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On the other hand, 5-dimensional crystallo­
graphic groups of the category G53 ••• t can be 
found by the use of the 3-dimensional classic 
groups G3 ••• t and their generalizations with 
anti symme try , p- and {p')-symmetry (ignoring 
enantiomorphism), when p=2,3,4.6 (where only 
the groups of the full marked generalized sym­
metries are extracted). Thus, there are 33075 
G53 (in accordance with the full numbers of 

1 0 p' . the groups G3' G3 , Gj and G3); 1208G5JO (~n ac-
cordance with the full numbers of the groups 

-1 p I 
G30 , G30 , G30 and G~o); 5177G531 ; 9282G532 ; 

1274G5320 ; 2597G5321' 
Finally, the groups of the categories G52 

and G521 are fully discribed by the classical 
groups G2 and G21 and their generalizations 
with the 31 nontrivial crystallographic P-sym­
metries in the geometric classification. 

For the completion of the scheme of the 
5-dimensional crystallographic groups of sym­
metry it is necessary to find the numbers of 
the groups of the categories G5; G50 ; G51 ;G54 
and G510 • 
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20.1-4 DIFFRACTION GROUPS OF CBED 
PATTERNS. By P.Goodman, Division of Chemical 
Physics, CSIRO, Australia. 

Symmetry rules so far derived for CBED 
patterns can be summarised in the form of 
matri}( generators operating in diffraction 
space, which contain the 2-dimensional 
rotation groups as a par-tioned component. 

In contrast to the matri}: 
representation of space groups in kinematic 
x-ray diffraction space (i.e.. Fourier space: 
Beinstock.A. and Ewald,P.P. (1962) ,Acta Cryst. 
15,1253) - it is the di-pe~iodic iayer groups 
rather than the 3-dimensional space groups 
which are defined. This is a consequence of 
the substitution of parallel-plate boundary 
conditions for the restrictions imposed by 
Friedel's law in }(-ray kinematic scattering. 

As a result 8(' groups, containing 43 
symmorphic groups, can be defined in 
diffraction space. From these the previously­
derived 31 CBED groups (Bu}(ton,B.F. 
Eades,J.A.,Steeds,J.W.and Rackham.G.M. (1976). 
Phil.Trans. 281,171) emerge as-the point~ 
group component. It is therefore clear that 
the same boundary conditions have been 
assumed in this previous derivation as in the 
present one. The two systems are hence 
mutually consistent, the increased resolution 
of the new derivation coming from (a) the LIse 
of arithmetic rather than geometric 
definition for the rotation group and (b) the 
inclusion of dynamic e>:tinctions of the :zero 
layer. 

20.1-5 THE METHOD OF MATRICAL REPRESEI'JTA-
TION OF CRYSTAL SYl'iITKETRY GROUPS AIID ITS POS­
SIBILITIES By T. N. Liopo, V, A. Liopo _. Brest 
pedagogical institute,Brest,Belorussia,USSR. 

The correlations between macrosymmetry, the 
parameters of the unit cells and physical pro­
perties of crystals are analysed. An analiti­
cal method of construction and analysis of 
crystallographic projections is shown. It is 
developed the practical matrical method for 
mutual transition of crystal and reciprocal 
lattice. It is given the way of transference 
from one crystallographic basis to another 
and analysed the changes of crystallographic 
indexes of planes, directions and points in 
this case. It is proposed the method of mat­
rical representation for symmetry groups of 
sets and layers, and the limited, gomotheti­
cal and black-white groups of crystals The 
results of culculations are compared to the 
experimental data got for some mono clinical 
(layer silicates) and cubical (semiconductor~ 
crystals. 

20.1-6 ON THE OI FFRI:\CTION ENHANCE~1ENT OF SYM~1ETRY. 
By Hitoshi Iwasaki, The Institute of Physical and 
Chemical Research, Wako-shi, Saitama 351, Japan. 

The point group symmetry of the weighted reciprocal 
lattice, or diffraction symmetry, can in some special 
cases be higher than the Laue-class symmetry of the 
crystal. When such a phenomenon occurs other than as a 
result of Friedel law, it is called diffraction enhance­
ment of symmetry: for example, a triclinic crystal may 
produce monoclinic or orthorhombic diffraction patterns, 
and in fact several such cases have actually been recog­
nized. Efforts to shed light on this problem have been 
made by many authors (Iwasaki, Acta Cryst. (1972) A28, 
253; Perez-Mato et al., ibid. (1977) A33, 466; Sadanaga 
et al., ibid. (1979) A35, 115 and others), but the ques­
tion to what extent t~enhancement may occur has been 
left unsettled. 

On examining structures (S) which show diffraction 
enhancement, some of them were found to be expressed by 
superposition of an average structure (A) and a few 
modulating structures (M). If both A and M are of high­
er symmetry than S, and in addition if each of A and M 
gives finite diffraction intensities at separate set of 
reciprocal lattice points (for example, only h=2n for A 
and only h=2n+l for M), then the symmetry of overall 
diffraction pattern produced by S should conform to the 
symmetry of A and M, and not to that of S. By applying 
this principle to various combinations of the point 
groups of S, A and M, it is possible to conclude that 
every types of enhancement do occur at least mathemat­
ically. It means that when a diffraction group 0 cor­
responding to an unknown structure is arbitrarily given, 
the point group of S may be any subgroup of O. 


