Download citation
Download citation
link to html
In (2RS,4SR)-7-chloro-2-exo-(2-chloro-6-fluoro­phen­yl)-2,3,4,5-tetra­hydro-1H-1,4-epoxy-1-benzazepine, C16H12Cl2FNO, (I), mol­ecules are linked into chains by a single C—H...π(arene) hydrogen bond. (2RS,4SR)-2-exo-(2-Chloro-6-fluoro­phen­yl)-2,3,4,5-tetra­hydro-1H-1,4-ep­oxy-1-benzazepine, C16H13ClFNO, (II), is isomorphous with compound (I) but not strictly isostructural with it, as the hydrogen-bonded chains in (II) are linked into sheets by an aromatic π–π stacking inter­action. The mol­ecules of (2RS,4SR)-7-methyl-2-exo-(4-methyl­phenyl)-2,3,4,5-tetra­hydro-1H-1,4-ep­oxy-1-benzazepine, C18H19NO, (III), are linked into sheets by a combination of C—H...N and C—H...π(arene) hydrogen bonds. (2S,4R)-2-exo-(2-Chloro­phen­yl)-2,3,4,5-tetra­hydro-1H-1,4-ep­oxy-1-benzazepine, C16H14ClNO, (IV), crystallizes as a single enantiomer and the mol­ecules are linked into a three-dimensional framework structure by a combination of one C—H...O hydrogen bond and three C—H...π(arene) hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109030339/fa3200sup1.cif
Contains datablocks global, I, II, III, IV, VII

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109030339/fa3200Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109030339/fa3200IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109030339/fa3200IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109030339/fa3200IVsup5.hkl
Contains datablock IV

CCDC references: 749722; 749723; 749724; 749725; 749726

Comment top

We report here the structures of four new substituted 2-aryl-1,4-epoxytetrahydro-1-benzazepines, namely (2SR,4RS)-7-chloro-2-exo-(2-chloro-6-fluorophenyl)- 2,3,4,5-tetrahydro-1H-1,4-epoxy-1-benzazepine, (I), (2SR,4RS)-2-exo-(2-chloro-6-fluorophenyl)-2,3,4,5- tetrahydro-1H-1,4-epoxy-1-benzazepine, (II), (2SR,4RS)-7-methyl-2-exo-(4-methylphenyl)-2,3,4,5- tetrahydro-1H-1,4-epoxy-1-benzazepine, (III), and (2S,4R)-2-exo-(2-chlorophenyl)-2,3,4,5-tetrahydro-1H- 1,4-epoxy-1-benzazepine, (IV) (Fig. 1). The work reported here is a continuation of our structural study (Acosta et al., 2008; Blanco et al., 2008; Gómez et al., 2008) of 2-substituted 1,4-epoxytetrahydro-1-benzazepines, which included two close analogues of the present compounds, namely compounds (V) and (VI) (see scheme): compounds (I)–(IV) were all synthesized using our previously reported synthetic approach (Gómez Ayala et al., 2006), with the eventual aim of identifying structurally novel antiparasitic compounds which are active against Trypanosoma cruzi and Leishmania chagasi parasites (Palma et al., 2009).

Compounds (I)–(III) all crystallize as racemates, while the crystals of (IV) contain only a single enantiomer, (2S,4R), in the crystal selected for data collection. Given the racemic nature of (I)–(III) and the absence of any reagent in the synthetic procedure likely to be able to provide enantiomeric selectivity, it seems probable that compound (IV) is, in fact, produced as a mixture of (2S,4R) and (2R,4S) enantiomers, but that it happens to crystallize as a conglomerate rather than as a racemate. In this connection, it is interesting to note that, while (V) crystallizes as a racemate in space group Pna21, (VI) crystallizes as a single enantiomer in space group P212121 (Gómez et al., 2008).

Compounds (I) and (II), which differ only in the presence of the 7-chloro substituent in (I), are isomorphous, with similar unit-cell dimensions and similar atomic coordinates for the corresponding atoms. However, they are not strictly isostructural (Acosta et al., 2009), as the direction-specific intermolecular interactions in the two crystal structures are subtly different, as discussed below. Although pairs of analogous compounds carrying, respectively, a methyl or a chloro substituent at equivalent sites are not infrequently isomorphous, no such relationship is evident for (III) and (V), which crystallize, respectively, in space groups P21/n and Pna21 and which exhibit entirely different modes of supramolecular aggregation.

The ring-puckering parameters (Cremer & Pople, 1975) for (I)–(IV) are collected in Table 1, along with those for (V) and (VI) (Gómez et al., 2008) for comparison. All six compounds exhibit very similar shapes for the fused heterocyclic ring system. The five-membered ring component in (I), (II), (V) and (VI) adopts a nearly perfect half-chair conformation, for which the idealized value of the puckering angle ϕ is (36k +18)°, where k represents an integer; the conformations in (III) and (IV) are intermediate between half-chair and envelope forms, for which the idealized value of ϕ is 36k°. The six-membered ring components all adopt conformations closer to the half-chair form, for which the ideal values of the ring-puckering angles are θ = 50.8° and ϕ = (60k + 30)°, than to the envelope conformation, where the ideal values of the puckering angles are θ = 54.7° and ϕ = 60k°.

The supramolecular aggregation in (I)–(IV) is dominated by C—H···O, C—H···N and C—H···π(arene) hydrogen bonds, augmented by aromatic ππ stacking interactions in (II) only. There are short intermolecular C—H···F contacts in (I) and (II) and an intermolecular C—H···Cl contact in (IV). None of these contacts is likely to be of structural significance, firstly because the C—H bonds involved are of low acidity, and secondly because it has been well established that F and Cl atoms when bound to C atoms are extremely poor acceptors of hydrogen bonds, even from donors such as O or N (Aakeröy et al., 1999; Brammer et al., 2001; Howard et al., 1996; Thallapally & Nangia, 2001). Similarly, in the intermolecular C—H···N contacts in (I) and (II), involving a C—H bond of low acidity, the H···N distances are probably too long for these contacts to be of structural significance.

On this basis, the molecules of (I) are linked by just a single C—H···π(arene) hydrogen bond (Table 2) to form a simple chain running parallel to the [101] direction (Fig. 2), with no direction-specific interactions between adjacent chains. Entirely analogous chains are formed in (II), but these chains are now linked into sheets by a ππ stacking interaction. The fused aryl rings in the molecules at (x, y, z) and (1 - x, 1 - y, -z) are strictly parallel with an interplanar spacing of 3.426 (2) Å; the ring-centroid separation is 3.810 (2) Å, with a ring-centroid offset of 1.667 (2) Å. The effect of this interaction is to link the chains parallel to [101] into a sheet lying parallel to (101) (Fig. 3).

The crystal structure of (III) also contains sheets but these are built solely from two hydrogen bonds, one each of C—H···N and C—H···π(arene) types (Table 2). The C—H···π(arene) interaction links a pair of molecules into a cyclic centrosymmetric dimer centred at (1/2, 1, 0), and this dimer can be regarded as the building block for the sheet formation. The C—H···N hydrogen bond links the reference dimer centred at (1/2, 1, 0) directly to four other such dimers, those centred at (0, 1/2, -1/2), (0, 3/2, -1/2), (1, 1/2, 1/2) and (1, 3/2, 1/2), and propagation of these two interactions then generates a hydrogen-bonded sheet lying parallel to (101) (Fig. 4).

Four hydrogen bonds, one of C—H···O type and three of C—H···π(arene) type, combine to link the molecules of (IV) into a single three-dimensional framework. The formation of the framework is most readily analysed in terms of two independent two-dimensional substructures. The three hydrogen bonds involving atoms C4, C6 and C8 as the donors combine to generate a sheet lying parallel to (001) (Fig. 5), while the two hydrogen bonds having C4 and C23 as the donors combine to form a sheet parallel to (100) (Fig. 6). The combination of the (100) and (001) sheets is sufficient to generate a three-dimensional structure.

It is of interest briefly to compare the aggregation in (I)–(IV) with that in the related compounds (V) and (VI) (Gómez et al., 2008) (see scheme). In (V), the molecules are linked by a combination of C—H···O and C—H···N hydrogen bonds to form a chain of edge-fused R33(12) (Bernstein et al., 1995) rings, while in (VI), a combination of two C—H···O hydrogen bonds and one C—H···π(arene) hydrogen bonds generates a three-dimensional framework structure. In the course of the present work, we have also investigated (VII), which crystallizes in space group P1 with Z' = 2, but we have been unable to refine this below R = 0.10. However, it is clear that the two independent molecules within the asymmetric unit are linked by one C—H···O hydrogen bond and one C—H···N hydrogen bond to form an R22(8) motif, but that there are no further direction-specific interactions between the molecules. Thus despite the very close constitutional, configurational and conformational similarity between the molecules of compounds (I)–(VII), no two of these compounds exhibits the same pattern of supramolecular aggregation.

Related literature top

For related literature, see: Aakeröy et al. (1999); Acosta et al. (2009); Bernstein et al. (1995); Blanco et al. (2008); Brammer et al. (2001); Cremer & Pople (1975); Flack (1983); Gómez et al. (2008); Gómez Ayala, Stashenko, Palma, Bahsas & Amaro-Luis (2006); Hooft et al. (2008); Howard et al. (1996); Palma et al. (2009); Thallapally & Nangia (2001).

Experimental top

For the preparation of compounds (I)–(IV), sodium tungstate dihydrate, Na2WO4.2H2O (10 mol %), followed by 30% aqueous hydrogen peroxide solution (added dropwise, 0.30 mol) were added to a stirred solution of the appropriately substituted 2-allyl-N-benzylaniline (0.10 mol) in methanol (34 ml), for (I), (III) and (IV), or in a mixture of methanol (34 ml) and nitromethane (3.4 ml) for (II). The resulting mixtures were then stirred at ambient temperature for periods ranging from 30 to 100 h. Each mixture was filtered and the solvent removed under reduced pressure. Toluene (40 ml) for compounds (I), (III) and (IV), or ethyl acetate (40 ml) for (II), was added to the solid residue and the resulting solution was heated to ca 353 K for periods ranging from 6 to 8 h. After cooling each solution to ambient temperature, the solvent was removed under reduced pressure and the crude products were purified by chromatography on silica gel using heptane–ethyl acetate (compositions ranged from 90:1 to 60:1 v/v) as eluant. Crystallization from heptane gave colourless crystals suitable for single-crystal X-ray diffraction. For (I) (m.p. 429–430 K, yield 50%): MS (70 eV) m/z (%) 323 (M+, 35Cl, 17), 306 (3), 294 (1), 280 (1), 164 (3), 138 (100), 125 (6), 111 (4). For (II) (m.p. 433–434 K, yield 65%): MS (70 eV) m/z (%) 289 (M+, 35Cl, 32), 272 (7), 260 (1), 246 (3), 130 (4), 104 (100), 91 (10), 77 (10). For (III) (m.p. 374–376 K, yield 45%): MS (70 eV) m/z (%) 265 (M+, 35), 248 (18), 222 (10), 207 (5), 146 (7), 132 (23), 118 (100), 103 (12), 91 (30), 77 (18), 65 (9), 51 (5). For (IV) (m.p. 385–387 K, yield 63%): MS (70 eV) m/z (%) 271 (M+, 35Cl, 50), 254 (19), 242 (2), 228 (2), 130 (4), 104 (100), 91 (25), 77 (26).

Refinement top

All H atoms were located in difference maps and then treated as riding atoms in geometrically idealized positions, with C—H distances of 0.95 Å (aromatic), 0.98 Å (CH3), 0.99 Å (CH2) or 1.00 Å (aliphatic CH), and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and k = 1.2 for all other H atoms. For (IV), the absolute configuration of the molecules in the crystal selected for data collection was established as (2S,4R) by means of the Flack (1983) x parameter of 0.07 (6) and the Hooft y parameter (Hooft et al., 2008) of 0.03 (4). Accordingly, the configuration of the reference molecules in the racemic compounds (I)–(III) was set to be S at C2, and on this basis all three compounds have configuration R at C4 for the reference molecules, so that the overall configuration for each of (I)-(III) is (2SR,4RS).

Computing details top

For all compounds, data collection: COLLECT (Hooft, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: Sir2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009). Software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009) for (I), (II), (III), (IV); SHELXL97 and PLATON for (VII).

Figures top
[Figure 1] Fig. 1. The molecular structures of (I)–(IV), shown as the (2S,4R) form in each case: (a) compound (I), (b) compound (II), (c) compound (III) and (d) compound (IV). Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A stereoview of part of the crystal structure of (I), showing the formation of a hydrogen-bonded chain running parallel to the [101] direction. For the sake of clarity, H atoms not involved in the motif shown have been omitted.
[Figure 3] Fig. 3. A stereoview of part of the crystal structure of (II), showing the formation of a sheet parallel to (101) built from the π-stacking of hydrogen-bonded chains parallel to [101]. For the sake of clarity, H atoms not involved in the motif shown have been omitted.
[Figure 4] Fig. 4. A stereoview of part of the crystal structure of (III), showing the formation of a hydrogen-bonded sheet parallel to (101) built from C—H···N and C—H···π(arene) hydrogen bonds. For the sake of clarity, H atoms bonded to C atoms that are not involved in the motifs shown have been omitted.
[Figure 5] Fig. 5. A stereoview of part of the crystal structure of (IV), showing the formation of a hydrogen-bonded sheet parallel to (001) built from one C—H···O and two C—H···π(arene) hydrogen bonds. For the sake of clarity, H atoms bonded to C atoms that are not involved in the motifs shown have been omitted.
[Figure 6] Fig. 6. A stereoview of part of the crystal structure of (IV), showing the formation of a hydrogen-bonded sheet parallel to (100) built from one C—H···O and one C—H···π(arene) hydrogen bonds. For the sake of clarity, H atoms bonded to C atoms that are not involved in the motifs shown have been omitted.
(I) (2SR,4RS)-7-chloro-2-exo-(2-chloro-6-fluorophenyl)- 2,3,4,5-tetrahydro-1H-1,4-epoxy-1-benzazepine top
Crystal data top
C16H12Cl2FNOF(000) = 664
Mr = 324.17Dx = 1.593 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3105 reflections
a = 9.2907 (11) Åθ = 2.8–27.5°
b = 10.8720 (9) ŵ = 0.49 mm1
c = 13.4523 (13) ÅT = 120 K
β = 95.964 (8)°Needle, colourless
V = 1351.4 (2) Å30.35 × 0.06 × 0.06 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3105 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode1774 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.103
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.8°
ϕ & ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1214
Tmin = 0.868, Tmax = 0.971l = 1717
19650 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.043P)2 + 1.1028P]
where P = (Fo2 + 2Fc2)/3
3105 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C16H12Cl2FNOV = 1351.4 (2) Å3
Mr = 324.17Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.2907 (11) ŵ = 0.49 mm1
b = 10.8720 (9) ÅT = 120 K
c = 13.4523 (13) Å0.35 × 0.06 × 0.06 mm
β = 95.964 (8)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3105 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1774 reflections with I > 2σ(I)
Tmin = 0.868, Tmax = 0.971Rint = 0.103
19650 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.07Δρmax = 0.38 e Å3
3105 reflectionsΔρmin = 0.44 e Å3
190 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7321 (2)0.6590 (2)0.26957 (17)0.0181 (6)
C20.6684 (3)0.5681 (3)0.3346 (2)0.0184 (7)
H20.57490.53800.29940.022*
C30.7766 (3)0.4615 (3)0.3429 (2)0.0231 (7)
H3A0.79790.43430.41310.028*
H3B0.73970.39070.30150.028*
C40.9103 (3)0.5176 (3)0.3034 (2)0.0216 (7)
H40.99950.49740.34860.026*
C50.9267 (3)0.4785 (3)0.1977 (2)0.0249 (7)
H5A1.02130.50660.17830.030*
H5B0.92310.38770.19270.030*
C5a0.8062 (3)0.5339 (3)0.1294 (2)0.0198 (7)
C60.7885 (3)0.5070 (3)0.0282 (2)0.0213 (7)
H60.85120.44980.00120.026*
C70.6809 (3)0.5626 (3)0.0327 (2)0.0229 (7)
C80.5863 (3)0.6453 (3)0.0032 (2)0.0221 (7)
H80.51140.68230.04010.027*
C90.6036 (3)0.6724 (3)0.1036 (2)0.0200 (7)
H90.53960.72880.13020.024*
C9a0.7130 (3)0.6188 (3)0.1660 (2)0.0188 (7)
O140.8837 (2)0.64879 (19)0.30251 (14)0.0213 (5)
C210.6381 (3)0.6264 (3)0.4327 (2)0.0186 (7)
C220.5012 (3)0.6676 (3)0.4488 (2)0.0186 (7)
Cl220.36167 (8)0.66256 (8)0.35286 (6)0.0282 (2)
C230.4675 (3)0.7123 (3)0.5395 (2)0.0220 (7)
H230.37170.73840.54710.026*
C240.5727 (4)0.7190 (3)0.6183 (2)0.0259 (8)
H240.55020.74900.68120.031*
C250.7115 (3)0.6819 (3)0.6060 (2)0.0227 (7)
H250.78600.68630.65980.027*
C260.7396 (3)0.6387 (3)0.5146 (2)0.0210 (7)
F260.87818 (18)0.60327 (18)0.50698 (12)0.0278 (5)
Cl70.66528 (9)0.53017 (8)0.15967 (6)0.0298 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0158 (13)0.0207 (15)0.0176 (13)0.0005 (11)0.0010 (10)0.0002 (11)
C20.0227 (17)0.0174 (17)0.0157 (14)0.0031 (13)0.0044 (12)0.0001 (13)
C30.0283 (18)0.0172 (18)0.0246 (17)0.0017 (14)0.0059 (13)0.0018 (14)
C40.0208 (17)0.0232 (19)0.0212 (16)0.0045 (14)0.0040 (13)0.0015 (14)
C50.0249 (18)0.0252 (19)0.0254 (17)0.0047 (15)0.0069 (14)0.0018 (15)
C5a0.0207 (17)0.0166 (17)0.0226 (16)0.0029 (14)0.0051 (13)0.0040 (13)
C60.0227 (17)0.0222 (19)0.0206 (16)0.0041 (14)0.0093 (13)0.0043 (13)
C70.0277 (18)0.026 (2)0.0157 (15)0.0102 (15)0.0047 (13)0.0032 (13)
C80.0197 (16)0.0232 (19)0.0229 (16)0.0027 (14)0.0000 (13)0.0038 (14)
C90.0169 (16)0.0200 (18)0.0234 (16)0.0034 (13)0.0040 (13)0.0012 (13)
C9a0.0219 (17)0.0171 (17)0.0184 (15)0.0040 (13)0.0063 (12)0.0006 (13)
O140.0200 (11)0.0226 (13)0.0210 (11)0.0009 (10)0.0003 (9)0.0010 (9)
C210.0242 (17)0.0150 (17)0.0179 (15)0.0032 (13)0.0079 (12)0.0010 (13)
C220.0209 (16)0.0155 (17)0.0192 (15)0.0018 (13)0.0015 (12)0.0006 (13)
Cl220.0229 (4)0.0350 (5)0.0261 (4)0.0040 (4)0.0002 (3)0.0047 (4)
C230.0222 (17)0.0202 (18)0.0243 (17)0.0012 (14)0.0066 (13)0.0035 (14)
C240.037 (2)0.0221 (19)0.0206 (16)0.0008 (15)0.0103 (15)0.0014 (14)
C250.0282 (18)0.0222 (19)0.0173 (16)0.0019 (14)0.0004 (13)0.0013 (13)
C260.0183 (17)0.0249 (19)0.0208 (16)0.0023 (14)0.0062 (12)0.0024 (14)
F260.0211 (10)0.0411 (12)0.0212 (9)0.0051 (9)0.0018 (7)0.0023 (8)
Cl70.0313 (5)0.0400 (5)0.0183 (4)0.0078 (4)0.0034 (3)0.0057 (4)
Geometric parameters (Å, º) top
N1—O141.437 (3)C6—H60.9500
N1—C9a1.453 (4)C7—C81.379 (4)
N1—C21.483 (4)C7—Cl71.735 (3)
C2—C211.517 (4)C8—C91.375 (4)
C2—C31.530 (4)C8—H80.9500
C2—H21.0000C9—C9a1.379 (4)
C3—C41.528 (4)C9—H90.9500
C3—H3A0.9900C21—C261.380 (4)
C3—H3B0.9900C21—C221.387 (4)
C4—O141.447 (4)C22—C231.379 (4)
C4—C51.507 (4)C22—Cl221.733 (3)
C4—H41.0000C23—C241.367 (4)
C5—C5a1.499 (4)C23—H230.9500
C5—H5A0.9900C24—C251.377 (4)
C5—H5B0.9900C24—H240.9500
C5a—C61.386 (4)C25—C261.367 (4)
C5a—C9a1.390 (4)C25—H250.9500
C6—C71.366 (4)C26—F261.358 (3)
O14—N1—C9a106.9 (2)C5a—C6—H6120.0
O14—N1—C2101.8 (2)C6—C7—C8122.1 (3)
C9a—N1—C2110.4 (2)C6—C7—Cl7118.8 (2)
N1—C2—C21110.8 (2)C8—C7—Cl7119.1 (2)
N1—C2—C3104.4 (2)C9—C8—C7118.1 (3)
C21—C2—C3115.6 (2)C9—C8—H8121.0
N1—C2—H2108.6C7—C8—H8121.0
C21—C2—H2108.6C8—C9—C9a120.7 (3)
C3—C2—H2108.6C8—C9—H9119.6
C4—C3—C2102.9 (3)C9a—C9—H9119.6
C4—C3—H3A111.2C9—C9a—C5a120.8 (3)
C2—C3—H3A111.2C9—C9a—N1117.7 (3)
C4—C3—H3B111.2C5a—C9a—N1121.4 (3)
C2—C3—H3B111.2N1—O14—C4103.9 (2)
H3A—C3—H3B109.1C26—C21—C22113.9 (3)
O14—C4—C5107.7 (2)C26—C21—C2124.2 (3)
O14—C4—C3104.6 (2)C22—C21—C2121.8 (3)
C5—C4—C3112.4 (3)C23—C22—C21123.3 (3)
O14—C4—H4110.6C23—C22—Cl22116.7 (2)
C5—C4—H4110.6C21—C22—Cl22120.1 (2)
C3—C4—H4110.6C24—C23—C22119.7 (3)
C5a—C5—C4108.8 (3)C24—C23—H23120.2
C5a—C5—H5A109.9C22—C23—H23120.2
C4—C5—H5A109.9C23—C24—C25119.6 (3)
C5a—C5—H5B109.9C23—C24—H24120.2
C4—C5—H5B109.9C25—C24—H24120.2
H5A—C5—H5B108.3C26—C25—C24118.5 (3)
C6—C5a—C9a118.3 (3)C26—C25—H25120.7
C6—C5a—C5121.5 (3)C24—C25—H25120.7
C9a—C5a—C5120.2 (3)F26—C26—C25115.9 (3)
C7—C6—C5a120.1 (3)F26—C26—C21119.1 (3)
C7—C6—H6120.0C25—C26—C21124.9 (3)
O14—N1—C2—C2187.2 (3)C2—N1—C9a—C9101.5 (3)
C9a—N1—C2—C21159.6 (2)O14—N1—C9a—C5a28.1 (4)
O14—N1—C2—C337.9 (3)C2—N1—C9a—C5a81.8 (3)
C9a—N1—C2—C375.3 (3)C9a—N1—O14—C467.6 (3)
N1—C2—C3—C414.2 (3)C2—N1—O14—C448.3 (2)
C21—C2—C3—C4107.9 (3)C5—C4—O14—N180.7 (3)
C2—C3—C4—O1414.4 (3)C3—C4—O14—N139.1 (3)
C2—C3—C4—C5102.2 (3)N1—C2—C21—C2684.4 (4)
O14—C4—C5—C5a47.0 (3)C3—C2—C21—C2634.1 (4)
C3—C4—C5—C5a67.7 (3)N1—C2—C21—C2298.6 (3)
C4—C5—C5a—C6175.8 (3)C3—C2—C21—C22142.9 (3)
C4—C5—C5a—C9a7.3 (4)C26—C21—C22—C232.4 (5)
C9a—C5a—C6—C70.5 (5)C2—C21—C22—C23174.9 (3)
C5—C5a—C6—C7177.5 (3)C26—C21—C22—Cl22178.4 (2)
C5a—C6—C7—C80.6 (5)C2—C21—C22—Cl224.3 (4)
C5a—C6—C7—Cl7178.1 (2)C21—C22—C23—C240.9 (5)
C6—C7—C8—C90.7 (5)Cl22—C22—C23—C24179.9 (3)
Cl7—C7—C8—C9178.0 (2)C22—C23—C24—C250.6 (5)
C7—C8—C9—C9a0.3 (5)C23—C24—C25—C260.3 (5)
C8—C9—C9a—C5a1.5 (5)C24—C25—C26—F26179.8 (3)
C8—C9—C9a—N1175.2 (3)C24—C25—C26—C211.5 (5)
C6—C5a—C9a—C91.6 (4)C22—C21—C26—F26178.9 (3)
C5—C5a—C9a—C9178.6 (3)C2—C21—C26—F263.9 (5)
C6—C5a—C9a—N1175.0 (3)C22—C21—C26—C252.7 (5)
C5—C5a—C9a—N12.0 (4)C2—C21—C26—C25174.5 (3)
O14—N1—C9a—C9148.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···N1i0.992.723.617 (3)151
C4—H4···F26ii1.002.413.325 (3)152
C23—H23···Cg1iii0.952.513.359 (3)149
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+2, y+1, z+1; (iii) x1/2, y+3/2, z+1/2.
(II) (2SR,4RS)-2-exo-(2-Chloro-6-fluorophenyl)-2,3,4,5- tetrahydro-1H-1,4-epoxy-1-benzazepine top
Crystal data top
C16H13ClFNOF(000) = 600
Mr = 289.72Dx = 1.512 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2918 reflections
a = 9.0768 (13) Åθ = 2.9–27.5°
b = 10.9461 (9) ŵ = 0.31 mm1
c = 12.9971 (18) ÅT = 120 K
β = 99.768 (9)°Block, colourless
V = 1272.6 (3) Å30.32 × 0.27 × 0.22 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2918 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode2085 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.9°
ϕ & ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1414
Tmin = 0.894, Tmax = 0.936l = 1616
18555 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0685P)2 + 1.0363P]
where P = (Fo2 + 2Fc2)/3
2918 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C16H13ClFNOV = 1272.6 (3) Å3
Mr = 289.72Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.0768 (13) ŵ = 0.31 mm1
b = 10.9461 (9) ÅT = 120 K
c = 12.9971 (18) Å0.32 × 0.27 × 0.22 mm
β = 99.768 (9)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2918 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2085 reflections with I > 2σ(I)
Tmin = 0.894, Tmax = 0.936Rint = 0.055
18555 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.04Δρmax = 0.29 e Å3
2918 reflectionsΔρmin = 0.37 e Å3
181 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7145 (2)0.65076 (17)0.24705 (14)0.0199 (4)
C20.6488 (3)0.5567 (2)0.30773 (17)0.0204 (5)
H20.55300.52750.26530.024*
C30.7627 (3)0.4517 (2)0.31834 (19)0.0264 (5)
H3A0.78340.42040.39080.032*
H3B0.72650.38360.27050.032*
C40.9008 (3)0.5109 (2)0.28836 (19)0.0268 (5)
H40.99250.48940.33940.032*
C50.9196 (3)0.4789 (2)0.17850 (19)0.0298 (6)
H5A1.01690.50980.16480.036*
H5B0.91800.38910.16960.036*
C5a0.7949 (3)0.5354 (2)0.10301 (18)0.0239 (5)
C60.7746 (3)0.5114 (2)0.00327 (19)0.0302 (6)
H60.83910.45510.02930.036*
C70.6625 (3)0.5677 (2)0.07180 (19)0.0325 (6)
H70.65180.55120.14450.039*
C80.5663 (3)0.6474 (2)0.03567 (18)0.0286 (5)
H80.48850.68550.08290.034*
C90.5837 (3)0.6719 (2)0.07019 (18)0.0246 (5)
H90.51710.72640.09600.030*
C9a0.6982 (3)0.6171 (2)0.13842 (17)0.0206 (5)
O140.87073 (17)0.64086 (15)0.28991 (12)0.0240 (4)
C210.6157 (2)0.6097 (2)0.40802 (17)0.0205 (5)
C220.4739 (3)0.6527 (2)0.41653 (17)0.0212 (5)
Cl220.33178 (7)0.64951 (6)0.30903 (4)0.02951 (19)
C230.4377 (3)0.6999 (2)0.50739 (18)0.0243 (5)
H230.33950.72890.50900.029*
C240.5458 (3)0.7046 (2)0.59600 (18)0.0268 (5)
H240.52210.73620.65930.032*
C250.6876 (3)0.6635 (2)0.59201 (18)0.0271 (5)
H250.76280.66540.65250.033*
C260.7186 (3)0.6197 (2)0.49940 (18)0.0247 (5)
F260.86059 (15)0.58170 (14)0.49996 (11)0.0321 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0203 (10)0.0217 (10)0.0177 (9)0.0003 (7)0.0031 (7)0.0005 (7)
C20.0250 (11)0.0183 (11)0.0190 (11)0.0004 (9)0.0068 (9)0.0001 (8)
C30.0334 (13)0.0228 (12)0.0253 (12)0.0066 (10)0.0120 (10)0.0030 (9)
C40.0276 (12)0.0271 (13)0.0267 (12)0.0075 (10)0.0072 (10)0.0062 (10)
C50.0336 (13)0.0289 (13)0.0302 (13)0.0071 (11)0.0151 (11)0.0049 (10)
C5a0.0283 (12)0.0220 (12)0.0234 (12)0.0027 (9)0.0100 (10)0.0014 (9)
C60.0402 (14)0.0273 (13)0.0261 (13)0.0066 (11)0.0143 (11)0.0053 (10)
C70.0420 (15)0.0350 (14)0.0215 (12)0.0192 (12)0.0087 (10)0.0073 (10)
C80.0283 (13)0.0344 (14)0.0219 (12)0.0097 (10)0.0009 (9)0.0052 (10)
C90.0229 (12)0.0257 (12)0.0258 (12)0.0052 (9)0.0053 (9)0.0001 (10)
C9a0.0234 (11)0.0200 (11)0.0196 (11)0.0047 (9)0.0070 (9)0.0010 (9)
O140.0208 (8)0.0256 (9)0.0246 (8)0.0007 (6)0.0014 (6)0.0016 (7)
C210.0258 (12)0.0160 (10)0.0207 (11)0.0000 (9)0.0064 (9)0.0021 (8)
C220.0254 (11)0.0178 (11)0.0210 (11)0.0008 (9)0.0056 (9)0.0031 (9)
Cl220.0262 (3)0.0368 (4)0.0246 (3)0.0054 (2)0.0017 (2)0.0012 (2)
C230.0287 (12)0.0191 (11)0.0278 (12)0.0005 (9)0.0124 (10)0.0025 (9)
C240.0385 (14)0.0227 (12)0.0212 (12)0.0022 (10)0.0104 (10)0.0025 (9)
C250.0352 (14)0.0247 (12)0.0209 (11)0.0024 (10)0.0036 (10)0.0011 (9)
C260.0257 (12)0.0244 (12)0.0245 (12)0.0004 (9)0.0058 (9)0.0013 (9)
F260.0243 (7)0.0454 (9)0.0263 (7)0.0068 (6)0.0034 (6)0.0019 (6)
Geometric parameters (Å, º) top
N1—O141.437 (2)C6—H60.9500
N1—C9a1.442 (3)C7—C81.373 (4)
N1—C21.482 (3)C7—H70.9500
C2—C211.503 (3)C8—C91.384 (3)
C2—C31.537 (3)C8—H80.9500
C2—H21.0000C9—C9a1.384 (3)
C3—C41.520 (3)C9—H90.9500
C3—H3A0.9900C21—C261.385 (3)
C3—H3B0.9900C21—C221.392 (3)
C4—O141.450 (3)C22—C231.379 (3)
C4—C51.507 (3)C22—Cl221.734 (2)
C4—H41.0000C23—C241.381 (3)
C5—C5a1.500 (3)C23—H230.9500
C5—H5A0.9900C24—C251.373 (4)
C5—H5B0.9900C24—H240.9500
C5a—C9a1.385 (3)C25—C261.369 (3)
C5a—C61.388 (3)C25—H250.9500
C6—C71.379 (4)C26—F261.353 (3)
O14—N1—C9a106.94 (16)C5a—C6—H6119.4
O14—N1—C2101.60 (15)C8—C7—C6120.4 (2)
C9a—N1—C2111.05 (17)C8—C7—H7119.8
N1—C2—C21110.57 (17)C6—C7—H7119.8
N1—C2—C3104.00 (18)C7—C8—C9119.4 (2)
C21—C2—C3116.19 (19)C7—C8—H8120.3
N1—C2—H2108.6C9—C8—H8120.3
C21—C2—H2108.6C9a—C9—C8120.0 (2)
C3—C2—H2108.6C9a—C9—H9120.0
C4—C3—C2103.28 (18)C8—C9—H9120.0
C4—C3—H3A111.1C9—C9a—C5a121.1 (2)
C2—C3—H3A111.1C9—C9a—N1117.2 (2)
C4—C3—H3B111.1C5a—C9a—N1121.6 (2)
C2—C3—H3B111.1N1—O14—C4104.16 (16)
H3A—C3—H3B109.1C26—C21—C22113.8 (2)
O14—C4—C5107.01 (19)C26—C21—C2124.7 (2)
O14—C4—C3104.43 (18)C22—C21—C2121.5 (2)
C5—C4—C3112.0 (2)C23—C22—C21123.5 (2)
O14—C4—H4111.0C23—C22—Cl22116.41 (18)
C5—C4—H4111.0C21—C22—Cl22120.05 (17)
C3—C4—H4111.0C22—C23—C24119.3 (2)
C5a—C5—C4109.3 (2)C22—C23—H23120.3
C5a—C5—H5A109.8C24—C23—H23120.3
C4—C5—H5A109.8C25—C24—C23119.6 (2)
C5a—C5—H5B109.8C25—C24—H24120.2
C4—C5—H5B109.8C23—C24—H24120.2
H5A—C5—H5B108.3C26—C25—C24118.8 (2)
C9a—C5a—C6118.0 (2)C26—C25—H25120.6
C9a—C5a—C5120.0 (2)C24—C25—H25120.6
C6—C5a—C5122.1 (2)F26—C26—C25116.2 (2)
C7—C6—C5a121.1 (2)F26—C26—C21118.9 (2)
C7—C6—H6119.4C25—C26—C21124.9 (2)
O14—N1—C2—C2187.0 (2)O14—N1—C9a—C5a29.0 (3)
C9a—N1—C2—C21159.60 (18)C2—N1—C9a—C5a81.0 (3)
O14—N1—C2—C338.4 (2)C9a—N1—O14—C467.99 (19)
C9a—N1—C2—C375.0 (2)C2—N1—O14—C448.49 (19)
N1—C2—C3—C415.0 (2)C5—C4—O14—N180.1 (2)
C21—C2—C3—C4106.7 (2)C3—C4—O14—N138.8 (2)
C2—C3—C4—O1413.6 (2)N1—C2—C21—C2684.6 (3)
C2—C3—C4—C5101.8 (2)C3—C2—C21—C2633.6 (3)
O14—C4—C5—C5a47.0 (3)N1—C2—C21—C2296.1 (2)
C3—C4—C5—C5a66.9 (3)C3—C2—C21—C22145.7 (2)
C4—C5—C5a—C9a8.5 (3)C26—C21—C22—C230.6 (3)
C4—C5—C5a—C6173.4 (2)C2—C21—C22—C23178.8 (2)
C9a—C5a—C6—C70.6 (4)C26—C21—C22—Cl22178.94 (17)
C5—C5a—C6—C7177.6 (2)C2—C21—C22—Cl221.7 (3)
C5a—C6—C7—C81.3 (4)C21—C22—C23—C240.6 (3)
C6—C7—C8—C90.7 (4)Cl22—C22—C23—C24179.78 (18)
C7—C8—C9—C9a0.6 (3)C22—C23—C24—C250.6 (3)
C8—C9—C9a—C5a1.3 (3)C23—C24—C25—C260.6 (4)
C8—C9—C9a—N1177.2 (2)C24—C25—C26—F26179.3 (2)
C6—C5a—C9a—C90.7 (3)C24—C25—C26—C212.1 (4)
C5—C5a—C9a—C9179.0 (2)C22—C21—C26—F26179.4 (2)
C6—C5a—C9a—N1177.7 (2)C2—C21—C26—F261.2 (3)
C5—C5a—C9a—N10.6 (3)C22—C21—C26—C252.0 (3)
O14—N1—C9a—C9149.42 (19)C2—C21—C26—C25177.3 (2)
C2—N1—C9a—C9100.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···N1i0.992.623.417 (3)137
C4—H4···F26ii1.002.413.356 (3)158
C23—H23···Cg1iii0.952.493.324 (3)147
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+2, y+1, z+1; (iii) x1/2, y+3/2, z+1/2.
(III) (2SR,4RS)-7-methyl-2-exo-(4-methylphenyl)- 2,3,4,5-tetrahydro-1H-1,4-epoxy-1-benzazepine top
Crystal data top
C18H19NOF(000) = 568
Mr = 265.34Dx = 1.295 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3133 reflections
a = 9.7687 (9) Åθ = 3.0–27.5°
b = 10.3022 (17) ŵ = 0.08 mm1
c = 14.239 (2) ÅT = 120 K
β = 108.222 (10)°Block, colourless
V = 1361.1 (3) Å30.33 × 0.27 × 0.12 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3133 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode1788 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.096
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ & ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1313
Tmin = 0.962, Tmax = 0.991l = 1818
20555 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0346P)2 + 1.1025P]
where P = (Fo2 + 2Fc2)/3
3133 reflections(Δ/σ)max = 0.001
183 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C18H19NOV = 1361.1 (3) Å3
Mr = 265.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.7687 (9) ŵ = 0.08 mm1
b = 10.3022 (17) ÅT = 120 K
c = 14.239 (2) Å0.33 × 0.27 × 0.12 mm
β = 108.222 (10)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3133 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1788 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.991Rint = 0.096
20555 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.08Δρmax = 0.27 e Å3
3133 reflectionsΔρmin = 0.26 e Å3
183 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5776 (2)0.74452 (19)0.11344 (14)0.0240 (5)
C20.4350 (2)0.8051 (2)0.06260 (17)0.0234 (5)
H20.43910.89890.08140.028*
C30.4205 (2)0.7951 (3)0.04817 (17)0.0271 (6)
H3A0.32880.75250.08560.033*
H3B0.42450.88210.07680.033*
C40.5488 (3)0.7131 (2)0.04985 (18)0.0270 (6)
H40.52040.64970.10580.032*
C50.6774 (3)0.7917 (3)0.05328 (18)0.0279 (6)
H5A0.75220.73310.06290.033*
H5B0.64830.85270.10970.033*
C5a0.7380 (2)0.8664 (2)0.04163 (17)0.0229 (5)
C60.8399 (2)0.9631 (2)0.05250 (18)0.0247 (5)
H60.87380.98280.00150.030*
C70.8940 (2)1.0321 (2)0.13958 (18)0.0244 (5)
C80.8469 (2)0.9994 (2)0.21876 (18)0.0266 (6)
H80.88411.04430.27980.032*
C90.7467 (2)0.9025 (2)0.20966 (17)0.0253 (6)
H90.71580.88010.26450.030*
C9a0.6909 (2)0.8376 (2)0.12113 (17)0.0219 (5)
O140.58803 (17)0.64596 (16)0.04384 (12)0.0272 (4)
C210.3162 (2)0.7410 (2)0.09166 (17)0.0234 (5)
C220.2453 (3)0.8088 (2)0.14585 (17)0.0266 (6)
H220.27320.89570.16510.032*
C230.1343 (2)0.7532 (3)0.17280 (18)0.0292 (6)
H230.08650.80240.20960.035*
C240.0923 (3)0.6271 (3)0.14689 (19)0.0292 (6)
C250.1652 (3)0.5583 (3)0.0938 (2)0.0329 (6)
H250.13910.47070.07620.040*
C260.2748 (3)0.6139 (2)0.0658 (2)0.0303 (6)
H260.32210.56490.02850.036*
C270.0301 (3)0.5662 (3)0.1741 (2)0.0386 (7)
H27A0.04430.61290.23040.058*
H27B0.00730.47520.19220.058*
H27C0.11840.57100.11760.058*
C710.9999 (3)1.1401 (3)0.1486 (2)0.0340 (6)
H71A1.09811.10600.17520.051*
H71B0.98431.20690.19310.051*
H71C0.98671.17810.08320.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0247 (10)0.0219 (11)0.0243 (11)0.0022 (8)0.0060 (8)0.0016 (9)
C20.0237 (12)0.0206 (13)0.0239 (13)0.0038 (10)0.0048 (10)0.0020 (10)
C30.0234 (12)0.0313 (14)0.0245 (13)0.0007 (11)0.0045 (10)0.0012 (12)
C40.0296 (13)0.0271 (14)0.0228 (13)0.0025 (11)0.0061 (10)0.0023 (11)
C50.0279 (13)0.0301 (15)0.0260 (13)0.0026 (11)0.0091 (11)0.0055 (12)
C5a0.0192 (11)0.0245 (13)0.0240 (13)0.0043 (10)0.0051 (10)0.0016 (11)
C60.0199 (11)0.0294 (14)0.0248 (13)0.0066 (10)0.0070 (10)0.0001 (11)
C70.0177 (11)0.0247 (13)0.0287 (14)0.0042 (10)0.0043 (10)0.0020 (11)
C80.0227 (12)0.0294 (14)0.0246 (13)0.0037 (11)0.0029 (10)0.0044 (11)
C90.0260 (13)0.0292 (15)0.0200 (13)0.0056 (11)0.0062 (10)0.0006 (11)
C9a0.0187 (11)0.0207 (13)0.0252 (13)0.0033 (9)0.0054 (10)0.0014 (10)
O140.0308 (9)0.0192 (9)0.0300 (10)0.0032 (7)0.0074 (8)0.0024 (8)
C210.0230 (12)0.0223 (13)0.0231 (12)0.0018 (10)0.0047 (10)0.0032 (10)
C220.0280 (13)0.0240 (14)0.0252 (13)0.0038 (10)0.0048 (11)0.0023 (11)
C230.0268 (13)0.0324 (15)0.0288 (14)0.0067 (11)0.0092 (11)0.0050 (12)
C240.0247 (13)0.0323 (15)0.0283 (14)0.0018 (11)0.0047 (11)0.0083 (12)
C250.0307 (14)0.0233 (14)0.0427 (16)0.0021 (11)0.0084 (12)0.0006 (12)
C260.0291 (13)0.0249 (14)0.0377 (15)0.0010 (11)0.0116 (12)0.0027 (12)
C270.0280 (14)0.0434 (18)0.0451 (17)0.0021 (13)0.0125 (12)0.0091 (14)
C710.0299 (14)0.0349 (16)0.0375 (16)0.0035 (12)0.0109 (12)0.0076 (13)
Geometric parameters (Å, º) top
N1—C9a1.442 (3)C8—C91.376 (3)
N1—O141.444 (2)C8—H80.9500
N1—C21.492 (3)C9—C9a1.380 (3)
C2—C211.502 (3)C9—H90.9500
C2—C31.542 (3)C21—C221.378 (3)
C2—H21.0000C21—C261.386 (3)
C3—C41.518 (3)C22—C231.382 (3)
C3—H3A0.9900C22—H220.9500
C3—H3B0.9900C23—C241.377 (4)
C4—O141.444 (3)C23—H230.9500
C4—C51.508 (3)C24—C251.386 (4)
C4—H41.0000C24—C271.504 (3)
C5—C5a1.506 (3)C25—C261.378 (3)
C5—H5A0.9900C25—H250.9500
C5—H5B0.9900C26—H260.9500
C5a—C9a1.381 (3)C27—H27A0.9800
C5a—C61.382 (3)C27—H27B0.9800
C6—C71.383 (3)C27—H27C0.9800
C6—H60.9500C71—H71A0.9800
C7—C81.386 (3)C71—H71B0.9800
C7—C711.497 (3)C71—H71C0.9800
C9a—N1—O14107.61 (16)C7—C8—H8119.8
C9a—N1—C2109.68 (18)C8—C9—C9a120.3 (2)
O14—N1—C2102.51 (16)C8—C9—H9119.9
N1—C2—C21111.55 (19)C9a—C9—H9119.9
N1—C2—C3103.98 (18)C9—C9a—C5a120.5 (2)
C21—C2—C3114.9 (2)C9—C9a—N1117.8 (2)
N1—C2—H2108.7C5a—C9a—N1121.7 (2)
C21—C2—H2108.7C4—O14—N1103.99 (16)
C3—C2—H2108.7C22—C21—C26118.2 (2)
C4—C3—C2103.95 (19)C22—C21—C2119.9 (2)
C4—C3—H3A111.0C26—C21—C2121.9 (2)
C2—C3—H3A111.0C21—C22—C23121.3 (2)
C4—C3—H3B111.0C21—C22—H22119.3
C2—C3—H3B111.0C23—C22—H22119.3
H3A—C3—H3B109.0C24—C23—C22120.7 (2)
O14—C4—C5107.7 (2)C24—C23—H23119.6
O14—C4—C3103.53 (18)C22—C23—H23119.6
C5—C4—C3113.7 (2)C23—C24—C25117.9 (2)
O14—C4—H4110.5C23—C24—C27121.2 (2)
C5—C4—H4110.5C25—C24—C27120.9 (2)
C3—C4—H4110.5C26—C25—C24121.6 (2)
C5a—C5—C4110.1 (2)C26—C25—H25119.2
C5a—C5—H5A109.6C24—C25—H25119.2
C4—C5—H5A109.6C25—C26—C21120.3 (2)
C5a—C5—H5B109.6C25—C26—H26119.9
C4—C5—H5B109.6C21—C26—H26119.9
H5A—C5—H5B108.2C24—C27—H27A109.5
C9a—C5a—C6118.4 (2)C24—C27—H27B109.5
C9a—C5a—C5119.2 (2)H27A—C27—H27B109.5
C6—C5a—C5122.4 (2)C24—C27—H27C109.5
C5a—C6—C7122.1 (2)H27A—C27—H27C109.5
C5a—C6—H6119.0H27B—C27—H27C109.5
C7—C6—H6119.0C7—C71—H71A109.5
C6—C7—C8118.3 (2)C7—C71—H71B109.5
C6—C7—C71121.2 (2)H71A—C71—H71B109.5
C8—C7—C71120.5 (2)C7—C71—H71C109.5
C9—C8—C7120.5 (2)H71A—C71—H71C109.5
C9—C8—H8119.8H71B—C71—H71C109.5
C9a—N1—C2—C21154.23 (19)C5—C5a—C9a—N14.6 (3)
O14—N1—C2—C2191.7 (2)O14—N1—C9a—C9150.51 (19)
C9a—N1—C2—C381.4 (2)C2—N1—C9a—C998.7 (2)
O14—N1—C2—C332.7 (2)O14—N1—C9a—C5a32.6 (3)
N1—C2—C3—C47.3 (2)C2—N1—C9a—C5a78.2 (3)
C21—C2—C3—C4114.9 (2)C5—C4—O14—N178.1 (2)
C2—C3—C4—O1420.8 (2)C3—C4—O14—N142.6 (2)
C2—C3—C4—C595.8 (2)C9a—N1—O14—C468.0 (2)
O14—C4—C5—C5a47.5 (3)C2—N1—O14—C447.6 (2)
C3—C4—C5—C5a66.6 (3)N1—C2—C21—C22113.0 (2)
C4—C5—C5a—C9a11.6 (3)C3—C2—C21—C22129.0 (2)
C4—C5—C5a—C6168.6 (2)N1—C2—C21—C2666.9 (3)
C9a—C5a—C6—C70.8 (3)C3—C2—C21—C2651.1 (3)
C5—C5a—C6—C7179.4 (2)C26—C21—C22—C230.9 (4)
C5a—C6—C7—C82.0 (3)C2—C21—C22—C23179.2 (2)
C5a—C6—C7—C71177.5 (2)C21—C22—C23—C240.6 (4)
C6—C7—C8—C91.3 (3)C22—C23—C24—C250.4 (4)
C71—C7—C8—C9178.3 (2)C22—C23—C24—C27178.8 (2)
C7—C8—C9—C9a0.6 (4)C23—C24—C25—C261.1 (4)
C8—C9—C9a—C5a1.9 (4)C27—C24—C25—C26178.1 (2)
C8—C9—C9a—N1175.0 (2)C24—C25—C26—C210.9 (4)
C6—C5a—C9a—C91.2 (3)C22—C21—C26—C250.1 (4)
C5—C5a—C9a—C9178.6 (2)C2—C21—C26—C25180.0 (2)
C6—C5a—C9a—N1175.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···N1i0.952.523.395 (3)153
C3—H3B···Cg1ii0.992.773.465 (3)127
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1, y+2, z.
(IV) (2S,4R)-2-exo-(2-Chlorophenyl)-2,3,4,5-tetrahydro- 1H-1,4-epoxy-1-benzazepine top
Crystal data top
C16H14ClNOF(000) = 284
Mr = 271.73Dx = 1.419 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2889 reflections
a = 8.8558 (19) Åθ = 3.5–27.5°
b = 7.3585 (13) ŵ = 0.29 mm1
c = 9.9622 (18) ÅT = 120 K
β = 101.622 (17)°Plate, colourless
V = 635.9 (2) Å30.25 × 0.15 × 0.07 mm
Z = 2
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2889 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode2400 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.5°
ϕ & ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 99
Tmin = 0.919, Tmax = 0.980l = 1212
10226 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0364P)2 + 0.0138P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2889 reflectionsΔρmax = 0.23 e Å3
172 parametersΔρmin = 0.22 e Å3
1 restraintAbsolute structure: Flack (1983), 1323 Bijvoet pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (6)
Crystal data top
C16H14ClNOV = 635.9 (2) Å3
Mr = 271.73Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.8558 (19) ŵ = 0.29 mm1
b = 7.3585 (13) ÅT = 120 K
c = 9.9622 (18) Å0.25 × 0.15 × 0.07 mm
β = 101.622 (17)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2889 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2400 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 0.980Rint = 0.048
10226 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.078Δρmax = 0.23 e Å3
S = 1.08Δρmin = 0.22 e Å3
2889 reflectionsAbsolute structure: Flack (1983), 1323 Bijvoet pairs
172 parametersAbsolute structure parameter: 0.07 (6)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3548 (2)0.4825 (2)0.18686 (17)0.0189 (4)
C20.4652 (2)0.4263 (3)0.3111 (2)0.0167 (4)
H20.41060.41420.38930.020*
C30.5224 (3)0.2389 (3)0.2750 (2)0.0193 (5)
H3A0.63640.23250.29700.023*
H3B0.48000.14100.32480.023*
C40.4615 (2)0.2243 (3)0.1217 (2)0.0198 (5)
H40.54230.17420.07480.024*
C50.3142 (3)0.1174 (3)0.0832 (2)0.0233 (5)
H5A0.29020.09680.01710.028*
H5B0.32700.00250.12910.028*
C5a0.1839 (2)0.2184 (3)0.1251 (2)0.0186 (5)
C60.0384 (3)0.1435 (3)0.1122 (2)0.0220 (5)
H60.01880.02490.07500.026*
C70.0781 (2)0.2391 (3)0.1528 (2)0.0224 (5)
H70.17820.18730.14120.027*
C80.0511 (2)0.4091 (3)0.2101 (2)0.0220 (5)
H80.13070.47230.24170.026*
C90.0924 (3)0.4869 (3)0.2211 (2)0.0211 (5)
H90.11140.60540.25850.025*
C9a0.2083 (2)0.3927 (3)0.17793 (18)0.0176 (4)
O140.42541 (16)0.4106 (2)0.08003 (13)0.0212 (4)
C210.5933 (2)0.5633 (3)0.3468 (2)0.0163 (4)
C220.7029 (2)0.5473 (3)0.4668 (2)0.0181 (5)
C230.8225 (3)0.6676 (3)0.5033 (2)0.0228 (5)
H230.89450.65400.58730.027*
C240.8362 (3)0.8084 (3)0.4157 (2)0.0276 (5)
H240.91800.89330.43920.033*
C250.7315 (3)0.8262 (3)0.2941 (2)0.0251 (5)
H250.74290.92110.23220.030*
C260.6099 (2)0.7062 (3)0.2620 (2)0.0197 (5)
H260.53600.72260.17940.024*
Cl220.69066 (6)0.36764 (7)0.57757 (5)0.02486 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0174 (10)0.0213 (9)0.0182 (9)0.0005 (8)0.0041 (7)0.0013 (7)
C20.0161 (11)0.0163 (10)0.0173 (9)0.0003 (8)0.0024 (8)0.0011 (8)
C30.0181 (11)0.0151 (10)0.0244 (11)0.0007 (9)0.0036 (9)0.0006 (8)
C40.0188 (12)0.0205 (11)0.0204 (11)0.0009 (9)0.0046 (9)0.0032 (9)
C50.0208 (12)0.0262 (12)0.0230 (11)0.0018 (9)0.0044 (9)0.0067 (9)
C5a0.0190 (12)0.0208 (12)0.0150 (10)0.0014 (9)0.0013 (9)0.0008 (8)
C60.0230 (13)0.0230 (12)0.0183 (11)0.0045 (9)0.0003 (9)0.0012 (9)
C70.0139 (12)0.0313 (13)0.0216 (11)0.0007 (10)0.0030 (9)0.0057 (10)
C80.0163 (11)0.0287 (13)0.0203 (10)0.0052 (9)0.0023 (9)0.0032 (9)
C90.0208 (12)0.0215 (11)0.0187 (10)0.0049 (10)0.0013 (9)0.0003 (9)
C9a0.0160 (10)0.0202 (12)0.0154 (9)0.0003 (9)0.0001 (7)0.0005 (9)
O140.0199 (8)0.0279 (9)0.0166 (7)0.0017 (6)0.0053 (6)0.0012 (6)
C210.0167 (11)0.0153 (10)0.0186 (10)0.0016 (9)0.0076 (9)0.0023 (8)
C220.0207 (12)0.0194 (11)0.0154 (10)0.0011 (9)0.0067 (9)0.0015 (8)
C230.0197 (12)0.0233 (12)0.0245 (11)0.0007 (10)0.0021 (9)0.0067 (9)
C240.0228 (13)0.0219 (12)0.0381 (13)0.0064 (9)0.0064 (11)0.0102 (10)
C250.0262 (13)0.0173 (13)0.0339 (12)0.0000 (9)0.0113 (10)0.0015 (9)
C260.0193 (12)0.0169 (10)0.0232 (11)0.0020 (9)0.0051 (9)0.0009 (9)
Cl220.0284 (3)0.0247 (3)0.0202 (2)0.0007 (2)0.0016 (2)0.0033 (2)
Geometric parameters (Å, º) top
N1—O141.439 (2)C6—H60.9500
N1—C9a1.443 (3)C7—C81.375 (3)
N1—C21.474 (3)C7—H70.9500
C2—C211.506 (3)C8—C91.378 (3)
C2—C31.537 (3)C8—H80.9500
C2—H21.0000C9—C9a1.378 (3)
C3—C41.518 (3)C9—H90.9500
C3—H3A0.9900C21—C261.375 (3)
C3—H3B0.9900C21—C221.385 (3)
C4—O141.449 (3)C22—C231.372 (3)
C4—C51.505 (3)C22—Cl221.739 (2)
C4—H41.0000C23—C241.375 (3)
C5—C5a1.501 (3)C23—H230.9500
C5—H5A0.9900C24—C251.376 (3)
C5—H5B0.9900C24—H240.9500
C5a—C61.384 (3)C25—C261.379 (3)
C5a—C9a1.386 (3)C25—H250.9500
C6—C71.376 (3)C26—H260.9500
O14—N1—C9a107.77 (15)C5a—C6—H6119.7
O14—N1—C2101.79 (14)C8—C7—C6120.6 (2)
C9a—N1—C2111.08 (16)C8—C7—H7119.7
N1—C2—C21110.59 (17)C6—C7—H7119.7
N1—C2—C3104.42 (16)C7—C8—C9119.5 (2)
C21—C2—C3112.85 (17)C7—C8—H8120.3
N1—C2—H2109.6C9—C8—H8120.3
C21—C2—H2109.6C9a—C9—C8119.9 (2)
C3—C2—H2109.6C9a—C9—H9120.0
C4—C3—C2103.42 (17)C8—C9—H9120.0
C4—C3—H3A111.1C9—C9a—C5a121.03 (19)
C2—C3—H3A111.1C9—C9a—N1117.85 (19)
C4—C3—H3B111.1C5a—C9a—N1121.11 (18)
C2—C3—H3B111.1N1—O14—C4103.87 (14)
H3A—C3—H3B109.0C26—C21—C22116.92 (19)
O14—C4—C5106.96 (17)C26—C21—C2122.36 (19)
O14—C4—C3103.56 (16)C22—C21—C2120.70 (18)
C5—C4—C3114.01 (18)C23—C22—C21122.9 (2)
O14—C4—H4110.7C23—C22—Cl22117.79 (16)
C5—C4—H4110.7C21—C22—Cl22119.34 (16)
C3—C4—H4110.7C22—C23—C24118.7 (2)
C5a—C5—C4110.22 (18)C22—C23—H23120.6
C5a—C5—H5A109.6C24—C23—H23120.6
C4—C5—H5A109.6C23—C24—C25120.0 (2)
C5a—C5—H5B109.6C23—C24—H24120.0
C4—C5—H5B109.6C25—C24—H24120.0
H5A—C5—H5B108.1C24—C25—C26119.9 (2)
C6—C5a—C9a118.3 (2)C24—C25—H25120.0
C6—C5a—C5122.06 (19)C26—C25—H25120.0
C9a—C5a—C5119.60 (19)C21—C26—C25121.5 (2)
C7—C6—C5a120.6 (2)C21—C26—H26119.3
C7—C6—H6119.7C25—C26—H26119.3
O14—N1—C2—C2185.61 (18)O14—N1—C9a—C9150.88 (16)
C9a—N1—C2—C21159.89 (16)C2—N1—C9a—C998.4 (2)
O14—N1—C2—C336.05 (19)O14—N1—C9a—C5a27.9 (2)
C9a—N1—C2—C378.4 (2)C2—N1—C9a—C5a82.8 (2)
N1—C2—C3—C411.1 (2)C9a—N1—O14—C468.07 (18)
C21—C2—C3—C4109.06 (19)C2—N1—O14—C448.85 (17)
C2—C3—C4—O1417.8 (2)C5—C4—O14—N179.27 (17)
C2—C3—C4—C598.1 (2)C3—C4—O14—N141.47 (19)
O14—C4—C5—C5a45.7 (2)N1—C2—C21—C267.6 (3)
C3—C4—C5—C5a68.2 (2)C3—C2—C21—C26109.0 (2)
C4—C5—C5a—C6174.42 (19)N1—C2—C21—C22174.08 (17)
C4—C5—C5a—C9a5.9 (3)C3—C2—C21—C2269.4 (2)
C9a—C5a—C6—C70.9 (3)C26—C21—C22—C231.0 (3)
C5—C5a—C6—C7179.38 (19)C2—C21—C22—C23179.41 (19)
C5a—C6—C7—C81.6 (3)C26—C21—C22—Cl22179.01 (15)
C6—C7—C8—C92.8 (3)C2—C21—C22—Cl220.6 (3)
C7—C8—C9—C9a1.5 (3)C21—C22—C23—C241.3 (3)
C8—C9—C9a—C5a1.0 (3)Cl22—C22—C23—C24178.62 (17)
C8—C9—C9a—N1177.72 (18)C22—C23—C24—C250.2 (3)
C6—C5a—C9a—C92.2 (3)C23—C24—C25—C262.1 (3)
C5—C5a—C9a—C9178.05 (19)C22—C21—C26—C251.0 (3)
C6—C5a—C9a—N1176.48 (18)C2—C21—C26—C25177.46 (19)
C5—C5a—C9a—N13.2 (3)C24—C25—C26—C212.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···Cl22i0.992.813.781 (3)169
C4—H4···O14ii1.002.533.344 (3)138
C6—H6···Cg1iii0.952.833.657 (2)146
C8—H8···Cg2iv0.952.653.571 (2)163
C23—H23···Cg1v0.952.683.415 (2)134
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+1, y1/2, z; (iii) x, y1/2, z; (iv) x1, y, z; (v) x+1, y+1/2, z+1.
(VII) top
Crystal data top
C17H16ClNOZ = 4
Mr = 285.76F(000) = 600
Triclinic, P1Dx = 1.396 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7150 (9) ÅCell parameters from 6196 reflections
b = 10.406 (2) Åθ = 2.9–27.5°
c = 15.312 (4) ŵ = 0.28 mm1
α = 99.547 (19)°T = 120 K
β = 90.621 (14)°Block, colourless
γ = 96.514 (13)°0.15 × 0.10 × 0.08 mm
V = 1359.9 (5) Å3
Data collection top
Bruker-Nonius KappaCCD
diffractometer
6196 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode4084 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.093
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.9°
ϕ & ω scansh = 1111
Absorption correction: multi-scan
SADABS 2.10 (Sheldrick, 2003)
k = 1313
Tmin = 0.949, Tmax = 0.978l = 1919
34637 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.113H-atom parameters constrained
wR(F2) = 0.308 w = 1/[σ2(Fo2) + (0.0668P)2 + 15.6862P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max = 0.001
6196 reflectionsΔρmax = 1.67 e Å3
365 parametersΔρmin = 0.55 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.012 (2)
Crystal data top
C17H16ClNOγ = 96.514 (13)°
Mr = 285.76V = 1359.9 (5) Å3
Triclinic, P1Z = 4
a = 8.7150 (9) ÅMo Kα radiation
b = 10.406 (2) ŵ = 0.28 mm1
c = 15.312 (4) ÅT = 120 K
α = 99.547 (19)°0.15 × 0.10 × 0.08 mm
β = 90.621 (14)°
Data collection top
Bruker-Nonius KappaCCD
diffractometer
6196 independent reflections
Absorption correction: multi-scan
SADABS 2.10 (Sheldrick, 2003)
4084 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.978Rint = 0.093
34637 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.1130 restraints
wR(F2) = 0.308H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0668P)2 + 15.6862P]
where P = (Fo2 + 2Fc2)/3
6196 reflectionsΔρmax = 1.67 e Å3
365 parametersΔρmin = 0.55 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.8122 (6)0.5215 (5)0.6500 (3)0.0148 (10)
C120.9373 (7)0.4383 (6)0.6243 (4)0.0178 (13)
H120.93730.41430.55830.021*
C131.0866 (7)0.5282 (6)0.6571 (4)0.0171 (12)
H13A1.15510.48310.69080.020*
H13B1.14360.55760.60700.020*
C141.0268 (8)0.6435 (7)0.7168 (4)0.0215 (14)
H141.08970.66770.77340.026*
C151.0204 (8)0.7618 (6)0.6724 (4)0.0219 (14)
H15A0.99420.83680.71620.026*
H15B1.12260.78670.64860.026*
C15A0.9001 (7)0.7302 (6)0.5983 (4)0.0166 (12)
C160.8798 (8)0.8132 (7)0.5378 (4)0.0223 (14)
H160.94360.89460.54350.027*
C170.7706 (8)0.7814 (6)0.4700 (4)0.0196 (13)
C180.6785 (8)0.6631 (6)0.4616 (4)0.0207 (13)
H180.60350.63930.41440.025*
C190.6938 (7)0.5799 (6)0.5203 (4)0.0197 (13)
H190.62950.49860.51380.024*
C19A0.8028 (7)0.6130 (6)0.5893 (4)0.0158 (12)
O1140.8712 (5)0.5942 (5)0.7337 (3)0.0205 (10)
C1210.9021 (7)0.3167 (6)0.6641 (4)0.0196 (13)
C1220.7992 (8)0.2126 (7)0.6218 (4)0.0209 (13)
Cl120.7100 (2)0.22299 (17)0.52121 (11)0.0259 (4)
C1230.7594 (9)0.1006 (7)0.6563 (5)0.0292 (16)
H1230.68860.03140.62540.035*
C1240.8249 (9)0.0906 (7)0.7378 (5)0.0324 (17)
H1240.79970.01340.76280.039*
C1250.9255 (9)0.1915 (8)0.7823 (5)0.0320 (17)
H1250.96900.18500.83830.038*
C1260.9634 (8)0.3030 (7)0.7452 (5)0.0246 (15)
H1261.03370.37220.77640.030*
C1710.7550 (10)0.8732 (7)0.4047 (5)0.0310 (17)
H17A0.81770.84860.35320.046*
H17B0.79070.96340.43300.046*
H17C0.64640.86750.38550.046*
N210.3111 (6)0.4643 (5)0.8385 (3)0.0161 (11)
C220.4461 (7)0.5619 (6)0.8685 (4)0.0168 (12)
H220.44040.59430.93350.020*
C230.5851 (7)0.4832 (6)0.8512 (4)0.0192 (13)
H23A0.66870.53230.82270.023*
H23B0.62630.46200.90700.023*
C240.5180 (8)0.3609 (7)0.7902 (4)0.0216 (14)
H240.58640.34070.73890.026*
C250.4852 (9)0.2428 (7)0.8363 (5)0.0262 (15)
H25A0.45120.16360.79210.031*
H25B0.58020.22760.86710.031*
C25A0.3611 (7)0.2682 (6)0.9018 (4)0.0191 (13)
C260.3235 (8)0.1881 (7)0.9642 (4)0.0235 (14)
H260.37780.11420.96500.028*
C270.2096 (8)0.2118 (6)1.0255 (4)0.0206 (14)
C280.1315 (8)0.3188 (7)1.0211 (4)0.0252 (15)
H280.05140.33631.06140.030*
C290.1651 (8)0.4007 (7)0.9609 (5)0.0243 (15)
H290.11020.47440.96040.029*
C29A0.2795 (7)0.3753 (6)0.9008 (4)0.0163 (12)
O2140.3700 (5)0.3906 (4)0.7602 (3)0.0201 (10)
C2210.4435 (7)0.6739 (6)0.8192 (4)0.0180 (13)
C2220.3678 (8)0.7813 (6)0.8513 (4)0.0205 (13)
Cl220.2754 (2)0.78872 (17)0.95132 (11)0.0289 (4)
C2230.3570 (8)0.8832 (6)0.8051 (5)0.0230 (14)
H2230.30370.95520.82880.028*
C2240.4248 (8)0.8785 (7)0.7242 (5)0.0247 (15)
H2240.41940.94840.69190.030*
C2250.4997 (8)0.7743 (7)0.6901 (4)0.0225 (14)
H2250.54630.77180.63410.027*
C2260.5082 (8)0.6725 (7)0.7365 (4)0.0207 (13)
H2260.55940.59980.71140.025*
C2710.1754 (10)0.1262 (8)1.0932 (5)0.0329 (17)
H27A0.07310.07631.08040.049*
H27B0.17700.18061.15210.049*
H27C0.25360.06531.09190.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.014 (3)0.016 (3)0.014 (2)0.003 (2)0.0007 (19)0.003 (2)
C120.016 (3)0.022 (3)0.015 (3)0.003 (2)0.001 (2)0.002 (2)
C130.014 (3)0.020 (3)0.018 (3)0.004 (2)0.000 (2)0.005 (2)
C140.020 (3)0.028 (4)0.018 (3)0.002 (3)0.000 (2)0.009 (3)
C150.028 (4)0.018 (3)0.018 (3)0.001 (3)0.004 (3)0.001 (2)
C15A0.020 (3)0.017 (3)0.013 (3)0.002 (2)0.000 (2)0.002 (2)
C160.024 (3)0.020 (3)0.024 (3)0.002 (3)0.005 (3)0.005 (3)
C170.033 (4)0.015 (3)0.013 (3)0.009 (3)0.003 (3)0.003 (2)
C180.024 (3)0.021 (3)0.016 (3)0.005 (3)0.002 (2)0.002 (2)
C190.021 (3)0.018 (3)0.022 (3)0.008 (2)0.001 (2)0.003 (3)
C19A0.016 (3)0.017 (3)0.016 (3)0.008 (2)0.004 (2)0.004 (2)
O1140.020 (2)0.027 (2)0.014 (2)0.0009 (19)0.0006 (17)0.0017 (18)
C1210.017 (3)0.021 (3)0.023 (3)0.004 (2)0.006 (2)0.010 (3)
C1220.024 (3)0.023 (3)0.018 (3)0.008 (3)0.001 (3)0.005 (3)
Cl120.0315 (9)0.0232 (8)0.0222 (8)0.0029 (7)0.0040 (6)0.0023 (6)
C1230.031 (4)0.020 (3)0.037 (4)0.001 (3)0.007 (3)0.006 (3)
C1240.042 (5)0.025 (4)0.036 (4)0.009 (3)0.009 (3)0.019 (3)
C1250.036 (4)0.036 (4)0.030 (4)0.010 (3)0.004 (3)0.019 (3)
C1260.025 (4)0.026 (4)0.025 (4)0.003 (3)0.005 (3)0.010 (3)
C1710.049 (5)0.023 (4)0.023 (4)0.010 (3)0.000 (3)0.006 (3)
N210.022 (3)0.015 (3)0.011 (2)0.001 (2)0.000 (2)0.0039 (19)
C220.018 (3)0.017 (3)0.014 (3)0.002 (2)0.000 (2)0.001 (2)
C230.020 (3)0.019 (3)0.020 (3)0.001 (2)0.001 (2)0.009 (3)
C240.025 (3)0.024 (3)0.018 (3)0.009 (3)0.007 (3)0.005 (3)
C250.033 (4)0.024 (4)0.023 (3)0.009 (3)0.010 (3)0.004 (3)
C25A0.021 (3)0.019 (3)0.016 (3)0.004 (2)0.003 (2)0.003 (2)
C260.032 (4)0.018 (3)0.021 (3)0.000 (3)0.003 (3)0.005 (3)
C270.033 (4)0.012 (3)0.016 (3)0.004 (3)0.001 (3)0.005 (2)
C280.026 (4)0.029 (4)0.020 (3)0.001 (3)0.010 (3)0.005 (3)
C290.020 (3)0.023 (3)0.032 (4)0.003 (3)0.007 (3)0.009 (3)
C29A0.016 (3)0.019 (3)0.013 (3)0.003 (2)0.000 (2)0.003 (2)
O2140.027 (2)0.024 (2)0.009 (2)0.0017 (19)0.0015 (17)0.0009 (17)
C2210.017 (3)0.022 (3)0.015 (3)0.000 (2)0.001 (2)0.003 (2)
C2220.022 (3)0.022 (3)0.015 (3)0.001 (3)0.001 (2)0.002 (2)
Cl220.0338 (10)0.0286 (9)0.0234 (9)0.0032 (7)0.0112 (7)0.0009 (7)
C2230.023 (3)0.018 (3)0.028 (4)0.004 (3)0.001 (3)0.002 (3)
C2240.028 (4)0.019 (3)0.029 (4)0.000 (3)0.003 (3)0.011 (3)
C2250.027 (4)0.024 (3)0.018 (3)0.002 (3)0.002 (3)0.009 (3)
C2260.024 (3)0.021 (3)0.017 (3)0.002 (3)0.001 (2)0.005 (3)
C2710.047 (5)0.028 (4)0.023 (4)0.006 (3)0.006 (3)0.009 (3)
Geometric parameters (Å, º) top
N11—O1141.434 (6)N21—C29A1.443 (8)
N11—C19A1.444 (8)N21—O2141.445 (6)
N11—C121.485 (8)N21—C221.480 (8)
C12—C1211.496 (9)C22—C2211.493 (9)
C12—C131.541 (9)C22—C231.539 (9)
C12—H121.0000C22—H221.0000
C13—C141.529 (9)C23—C241.503 (9)
C13—H13A0.9900C23—H23A0.9900
C13—H13B0.9900C23—H23B0.9900
C14—O1141.436 (8)C24—O2141.447 (8)
C14—C151.507 (9)C24—C251.517 (9)
C14—H141.0000C24—H241.0000
C15—C15A1.506 (9)C25—C25A1.499 (9)
C15—H15A0.9900C25—H25A0.9900
C15—H15B0.9900C25—H25B0.9900
C15A—C161.390 (9)C25A—C261.388 (9)
C15A—C19A1.390 (9)C25A—C29A1.390 (9)
C16—C171.374 (9)C26—C271.387 (10)
C16—H160.9500C26—H260.9500
C17—C181.377 (9)C27—C281.380 (10)
C17—C1711.508 (9)C27—C2711.487 (9)
C18—C191.363 (9)C28—C291.368 (10)
C18—H180.9500C28—H280.9500
C19—C19A1.386 (9)C29—C29A1.381 (9)
C19—H190.9500C29—H290.9500
C121—C1261.381 (9)C221—C2221.385 (9)
C121—C1221.390 (9)C221—C2261.390 (9)
C122—C1231.370 (10)C222—C2231.379 (10)
C122—Cl121.743 (7)C222—Cl221.733 (7)
C123—C1241.391 (11)C223—C2241.375 (10)
C123—H1230.9500C223—H2230.9500
C124—C1251.370 (11)C224—C2251.362 (10)
C124—H1240.9500C224—H2240.9500
C125—C1261.384 (10)C225—C2261.378 (9)
C125—H1250.9500C225—H2250.9500
C126—H1260.9500C226—H2260.9500
C171—H17A0.9800C271—H27A0.9800
C171—H17B0.9800C271—H27B0.9800
C171—H17C0.9800C271—H27C0.9800
O114—N11—C19A108.0 (5)C29A—N21—O214107.2 (5)
O114—N11—C12101.4 (4)C29A—N21—C22111.2 (5)
C19A—N11—C12110.1 (5)O214—N21—C22101.0 (4)
N11—C12—C121106.9 (5)N21—C22—C221108.6 (5)
N11—C12—C13104.1 (5)N21—C22—C23103.9 (5)
C121—C12—C13117.2 (5)C221—C22—C23115.4 (5)
N11—C12—H12109.5N21—C22—H22109.6
C121—C12—H12109.5C221—C22—H22109.6
C13—C12—H12109.5C23—C22—H22109.6
C14—C13—C12103.0 (5)C24—C23—C22103.3 (5)
C14—C13—H13A111.2C24—C23—H23A111.1
C12—C13—H13A111.2C22—C23—H23A111.1
C14—C13—H13B111.2C24—C23—H23B111.1
C12—C13—H13B111.2C22—C23—H23B111.1
H13A—C13—H13B109.1H23A—C23—H23B109.1
O114—C14—C15107.9 (5)O214—C24—C23104.9 (5)
O114—C14—C13103.8 (5)O214—C24—C25106.6 (5)
C15—C14—C13113.3 (5)C23—C24—C25113.5 (6)
O114—C14—H14110.5O214—C24—H24110.6
C15—C14—H14110.5C23—C24—H24110.6
C13—C14—H14110.5C25—C24—H24110.6
C15A—C15—C14109.4 (5)C25A—C25—C24108.9 (6)
C15A—C15—H15A109.8C25A—C25—H25A109.9
C14—C15—H15A109.8C24—C25—H25A109.9
C15A—C15—H15B109.8C25A—C25—H25B109.9
C14—C15—H15B109.8C24—C25—H25B109.9
H15A—C15—H15B108.2H25A—C25—H25B108.3
C16—C15A—C19A117.5 (6)C26—C25A—C29A118.0 (6)
C16—C15A—C15123.3 (6)C26—C25A—C25122.3 (6)
C19A—C15A—C15119.2 (5)C29A—C25A—C25119.6 (6)
C17—C16—C15A122.2 (6)C27—C26—C25A122.6 (6)
C17—C16—H16118.9C27—C26—H26118.7
C15A—C16—H16118.9C25A—C26—H26118.7
C16—C17—C18118.8 (6)C28—C27—C26116.9 (6)
C16—C17—C171120.4 (6)C28—C27—C271121.9 (6)
C18—C17—C171120.8 (6)C26—C27—C271121.2 (6)
C19—C18—C17120.6 (6)C29—C28—C27122.5 (6)
C19—C18—H18119.7C29—C28—H28118.8
C17—C18—H18119.7C27—C28—H28118.8
C18—C19—C19A120.4 (6)C28—C29—C29A119.5 (6)
C18—C19—H19119.8C28—C29—H29120.3
C19A—C19—H19119.8C29A—C29—H29120.3
C19—C19A—C15A120.4 (6)C29—C29A—C25A120.5 (6)
C19—C19A—N11117.8 (6)C29—C29A—N21117.6 (6)
C15A—C19A—N11121.8 (5)C25A—C29A—N21121.9 (5)
N11—O114—C14104.5 (4)N21—O214—C24103.6 (4)
C126—C121—C122116.4 (6)C222—C221—C226116.5 (6)
C126—C121—C12122.8 (6)C222—C221—C22121.4 (6)
C122—C121—C12120.7 (6)C226—C221—C22122.0 (6)
C123—C122—C121123.2 (6)C223—C222—C221122.7 (6)
C123—C122—Cl12116.8 (6)C223—C222—Cl22117.2 (5)
C121—C122—Cl12119.9 (5)C221—C222—Cl22120.1 (5)
C122—C123—C124118.4 (7)C224—C223—C222118.8 (6)
C122—C123—H123120.8C224—C223—H223120.6
C124—C123—H123120.8C222—C223—H223120.6
C125—C124—C123120.3 (7)C225—C224—C223120.4 (6)
C125—C124—H124119.8C225—C224—H224119.8
C123—C124—H124119.8C223—C224—H224119.8
C124—C125—C126119.6 (7)C224—C225—C226120.2 (6)
C124—C125—H125120.2C224—C225—H225119.9
C126—C125—H125120.2C226—C225—H225119.9
C121—C126—C125122.0 (7)C225—C226—C221121.4 (6)
C121—C126—H126119.0C225—C226—H226119.3
C125—C126—H126119.0C221—C226—H226119.3
C17—C171—H17A109.5C27—C271—H27A109.5
C17—C171—H17B109.5C27—C271—H27B109.5
H17A—C171—H17B109.5H27A—C271—H27B109.5
C17—C171—H17C109.5C27—C271—H27C109.5
H17A—C171—H17C109.5H27A—C271—H27C109.5
H17B—C171—H17C109.5H27B—C271—H27C109.5
O114—N11—C12—C12187.6 (5)C29A—N21—C22—C221162.3 (5)
C19A—N11—C12—C121158.2 (5)O214—N21—C22—C22184.2 (5)
O114—N11—C12—C1337.0 (5)C29A—N21—C22—C2374.4 (6)
C19A—N11—C12—C1377.2 (6)O214—N21—C22—C2339.1 (5)
N11—C12—C13—C1412.4 (6)N21—C22—C23—C2415.5 (6)
C121—C12—C13—C14105.3 (6)C221—C22—C23—C24103.2 (6)
C12—C13—C14—O11416.5 (6)C22—C23—C24—O21413.9 (6)
C12—C13—C14—C15100.2 (6)C22—C23—C24—C25102.0 (6)
O114—C14—C15—C15A47.5 (7)O214—C24—C25—C25A49.8 (7)
C13—C14—C15—C15A66.8 (7)C23—C24—C25—C25A65.1 (7)
C14—C15—C15A—C16171.7 (6)C24—C25—C25A—C26169.3 (6)
C14—C15—C15A—C19A8.7 (8)C24—C25—C25A—C29A10.9 (9)
C19A—C15A—C16—C171.4 (10)C29A—C25A—C26—C270.7 (10)
C15—C15A—C16—C17179.1 (6)C25—C25A—C26—C27179.5 (6)
C15A—C16—C17—C180.2 (10)C25A—C26—C27—C281.1 (10)
C15A—C16—C17—C171178.7 (6)C25A—C26—C27—C271178.1 (7)
C16—C17—C18—C190.9 (10)C26—C27—C28—C291.3 (10)
C171—C17—C18—C19179.4 (6)C271—C27—C28—C29177.9 (7)
C17—C18—C19—C19A0.1 (10)C27—C28—C29—C29A1.1 (11)
C18—C19—C19A—C15A1.5 (9)C28—C29—C29A—C25A0.6 (10)
C18—C19—C19A—N11179.2 (6)C28—C29—C29A—N21180.0 (6)
C16—C15A—C19A—C192.2 (9)C26—C25A—C29A—C290.4 (9)
C15—C15A—C19A—C19178.2 (6)C25—C25A—C29A—C29179.7 (6)
C16—C15A—C19A—N11178.6 (5)C26—C25A—C29A—N21179.7 (6)
C15—C15A—C19A—N111.0 (9)C25—C25A—C29A—N210.4 (9)
O114—N11—C19A—C19153.1 (5)O214—N21—C29A—C29152.2 (5)
C12—N11—C19A—C1997.0 (6)C22—N21—C29A—C2998.3 (7)
O114—N11—C19A—C15A27.6 (7)O214—N21—C29A—C25A28.4 (7)
C12—N11—C19A—C15A82.2 (7)C22—N21—C29A—C25A81.1 (7)
C19A—N11—O114—C1466.2 (5)C29A—N21—O214—C2467.4 (6)
C12—N11—O114—C1449.4 (5)C22—N21—O214—C2449.1 (5)
C15—C14—O114—N1179.2 (6)C23—C24—O214—N2139.4 (6)
C13—C14—O114—N1141.3 (6)C25—C24—O214—N2181.2 (6)
N11—C12—C121—C12694.3 (7)N21—C22—C221—C22290.0 (7)
C13—C12—C121—C12621.9 (9)C23—C22—C221—C222153.8 (6)
N11—C12—C121—C12283.1 (7)N21—C22—C221—C22686.0 (7)
C13—C12—C121—C122160.7 (6)C23—C22—C221—C22630.1 (9)
C126—C121—C122—C1230.6 (10)C226—C221—C222—C2230.5 (10)
C12—C121—C122—C123178.1 (6)C22—C221—C222—C223176.8 (6)
C126—C121—C122—Cl12177.6 (5)C226—C221—C222—Cl22177.0 (5)
C12—C121—C122—Cl120.1 (9)C22—C221—C222—Cl220.7 (9)
C121—C122—C123—C1240.1 (11)C221—C222—C223—C2240.5 (10)
Cl12—C122—C123—C124178.1 (6)Cl22—C222—C223—C224178.0 (5)
C122—C123—C124—C1250.7 (11)C222—C223—C224—C2250.7 (10)
C123—C124—C125—C1260.9 (12)C223—C224—C225—C2260.0 (11)
C122—C121—C126—C1250.4 (10)C224—C225—C226—C2211.0 (10)
C12—C121—C126—C125177.8 (7)C222—C221—C226—C2251.2 (10)
C124—C125—C126—C1210.3 (11)C22—C221—C226—C225177.5 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23A···O1140.992.343.305 (8)165
C226—H226···N110.952.573.402 (9)146

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC16H12Cl2FNOC16H13ClFNOC18H19NOC16H14ClNO
Mr324.17289.72265.34271.73
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/nMonoclinic, P21/nMonoclinic, P21
Temperature (K)120120120120
a, b, c (Å)9.2907 (11), 10.8720 (9), 13.4523 (13)9.0768 (13), 10.9461 (9), 12.9971 (18)9.7687 (9), 10.3022 (17), 14.239 (2)8.8558 (19), 7.3585 (13), 9.9622 (18)
α, β, γ (°)90, 95.964 (8), 9090, 99.768 (9), 9090, 108.222 (10), 9090, 101.622 (17), 90
V3)1351.4 (2)1272.6 (3)1361.1 (3)635.9 (2)
Z4442
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.490.310.080.29
Crystal size (mm)0.35 × 0.06 × 0.060.32 × 0.27 × 0.220.33 × 0.27 × 0.120.25 × 0.15 × 0.07
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Bruker–Nonius KappaCCD
diffractometer
Bruker–Nonius KappaCCD
diffractometer
Bruker–Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.868, 0.9710.894, 0.9360.962, 0.9910.919, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
19650, 3105, 1774 18555, 2918, 2085 20555, 3133, 1788 10226, 2889, 2400
Rint0.1030.0550.0960.048
(sin θ/λ)max1)0.6500.6500.6500.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.121, 1.07 0.047, 0.137, 1.04 0.063, 0.135, 1.08 0.038, 0.078, 1.08
No. of reflections3105291831332889
No. of parameters190181183172
No. of restraints0001
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.043P)2 + 1.1028P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0685P)2 + 1.0363P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0346P)2 + 1.1025P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0364P)2 + 0.0138P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.38, 0.440.29, 0.370.27, 0.260.23, 0.22
Absolute structure???Flack (1983), 1323 Bijvoet pairs
Absolute structure parameter???0.07 (6)


(VII)
Crystal data
Chemical formulaC17H16ClNO
Mr285.76
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)8.7150 (9), 10.406 (2), 15.312 (4)
α, β, γ (°)99.547 (19), 90.621 (14), 96.514 (13)
V3)1359.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.15 × 0.10 × 0.08
Data collection
DiffractometerBruker-Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
SADABS 2.10 (Sheldrick, 2003)
Tmin, Tmax0.949, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
34637, 6196, 4084
Rint0.093
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.113, 0.308, 1.15
No. of reflections6196
No. of parameters365
No. of restraints0
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0668P)2 + 15.6862P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.67, 0.55
Absolute structure?
Absolute structure parameter?

Computer programs: COLLECT (Hooft, 1999), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), Sir2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009), SHELXL97 and PLATON.

Ring-puckering parameters (Å, °) for compounds (I) - (VI) top
CompoundFive-membered ringSix-membered ring
Q2ϕ2Qθϕ
(I)0.436 (3)198.2 (4)0.623 (3)52.9 (3)346.3 (3)
(II)0.438 (3)199.3 (3)0.621 (2)52.0 (2)346.2 (3)
(III)0.433 (2)189.2 (3)0.606 (2)49.1 (2)347.6 (3)
(IV)0.441 (2)193.8 (3)0.625 (2)53.9 (2)346.8 (2)
(V)a0.447 (3)197.4 (4)0.618 (3)51.0 (3)341.9 (4)
(VI)a0.436 (6)195.7 (8)0.620 (5)51.3 (3)344.5 (7)
Note: (a) data taken from Gómez et al. (2008); puckering parameters for five-membered rings are defined for the atom sequence O14—N1—C2—C3—C4, and those for six-membered rings are defined for the atom sequence O14—N1—C9a—C5a—C5—C4.
Hydrogen bonds and short intermolecular contacts (Å, °) for compounds (I)–(IV) top
CompoundD—H···AD—HH···AD···AD—H···A
(I)C3—H3B···N1i0.992.723.617 (3)151
C4—H4···F26ii1.002.413.325 (3)152
C23—H23···Cg1a,iii0.952.513.359 (3)149
(II)C3—H3B···N1i0.992.623.417 (3)137
C4—H4···F26ii1.002.413.356 (3)158
C23—H23···Cg1a,iii0.952.493.324 (3)147
(III)C8—H8···N1iv0.952.523.395 (3)153
C3—H3B···Cg1a,v0.992.773.465 (3)127
(IV)C3—H3B···Cl22vi0.992.813.781 (3)169
C4—H4···O14vii1.002.533.344 (3)138
C6—H6···Cg1a,viii0.952.833.657 (2)146
C8—H8···Cg2b,ix0.952.653.571 (2)163
C23—H23···Cg1a,x0.952.683.415 (2)134
Notes: (a) Cg1 represents the centroid of the C5a/C6–C9/C9a ring; (b) Cg2 represents the centroid of the C21–C26 ring. Symmetry codes: (i) -x+3/2, y-1/2, -z+1/2; (ii) -x+2, -y+1, -z+1; (iii) x-1/2, -y+3/2, z+1/2; (iv) -x+3/2, y+1/2, -z+1/2; (v) -x+1, -y+2, -z; (vi) -x+1, y-0.5, -z+1; (vii) -x+1, y-1/2, -z; (viii) -x, y-1/2, -z; (ix) x-1, y, z; (x) -x+1, y+1/2, -z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds