Fo2 + 2Fc2)/3
2075 reflections(Δ/σ)max = 0.001
141 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.48 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.07890 (12)0.36492 (5)0.31739 (12)0.0493 (3)0.809 (3)
O30.2091 (11)0.3625 (3)0.4044 (10)0.115 (2)0.809 (3)
O40.1273 (7)0.3717 (3)0.4272 (8)0.1095 (18)0.809 (3)
O50.0904 (7)0.29102 (19)0.2180 (7)0.0772 (12)0.809 (3)
O60.1273 (6)0.4266 (2)0.1851 (5)0.0665 (9)0.809 (3)
Cl1'0.07890 (12)0.36492 (5)0.31739 (12)0.0493 (3)0.191 (3)
O3'0.287 (5)0.3608 (12)0.265 (4)0.115 (2)0.191 (3)
O4'0.007 (3)0.4248 (15)0.476 (3)0.1095 (18)0.191 (3)
O5'0.010 (3)0.2974 (8)0.419 (3)0.0772 (12)0.191 (3)
O6'0.014 (3)0.3885 (9)0.181 (2)0.0665 (9)0.191 (3)
O10.3348 (5)0.24826 (18)0.3296 (7)0.0954 (13)
H10.24010.26970.33960.143*
O20.1894 (4)0.13874 (17)0.3663 (5)0.0659 (8)
N10.7823 (4)0.12861 (16)0.2836 (4)0.0462 (7)
H1A0.88280.15410.28370.055*
C10.7783 (5)0.0514 (2)0.2604 (5)0.0549 (9)
H1B0.88270.02600.24590.066*
C20.6198 (6)0.0092 (2)0.2579 (6)0.0578 (9)
H2A0.61420.04500.23980.069*
C30.4684 (5)0.0483 (2)0.2828 (5)0.0504 (8)
H3A0.36020.02060.28300.060*
C40.4783 (4)0.12927 (18)0.3074 (4)0.0393 (7)
C50.6393 (4)0.16891 (19)0.3068 (4)0.0413 (7)
H5A0.64850.22320.32230.050*
C60.3171 (5)0.1718 (2)0.3367 (6)0.0536 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0475 (5)0.0411 (5)0.0588 (5)0.0017 (3)0.0199 (4)0.0053 (3)
O30.185 (6)0.081 (3)0.147 (5)0.008 (3)0.140 (6)0.009 (3)
O40.070 (3)0.123 (4)0.099 (3)0.001 (3)0.007 (3)0.001 (3)
O50.095 (3)0.0398 (17)0.117 (3)0.0044 (17)0.063 (3)0.0044 (18)
O60.080 (2)0.0473 (18)0.070 (2)0.0047 (15)0.0264 (19)0.0086 (15)
Cl1'0.0475 (5)0.0411 (5)0.0588 (5)0.0017 (3)0.0199 (4)0.0053 (3)
O3'0.185 (6)0.081 (3)0.147 (5)0.008 (3)0.140 (6)0.009 (3)
O4'0.070 (3)0.123 (4)0.099 (3)0.001 (3)0.007 (3)0.001 (3)
O5'0.095 (3)0.0398 (17)0.117 (3)0.0044 (17)0.063 (3)0.0044 (18)
O6'0.080 (2)0.0473 (18)0.070 (2)0.0047 (15)0.0264 (19)0.0086 (15)
O10.075 (2)0.0540 (18)0.186 (4)0.0194 (15)0.083 (3)0.012 (2)
O20.0399 (13)0.0783 (19)0.091 (2)0.0059 (12)0.0379 (14)0.0127 (15)
N10.0327 (12)0.0521 (16)0.0604 (16)0.0012 (10)0.0252 (12)0.0024 (12)
C10.0459 (17)0.059 (2)0.067 (2)0.0127 (15)0.0299 (16)0.0007 (17)
C20.062 (2)0.0388 (17)0.078 (2)0.0003 (15)0.034 (2)0.0045 (17)
C30.0424 (16)0.0457 (18)0.064 (2)0.0100 (13)0.0221 (15)0.0021 (15)
C40.0282 (13)0.0424 (16)0.0478 (15)0.0004 (11)0.0150 (11)0.0028 (12)
C50.0340 (14)0.0415 (16)0.0511 (16)0.0009 (11)0.0195 (12)0.0036 (13)
C60.0344 (16)0.057 (2)0.075 (2)0.0090 (14)0.0271 (16)0.0074 (17)
Geometric parameters (Å, º) top
Cl1—O31.381 (5)C1—C21.369 (5)
Cl1—O61.422 (4)C1—H1B0.9300
Cl1—O41.438 (5)C2—C31.380 (5)
Cl1—O51.464 (4)C2—H2A0.9300
O1—C61.309 (5)C3—C41.387 (5)
O1—H10.8200C3—H3A0.9300
O2—C61.197 (4)C4—C51.371 (4)
N1—C11.324 (5)C4—C61.487 (4)
N1—C51.331 (4)C5—H5A0.9300
N1—H1A0.8600
O3—Cl1—O6111.0 (3)C1—C2—H2A120.6
O3—Cl1—O4119.1 (4)C3—C2—H2A120.6
O6—Cl1—O4106.8 (3)C2—C3—C4119.8 (3)
O3—Cl1—O5109.3 (3)C2—C3—H3A120.1
O6—Cl1—O5107.2 (2)C4—C3—H3A120.1
O4—Cl1—O5102.6 (3)C5—C4—C3119.1 (3)
C6—O1—H1109.5C5—C4—C6120.8 (3)
C1—N1—C5123.5 (3)C3—C4—C6120.1 (3)
C1—N1—H1A118.2N1—C5—C4119.1 (3)
C5—N1—H1A118.2N1—C5—H5A120.5
N1—C1—C2119.7 (3)C4—C5—H5A120.5
N1—C1—H1B120.1O2—C6—O1125.0 (3)
C2—C1—H1B120.1O2—C6—C4122.8 (4)
C1—C2—C3118.9 (3)O1—C6—C4112.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O40.822.152.874 (7)147
O1—H1···O50.822.283.011 (6)148
N1—H1A···O2i0.862.122.831 (4)140
N1—H1A···O5i0.862.413.024 (5)129
C1—H1B···O6ii0.932.383.240 (5)154
C3—H3A···O6iii0.932.433.349 (5)168
C5—H5A···O3i0.932.573.465 (6)162
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+1/2; (iii) x, y1/2, z+1/2.
(148K) top
Crystal data top
C6H6NO2·ClO4F(000) = 456
Mr = 223.57Dx = 1.672 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1607 reflections
a = 7.404 (6) Åθ = 3.1–27.5°
b = 16.793 (11) ŵ = 0.44 mm1
c = 7.751 (6) ÅT = 148 K
β = 112.817 (10)°Block, colorless
V = 888.3 (11) Å30.45 × 0.40 × 0.40 mm
Z = 4
Data collection top
Saturn724+ (4x4 bin mode)
diffractometer
2013 independent reflections
Radiation source: Rotating anode target1823 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.5°
CCD_Profile_fitting scansh = 99
Absorption correction: multi-scan
crystalclear
k = 2121
Tmin = 0.877, Tmax = 1.000l = 1010
9255 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: difference Fourier map
wR(F2) = 0.147H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0673P)2 + 1.3927P]
where P = (Fo2 + 2Fc2)/3
2013 reflections(Δ/σ)max < 0.001
141 parametersΔρmax = 0.82 e Å3
6 restraintsΔρmin = 0.57 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.07996 (9)0.36420 (4)0.31165 (9)0.0267 (2)0.832 (4)
O30.2010 (6)0.36234 (17)0.4119 (5)0.0479 (9)0.832 (4)
O40.1281 (4)0.36979 (19)0.4308 (4)0.0500 (8)0.832 (4)
O50.1014 (5)0.29018 (16)0.2027 (4)0.0355 (7)0.832 (4)
O60.1309 (6)0.4297 (2)0.1827 (5)0.0293 (7)0.832 (4)
Cl1'0.07996 (9)0.36420 (4)0.31165 (9)0.0267 (2)0.168 (4)
O3'0.282 (2)0.3616 (10)0.311 (3)0.0479 (9)0.168 (4)
O4'0.038 (2)0.3953 (10)0.4951 (18)0.0500 (8)0.168 (4)
O5'0.053 (3)0.2858 (8)0.277 (2)0.0355 (7)0.168 (4)
O6'0.092 (4)0.4184 (12)0.171 (3)0.0293 (7)0.168 (4)
O10.3404 (4)0.25126 (14)0.3384 (5)0.0627 (9)
H10.24000.27400.34000.094*
O20.1877 (3)0.13967 (14)0.3688 (3)0.0413 (6)
N10.7809 (3)0.12926 (13)0.2821 (3)0.0239 (5)
H1A0.88320.15550.28090.029*
C10.7754 (4)0.05039 (16)0.2583 (4)0.0284 (6)
H1B0.88130.02380.24250.034*
C20.6165 (4)0.00770 (16)0.2568 (4)0.0308 (6)
H2A0.61010.04830.23770.037*
C30.4660 (4)0.04749 (16)0.2834 (4)0.0268 (5)
H3A0.35530.01900.28380.032*
C40.4779 (3)0.12953 (15)0.3098 (3)0.0226 (5)
C50.6387 (3)0.17005 (15)0.3077 (3)0.0227 (5)
H5A0.64820.22620.32420.027*
C60.3180 (4)0.17335 (18)0.3414 (4)0.0331 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0250 (3)0.0220 (3)0.0301 (4)0.0004 (2)0.0076 (3)0.0043 (2)
O30.076 (2)0.0384 (14)0.052 (2)0.0052 (15)0.050 (2)0.0047 (15)
O40.0280 (14)0.064 (2)0.0438 (16)0.0028 (12)0.0023 (11)0.0011 (14)
O50.0487 (19)0.0216 (11)0.0420 (18)0.0048 (11)0.0238 (16)0.0037 (13)
O60.033 (2)0.0220 (15)0.0358 (12)0.0056 (10)0.0163 (11)0.0021 (11)
Cl1'0.0250 (3)0.0220 (3)0.0301 (4)0.0004 (2)0.0076 (3)0.0043 (2)
O3'0.076 (2)0.0384 (14)0.052 (2)0.0052 (15)0.050 (2)0.0047 (15)
O4'0.0280 (14)0.064 (2)0.0438 (16)0.0028 (12)0.0023 (11)0.0011 (14)
O5'0.0487 (19)0.0216 (11)0.0420 (18)0.0048 (11)0.0238 (16)0.0037 (13)
O6'0.033 (2)0.0220 (15)0.0358 (12)0.0056 (10)0.0163 (11)0.0021 (11)
O10.0571 (16)0.0334 (13)0.125 (3)0.0217 (11)0.0659 (18)0.0207 (14)
O20.0232 (10)0.0509 (14)0.0582 (14)0.0076 (9)0.0248 (10)0.0174 (11)
N10.0177 (9)0.0275 (11)0.0299 (11)0.0008 (8)0.0128 (8)0.0013 (8)
C10.0285 (13)0.0299 (13)0.0293 (13)0.0087 (10)0.0139 (11)0.0010 (10)
C20.0380 (15)0.0212 (12)0.0340 (14)0.0004 (11)0.0150 (12)0.0023 (11)
C30.0227 (11)0.0272 (13)0.0291 (13)0.0059 (10)0.0086 (10)0.0007 (10)
C40.0165 (11)0.0247 (12)0.0268 (12)0.0028 (9)0.0085 (9)0.0045 (9)
C50.0203 (11)0.0225 (12)0.0267 (12)0.0004 (9)0.0108 (9)0.0021 (9)
C60.0227 (12)0.0350 (15)0.0465 (16)0.0087 (11)0.0188 (12)0.0106 (12)
Geometric parameters (Å, º) top
Cl1—O31.396 (3)C1—C21.374 (4)
Cl1—O61.434 (3)C1—H1B0.9500
Cl1—O41.460 (3)C2—C31.381 (4)
Cl1—O51.476 (3)C2—H2A0.9500
O1—C61.320 (4)C3—C41.391 (4)
O1—H10.8400C3—H3A0.9500
O2—C61.207 (3)C4—C51.377 (3)
N1—C51.334 (3)C4—C61.493 (3)
N1—C11.336 (4)C5—H5A0.9500
N1—H1A0.8800
O3—Cl1—O6110.69 (18)C1—C2—H2A120.5
O3—Cl1—O4113.4 (2)C3—C2—H2A120.5
O6—Cl1—O4108.6 (2)C2—C3—C4119.5 (2)
O3—Cl1—O5110.47 (19)C2—C3—H3A120.2
O6—Cl1—O5107.8 (2)C4—C3—H3A120.2
O4—Cl1—O5105.61 (18)C5—C4—C3119.6 (2)
C6—O1—H1109.5C5—C4—C6120.2 (2)
C5—N1—C1123.1 (2)C3—C4—C6120.2 (2)
C5—N1—H1A118.4N1—C5—C4118.9 (2)
C1—N1—H1A118.4N1—C5—H5A120.5
N1—C1—C2119.9 (2)C4—C5—H5A120.5
N1—C1—H1B120.1O2—C6—O1125.6 (3)
C2—C1—H1B120.1O2—C6—C4122.5 (3)
C1—C2—C3118.9 (3)O1—C6—C4111.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O40.842.052.796 (4)147
O1—H1···O50.842.353.092 (5)148
N1—H1A···O2i0.882.102.825 (4)139
N1—H1A···O5i0.882.352.976 (4)128
C1—H1B···O6ii0.952.333.211 (5)154
C3—H3A···O6iii0.952.333.263 (4)168
C5—H5A···O3i0.952.523.427 (4)160
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+1/2; (iii) x, y1/2, z+1/2.
(103K) top
Crystal data top
C6H6ClNO6F(000) = 456
Mr = 223.57Dx = 1.718 Mg m3
Monoclinic, p21/cMo Kα radiation, λ = 0.71073 Å
a = 7.4564 (10) ÅCell parameters from 1607 reflections
b = 16.5261 (18) Åθ = 3.1–27.5°
c = 7.1282 (8) ŵ = 0.45 mm1
β = 79.754 (4)°T = 103 K
V = 864.37 (18) Å3Block, colorless
Z = 40.45 × 0.40 × 0.40 mm
Data collection top
Saturn724+ (4x4 bin mode)
diffractometer
1971 independent reflections
Radiation source: Rotating anode target1772 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.0°
CCD_Profile_fitting scansh = 99
Absorption correction: multi-scan
crystalclear
k = 2121
Tmin = 0.877, Tmax = 1.000l = 98
8182 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0495P)2 + 0.5586P]
where P = (Fo2 + 2Fc2)/3
1971 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.55 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.77145 (19)0.12629 (9)0.2783 (2)0.0168 (3)
H1A0.87270.15220.28690.020*
C10.7809 (2)0.04626 (10)0.2428 (2)0.0188 (3)
H1B0.89480.01900.22810.023*
C20.6245 (2)0.00393 (10)0.2277 (2)0.0197 (4)
H2A0.62920.05270.20410.024*
C30.4599 (2)0.04545 (10)0.2477 (2)0.0183 (3)
H3A0.35120.01750.23550.022*
C40.4552 (2)0.12833 (10)0.2857 (2)0.0154 (3)
C50.6156 (2)0.16836 (10)0.3013 (2)0.0162 (3)
H5A0.61480.22470.32790.019*
C60.2792 (2)0.17379 (10)0.3011 (2)0.0163 (3)
O10.28957 (16)0.24839 (7)0.3676 (2)0.0228 (3)
H10.18840.27150.37410.034*
O20.14506 (16)0.14334 (7)0.25567 (18)0.0198 (3)
Cl10.11551 (5)0.36159 (2)0.24658 (5)0.01479 (14)
O40.01840 (17)0.36194 (7)0.37277 (18)0.0207 (3)
O60.09096 (17)0.43332 (7)0.12920 (17)0.0205 (3)
O30.29683 (16)0.36138 (7)0.36047 (18)0.0204 (3)
O50.09061 (16)0.28962 (7)0.12870 (17)0.0205 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0098 (6)0.0202 (7)0.0216 (7)0.0016 (5)0.0058 (5)0.0004 (6)
C10.0143 (7)0.0196 (8)0.0232 (8)0.0046 (6)0.0051 (6)0.0012 (7)
C20.0182 (8)0.0152 (8)0.0263 (9)0.0003 (6)0.0060 (7)0.0005 (6)
C30.0139 (8)0.0187 (8)0.0233 (8)0.0027 (6)0.0055 (6)0.0003 (7)
C40.0091 (7)0.0183 (8)0.0195 (7)0.0005 (6)0.0044 (6)0.0013 (6)
C50.0114 (7)0.0174 (8)0.0204 (8)0.0002 (6)0.0041 (6)0.0000 (6)
C60.0107 (7)0.0196 (8)0.0190 (8)0.0009 (6)0.0035 (6)0.0014 (6)
O10.0108 (6)0.0213 (6)0.0375 (7)0.0038 (5)0.0076 (5)0.0068 (5)
O20.0105 (5)0.0238 (7)0.0264 (7)0.0012 (4)0.0066 (5)0.0003 (5)
Cl10.0111 (2)0.0137 (2)0.0202 (2)0.00028 (12)0.00447 (15)0.00003 (13)
O40.0157 (6)0.0229 (6)0.0260 (6)0.0025 (5)0.0102 (5)0.0004 (5)
O60.0225 (6)0.0152 (6)0.0254 (6)0.0010 (5)0.0084 (5)0.0027 (5)
O30.0124 (6)0.0218 (6)0.0262 (6)0.0007 (4)0.0010 (5)0.0027 (5)
O50.0193 (6)0.0156 (6)0.0262 (6)0.0011 (5)0.0030 (5)0.0025 (5)
Geometric parameters (Å, º) top
N1—C51.339 (2)C4—C61.499 (2)
N1—C11.346 (2)C5—H5A0.9500
N1—H1A0.8800C6—O21.214 (2)
C1—C21.380 (2)C6—O11.328 (2)
C1—H1B0.9500O1—H10.8400
C2—C31.391 (2)Cl1—O61.4437 (12)
C2—H2A0.9500Cl1—O31.4479 (12)
C3—C41.395 (2)Cl1—O51.4489 (12)
C3—H3A0.9500Cl1—O41.4579 (13)
C4—C51.389 (2)
C5—N1—C1123.28 (15)C3—C4—C6119.86 (14)
C5—N1—H1A118.4N1—C5—C4118.94 (16)
C1—N1—H1A118.4N1—C5—H5A120.5
N1—C1—C2119.72 (15)C4—C5—H5A120.5
N1—C1—H1B120.1O2—C6—O1125.69 (15)
C2—C1—H1B120.1O2—C6—C4121.63 (15)
C1—C2—C3118.96 (16)O1—C6—C4112.68 (14)
C1—C2—H2A120.5C6—O1—H1109.5
C3—C2—H2A120.5O6—Cl1—O3109.65 (7)
C2—C3—C4119.70 (15)O6—Cl1—O5110.36 (8)
C2—C3—H3A120.1O3—Cl1—O5109.50 (7)
C4—C3—H3A120.1O6—Cl1—O4108.92 (7)
C5—C4—C3119.38 (15)O3—Cl1—O4109.13 (8)
C5—C4—C6120.71 (15)O5—Cl1—O4109.26 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O40.841.962.7540 (17)157
N1—H1A···O2i0.882.012.7760 (19)145
N1—H1A···O5i0.882.533.0151 (19)116
C1—H1B···O6ii0.952.393.227 (2)147
C3—H3A···O6iii0.952.443.304 (2)151
C5—H5A···O3i0.952.383.298 (2)164
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+1/2; (iii) x, y1/2, z+1/2.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds