metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Methyl 2-(4-ferrocenylbenzamido)thiophene-3-carboxylate and ethyl 2-(4-ferrocenylbenzamido)-1,3-thiazole-4-acetate, a unique ferrocene derivative containing a thiazole moiety

CROSSMARK_Color_square_no_text.svg

aSchool of Chemical Sciences, National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland, bSchool of Chemical Sciences, Dublin City University, Dublin 9, Ireland, and cDepartment of Chemistry, 80 St George Street, University of Toronto, Ontario, Canada M5S 3H6
*Correspondence e-mail: john.gallagher@dcu.ie, peter.kenny@dcu.ie

(Received 5 May 2005; accepted 6 June 2005; online 30 June 2005)

The conformations and hydrogen bonding in the thiophene and thia­zole title compounds, [Fe(C5H5)(C20H14NO3S)], (I), and [Fe(C5H5)(C19H17N2O3S)], (II), are discussed. The sequence (C5H4)–(C6H4)–(CONH)–(C4H2S)–(CO2Me) of rings and moieties in (I) is close to being planar; all consecutive inter­planar angles are less than 10°. An intra­molecular N—H⋯O=Cester hydrogen bond [graph set S(6), N⋯O = 2.768 (2) Å and N—H⋯O = 134 (2)°] effects the mol­ecular planarity, and aggregation occurs via hydrogen-bonded chains formed from inter­molecular Car—H⋯O=Cester/amide inter­actions along [010], with C⋯O distances ranging from 3.401 (3) to 3.577 (2) Å. The thia­zole system in (II) crystallizes with two mol­ecules in the asymmetric unit; these differ in the conformation along their long mol­ecular axes; for example, the inter­planar angle between the phenyl­ene (C6H4) and thia­zole (C3NS) rings is 8.1 (2)° in one mol­ecule and 27.66 (14)° in the other. Inter­molecular N—H⋯O=Cester hydrogen bonds [N⋯O = 2.972 (4) and 2.971 (3) Å], each augmented by a Cphenyl­ene—H⋯O=Cester inter­action [3.184 (5) and 3.395 (4) Å], form motifs with graph set [R_{2}^{1}](7) and generate chains along [100]. The amide C=O groups do not participate in hydrogen bonding. Compound (II) is the first reported ferrocen­yl-containing thia­zole structure.

Comment

Ferrocene (Fc) and its derivatives continue to attract much attention in coordination chemistry, with important roles encompassing both structural and electronic capabilities (Adams, 1999[Adams, R. D. (1999). J. Organomet. Chem. 619, 1-875.]). Integration of ferrocene into new hybrid systems has expanded the potential of organometallic ­materials with a range of feasible applications (Togni & Halterman, 1998[Togni, A. & Halterman, R. L. (1998). Editors. Metallocenes. Weinheim, Germany: Wiley-VCH.]; Togni & Hayashi, 1995[Togni, A. & Hayashi, T. (1995). Editors. Ferrocenes: Homogeneous Catalysis - Organic Synthesis - Materials Science. Weinheim, Germany: VCH.]; Hudson et al., 2001[Hudson, R. D. A., Asselsbergh, I., Clays, K., Cuffe, L. P., Gallagher, J. F., Manning, A. R., Persoons, A. & Wostyn, K. (2001). J. Organomet. Chem. 637, 435-444.]). We report here the structures of two 4-ferrocenylbenzamide systems with terminal thiophenecarboxylate, (I)[link], and thiazoleacetate groups, (II)[link].

[Scheme 1]

A view of (I)[link] with the atomic numbering scheme is shown in Fig. 1[link]. Bond lengths and angles are in accord with anticipated values (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). In (I)[link], the Fe—C bond lengths for the substituted η5-C5H4 ring are in the range 2.038 (2)–2.054 (2) Å and are similar to those in the η5-C5H5 ring [2.037 (2)–2.054 (2) Å]; the Fe⋯Cg1 and Fe⋯Cg2 distances are 1.6462 (10) and 1.6525 (10) Å, respectively, the Cg1⋯Fe1⋯Cg2 angle is 177.20 (5)°, and the C5/C5 inter­planar angle is 3.81 (15)° [Cg1 and Cg2 are the η5-C5H4 and η5(C5H5) ring centroids, respectively]. The η5C5 rings are slightly ­staggered from eclipsed geometry, with the five C1nCg1⋯Cg2⋯C2n pseudo-torsion angles in the range 12.24 (16)–12.79 (15)° (n = 1–5).

The related 4-FcC6H4CO2R carboxyl­ates [R = Me (Savage et al., 2002[Savage, D., Gallagher, J. F., Ida, Y. & Kenny, P. T. M. (2002). Inorg. Chem. Commun. 5, 1034-1040.]), Et and iPr (Anderson et al., 2003[Anderson, F. P., Gallagher, J. F., Kenny, P. T. M., Ryan, C. & Savage, D. (2003). Acta Cryst. C59, m13-m15.])] have conformations that can be defined by the inter­planar angles between the η5-C5H4 and C6H4 rings, and between the C6H4 ring and carboxyl­ate CO2R group. These are, respectively, 9.35 (13) and 8.5 (2)° for Me, 6.88 (12) and 2.59 (17)° for Et, and 10.5 (2) and 19.5 (5)° for iPr. In (I)[link], the (C5H4)–(C6H4)–(CONH)–(C4H2S)–(CO2Me) system has inter­planar angles between successive C5H4, C6H4, CONH, C4H2S and CO2Me moieties of 9.36 (11), 8.79 (17), 1.97 (14) and 6.33 (11)°, respectively. Apart from slight twisting, no ring bending occurs along the long mol­ecular axis as a result of steric effects; this situation is in contrast to that found in 2-(ferrocen­yl)thio­phene-3-carboxylic acid (Gallagher et al., 2001[Gallagher, J. F., Hudson, R. D. A. & Manning, A. R. (2001). Acta Cryst. C57, 28-30.]), where significant bending from linearity occurs in the thien­yl ring relative to the η5-C5H4 ring to which it is bonded.

Meth­yl 2-[(ferrocenylcarbonyl)amino]thiophene-3-carboxyl­ate, (C5H5)Fe(C5H4)–(CONH)–(C4H2S)–(CO2Me), (III) (Alley et al., 2005[Alley, S., Gallagher, J. F., Kenny, P. T. M. & Lough, A. J. (2005). Acta Cryst. E61, m201-m203.]), differs from (I)[link] in that it does not have the 1,4-phenyl­ene C6H4 ring between the C5H4 and CONH groups. Geometric data are comparable in the two structures, with maximum differences within 0.01 Å and 2° for the amidothiophenecarboxyl­ate residues. The C—S—C and S—C—N(H) angles are 90.98 (10) and 123.58 (15)° in (I)[link], and 90.93 (11) and 123.54 (16)° in (III); the Cambridge Structural Database (CSD; Version 5.26 of February 2005; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) average for thiophene C—S—C angles is 92.0° (range 88.7–97.9°). For S—C=Ccarb­oxy angles, the average is 111.4° (range 105.5–113.9°); the equivalent S1—C2=C3 angles in (I)[link] and (III) are 111.89 (15) and 111.94 (15)°, respectively (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). CSD analysis shows that both (I)[link] and (III) have regular amidothiophenecarboxyl­ate moieties.

An intra­molecular N—H⋯O=Cester hydrogen bond (Table 1[link]) forms a ring in (I)[link], with graph set S(6) (Bernstein et al., 1995[Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]), thus enforcing planarity along the mol­ecular axis; the N⋯O distance is 2.768 (2) Å, slightly longer than the corresponding value [2.727 (2) Å] in (III). Mol­ecules of (I)[link] assemble as one-dimensional chains along the b-axis direction through C—H⋯O=C inter­actions, as shown in Fig. 2[link] with details in Table 1[link]. These generate [R_{2}^{1}](7) and R32(15) motifs that, in combination with the S(6) ring, produce a larger R22(20) ring. Overall, the crystal structure comprises one-dimensional chains, aggregating via weak C7—H7Cπ(thien­yl)iii contacts (H7CCg3iii = 2.83 Å; symmetry code as in Table 1[link]), which link pairs of screw-axis-related chains to form a ladder extending along [010]; there are normal van der Waals separations between pairs of ladders. Examination of (I)[link] with PLATON (Spek, 2002[Spek, A. L. (2002). PLATON. University of Utrecht, The Netherlands.]) reveals no solvent-accessible voids in the crystal structure and a packing index of 72.6.

Compound (II)[link] is the first structurally characterized ferrocene derivative containing a thia­zole moiety to be reported, and this compound crystallizes with two mol­ecules (A and B) in the asymmetric unit of space group P[\overline{1}], as shown in Figs. 3[link](a) and 3[link](b). The conformations of these molecules differ slightly along their long mol­ecular axes with respect to the orientations of the amido­thia­zoleacetate groups, and there is some minor eth­oxy disorder [0.915 (7):0.085 (7)] in mol­ecule A. Bond lengths and angles are unexceptional and are comparable to data available from corresponding fragments available in the CSD.

In (II)[link], the Fe—C bond lengths for the η5-C5H4 ring in A are in the range 2.031 (4)–2.048 (3) Å and are similar to those [2.033 (3)–2.040 (4) Å] for the η5-C5H5 ring. Mol­ecule B has similar values [2.032 (4)–2.047 (3) Å] for the substituted ring but two contrasting Fe⋯η5-C5H5 bond lengths [i.e. Fe1—C23B/C24B = 2.005 (4)/2.023 (5) Å]. These Fe—C C atoms have the largest Ueq values, cf. 0.0785 (17) and 0.0733 (15) Å2 versus an average Ueq of 0.043 Å2 for all 48 C atoms present (Spek, 2002[Spek, A. L. (2002). PLATON. University of Utrecht, The Netherlands.]); however, no disorder is present and the bond-length contraction must be a result of a small measure of librational motion and ring slippage (0.06 Å). The Fe⋯Cg1/Cg2 distances are 1.6407 (17) and 1.6450 (18) Å in A, and 1.6400 (17) and 1.644 (2) Å in B, the Cg1⋯Fe1⋯Cg2 angles are 178.76 (9) and 178.96 (10)°, and both C5/C5 inter­planar angles are 1.6 (3)° [Cg1 and Cg2 are defined as for (I)[link] above]. The η5C5 rings deviate from eclipsed geometry, with five C1nCg1⋯Cg2⋯C2n (n = 1–5) pseudo-torsion angles ranging from 13.5 (3) to 14.5 (3)° in A and from 5.7 (3) to 7.3 (3)° in B, in the same sense as in A.

A minor conformational difference between mol­ecules A and B is in the orientation of the Fc—C6H4– moiety with respect to the CONH–(thia­zol­yl)–CO2Et fragment, resulting in the O1A—C1A—C34A—C33A [171.9 (3)°] and O1B—C1B—C34B—C33B [161.3 (3)°] torsion angles being significantly different. The amido­thia­zole groups adopt similar conformations in the two mol­ecules, with N—H cis to N and C=O cis to S. A search of the CSD for this fragment gave 11 hits all with this same orientation, indicating that this is a preferred solid-state conformation. The cis-oriented pairs of N⋯N and O⋯S distances are 2.333 (4) and 2.342 (4) Å, and 2.669 (2) and 2.660 (3) Å, respectively, and are oriented in a suitable fashion for bidentate coordination to metal systems. As found for (I)[link], mol­ecule A contains consecutive ring and moiety planes that are essentially coplanar along the long mol­ecular axis; however, in molecule B, the inter­planar twists are larger; for example, the C6H4 and amide O=C—N(H) group planes are inclined at an angle of 17.2 (3)° (Figs. 3[link]a and 3[link]b). In tandem, slight bending occurs along the long mol­ecular axis in molecule A, as evidenced by the C11n—C31n⋯C34n angle [176.4 (2)°; n = A or B], in contrast to the near linear value [178.46 (19)°] in B.

In (II)[link], inter­molecular Namide—H⋯O=Cester hydrogen bonds link the mol­ecules, forming chains extending along [100], as shown in Fig. 4[link] with details in Table 2[link]. This inter­action, in combination with C—H⋯O=Cester inter­actions, results in hydrogen-bonded rings with graph set [R_{2}^{1}](7), augmented by weaker secondary contacts C7B*⋯N2A and C7A⋯N2B (involving thia­zole N atoms). Combination with the N—H⋯O=C hydrogen bonds produces rings with graph sets R22(9) and, overall for the pairs of rings, R22(12). The chains are linked into a ladder structure extending along [100] by C5A—H5Aπ(thiaz-B)# inter­actions [symmetry code: (#) −x, −y, 1 − z; C5Aπ(thiaz-centroid) = 3.511 (4) Å]. No comparable C5Bπ(thiaz-A) inter­action is present; the thia­zole S atoms and amide C=O groups are not involved in hydrogen bonding. The packing index is 68.9 based on the major conformation of mol­ecule A.

Of inter­est for comparison with (II)[link] are the high-precision structural data for the mol­ecular structure of thia­zole (IV)[link] from a combined analysis of gas-phase electron diffraction data, rotational constants and ab initio calculations (Bone et al., 1999[Bone, S. F., Smart, B. A., Gierens, H., Morrison, C. A., Brain, P. T. & Rankin, D. W. H. (1999). Phys. Chem. Chem. Phys. 1, 2421-2426.]). The corresponding mean values for (II)[link] are S—C(C) = 1.713 (2) Å, S—C(N) = 1.730 (6) Å, C—N = 1.391 (2) Å and C=N = 1.299 (2) Å, demonstrating that the thia­zole groups are relatively unperturbed through mol­ecular or crystal packing forces in (II)[link] and are comparable to the gas-phase structure data for (IV)[link].

[Scheme 2]

A search for amido­thien­yl and amido­thia­zol­yl fragments in crystal structures in the CSD reveals seven and 21 systems (with coordinates), respectively. A search for structures incorporating the ferrocen­yl moiety (as C5FeC5) and a thio­phene-type heteroaromatic ring yielded 30 structures; when the thio­phene-type ring was replaced with a thia­zole heteroaromatic ring, there were no hits. This lack of structural data is somewhat unusual given the vast output of structural ferrocene research to date (Adams, 1999[Adams, R. D. (1999). J. Organomet. Chem. 619, 1-875.]; Allen 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For comparison, a CSD search with ferrocene and pyridin­yl (as C5N) gives a total of 335 structures, revealing the wealth of structural data available for N-heteroaromatic groups, such as pyridine donor ligands, in ferrocene chemistry when compared with S-heteroaromatic systems, such as thia­zole (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). Studies are in progress to extend the synthetic, structural and electrochemistry of these new systems in coordination chemistry.

[Figure 1]
Figure 1
A view of (I)[link], with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
A view of the hydrogen-bond inter­actions (dashed lines) in the crystal structure of (I)[link]. [Symmetry codes: (*) x, 1 + y, z; (#) x, −1 + y, z.]
[Figure 3]
Figure 3
(a) A view of the major conformer of mol­ecule A in (II)[link] and (b) a view of mol­ecule B in (II)[link], with the atomic numbering schemes. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4]
Figure 4
The hydrogen-bonding pattern involving mol­ecules A and B in (II)[link]. Hydrogen bonds are shown as dashed lines. [Symmetry codes: (*) 1 − x, 1 − y, 1 − z; ($) −x, 1 − y, 1 − z.]

Experimental

Compounds (I)[link] and (II)[link] were synthesized according to standard coupling procedures using 4-ferrocenylbenzoic acid as its acid chloride and meth­yl 2-amino­thio­phene-3-carboxyl­ate or eth­yl 2-amino-4-thia­zole­acetate in yields of ca 30 and 26%, respectively. Recrystallization, in both cases, was undertaken from petroleum spirits/Et2O to produce red plates, (I)[link] (m.p. 487–489 K), and an orange crystalline solid, (II)[link] (421–423 K). Crystals suitable for X-ray diffraction studies were grown by diffusion of pentane vapour into a CH2Cl2 solution of the appropriate compound. Although the syntheses are uncomplicated, problems arose during the purification of (I)[link] as it decomposes on both silica and alumina to give the starting materials plus a third compound, identified by 1H and 13C NMR as methyl 4-ferrocen­ylbenzoate. Isolation of modest quantities of (I)[link] was achieved by repeated recrystallization of column fractions, though the eventual overall yield was poor.

Compound (I)[link]

Crystal data
  • [Fe(C5H5)(C20H14NO3S)]

  • Mr = 445.30

  • Monoclinic, P 21 /n

  • a = 10.1428 (3) Å

  • b = 8.0965 (2) Å

  • c = 23.0557 (7) Å

  • β = 95.4912 (14)°

  • V = 1884.67 (9) Å3

  • Z = 4

  • Dx = 1.569 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 6335 reflections

  • θ = 2.6–27.5°

  • μ = 0.94 mm−1

  • T = 150 (1) K

  • Plate, red

  • 0.22 × 0.16 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ scan and ω scans with κ offsets

  • Absorption correction: multi-scan(DENZO–SMN; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])Tmin = 0.820, Tmax = 0.912

  • 6335 measured reflections

  • 4313 independent reflections

  • 3441 reflections with I > 2σ(I)

  • Rint = 0.049

  • θmax = 27.5°

  • h = −13 → 13

  • k = −10 → 10

  • l = −25 → 29

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.088

  • S = 1.06

  • 4313 reflections

  • 268 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.033P)2 + 1.226P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.63 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.0024 (6)

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg3 is the centroid of the thiophene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.81 (2) 2.14 (2) 2.768 (2) 134 (2)
C5—H5⋯O2i 0.95 2.56 3.411 (3) 150
C15—H15⋯O1ii 0.95 2.56 3.401 (3) 147
C32—H32⋯O1ii 0.95 2.65 3.577 (2) 165
C7—H7CCg3iii 0.98 2.83 3.604 (2) 136
Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z-{\script{1\over 2}}].

Compound (II)[link]

Crystal data
  • [Fe(C5H5)(C19H17NO3S)]

  • Mr = 474.36

  • Triclinic, [P \overline 1]

  • a = 12.7466 (4) Å

  • b = 12.8752 (8) Å

  • c = 13.5661 (7) Å

  • α = 91.811 (3)°

  • β = 106.096 (3)°

  • γ = 92.735 (3)°

  • V = 2134.35 (18) Å3

  • Z = 4

  • Dx = 1.476 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 12087 reflections

  • θ = 2.6–27.5°

  • μ = 0.83 mm−1

  • T = 150 (1) K

  • Needle, red

  • 0.20 × 0.07 × 0.04 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ scan and ω scans with κ offsets

  • Absorption correction: multi-scan(DENZO–SMN; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])Tmin = 0.851, Tmax = 0.967

  • 15129 measured reflections

  • 9714 independent reflections

  • 5617 reflections with I > 2σ(I)

  • Rint = 0.069

  • θmax = 27.5°

  • h = −16 → 16

  • k = −16 → 16

  • l = −16 → 17

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.127

  • S = 1.00

  • 9714 reflections

  • 573 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0472P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.47 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.0015 (4)

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯O2Biv 0.88 2.12 2.972 (4) 162
N1B—H1B⋯O2Av 0.88 2.18 2.971 (3) 149
C33A—H33A⋯O2Biv 0.95 2.24 3.184 (5) 173
C33B—H33B⋯O2Av 0.95 2.46 3.395 (4) 167
C7A—H72⋯N2Bv 0.99 2.68 3.654 (6) 168
C7B—H75⋯N2Aiv 0.99 2.56 3.536 (5) 169
Symmetry codes: (iv) -x, -y+1, -z+1; (v) -x+1, -y+1, -z+1.

Compound (I)[link] crystallized in the monoclinic system; space group P21/n was assigned from the systematic absences and confirmed by the analysis. Compound (II)[link] crystallized in the triclinic system; space group P[\overline{1}] was assumed and confirmed by the analysis, and the asymmetric unit was chosen so as to show clearly the overall similarity of the two independent mol­ecules A and B. It became obvious during the refinement of (II)[link] that there was some slight disorder at the terminal O3A—C7A—C8A moiety and this was allowed for. In the final refinement cycles, the bond lengths of the disordered ester group of mol­ecule A were restrained via soft DFIX restraints to be the same as in the ordered mol­ecule B; a common isotropic displace­ment parameter of 0.035 Å2 was assigned to the minor-occupancy atoms. The final refined occupancies for the major and minor conformers were 0.915 (7) and 0.085 (7). In (I)[link] and (II)[link] [except for atom H1 bonded to N1 in (I)[link]], all H atoms bound to C and N atoms were treated as riding, with Uiso(H) values of 1.5Ueq(C) for meth­yl H atoms and 1.2Ueq(C,N) for the remainder (meth­yl C—H = 0.98 Å, methyl­ene C—H = 0.99 Å, aromatic C—H = 0.95 Å and amide N—H = 0.88 Å). The N1—H1 distance in (I)[link] refined to 0.81 (2) Å.

For both compounds, data collection: KappaCCD Server Software (Nonius, 1997[Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO–SMN; structure solution: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); structure refinement: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2002[Spek, A. L. (2002). PLATON. University of Utrecht, The Netherlands.]) and ORTEX (McArdle, 1995[McArdle, P. (1995). J. Appl. Cryst. 28, 65.]); publication software: SHELXL97, NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]) and PREP8 (Ferguson, 1998[Ferguson, G. (1998). PREP8. University of Guelph, Canada.]).

Supporting information


Comment top

Ferrocene and its derivatives continue to attract much attention in coordination chemistry with important roles encompassing both structural and electronic capabilities (Adams, 1999). Integration of ferrocene into new hybrid systems has expanded the potential of organometallic materials with a range of feasible applications (Togni & Halterman, 1998; Togni & Hayashi, 1995; Hudson et al., 2001). We report here the structures of two 4-ferrocenylbenzoylamide systems with terminal thienyl methyl carboxylate, (I), and thiazolyl acetate groups, (II).

A view of (I) with the atomic numbering scheme is shown in Fig. 1. Bond lengths and angles are in accord with anticipated values (Allen, 2002). In (I), the Fe—C bond lengths for the substituted η5(C5H4) ring are in the range 2.038 (2)–2.054 (2) Å and are similar to those in the η5(C5H5) ring [2.037 (2)–2.054 (2) Å]; the Fe···Cg1 and Fe···Cg2 distances are 1.6462 (10) and 1.6525 (10) Å, respectively, the Cg1···Fe1···Cg2 angle is 177.20 (5)°, and the C5/C5 interplanar angle is 3.81 (15)° [Cg1 and Cg2 are the η5(C5H4) and η5(C5H5) ring centroids, respectively]. The η5-C5 rings are slightly staggered from eclipsed geometry, with the five C1n···Cg1···Cg2···C2n torsion angles in the range 12.24 (16)–12.79 (15)° (n = 1–5).

The related 4-FcC6H4CO2R carboxylates [R = Me (Savage et al., 2002), Et and iPr (Anderson et al., 2003)] have conformations that can be defined by the interplanar angles between the η5(C5H4) and (C6H4) rings and between the (C6H4) ring and carboxylate (CO2R) groups. These are, respectively, 9.35 (13) and 8.5 (2)° (Me), 6.88 (12) and 2.59 (17)° (Et), and 10.5 (2) and 19.5 (5)° (iPr). In (I), the (C5H4)–C6H4–CONH–(C4H2S)–CO2Me system has interplanar angles between successive (C5H4), (C6H4), (CONH), (C4H2S) and (CO2Me) moieties of 9.36 (11), 8.79 (17), 1.97 (14) and 6.33 (11)°, respectively. Apart from small twisting, no ring bending occurs along the long molecular axis as a result of steric effects; this situation is in contrast to that found (Gallagher et al., 2001) in 2-(ferrocenyl)thiophene-3-carboxylic acid, where significant bending from linearity occurs in the thienyl ring relative to the η5(C5H4) ring to which it is bonded.

Methyl 2-{2-[(ferrocenylcarbonyl)amino]-1-thienyl}-3-carboxylate, (C5H5)Fe(C5H4)–CONH-(C4H2S)–CO2Me, (III) (Alley et al., 2005), differs from (I) in that it does not have the 1,4-phenylene (C6H4) ring between the (C5H4) and CONH groups. Geometric data are comparable in the two structures, with maximum differences within 0.01 Å and 2° for the amidothienyl carboxylate residues. Angles involving S, for example C—S—C and S—C—N(H), are 90.98 (10) and 123.58 (15)° in (I), and 90.93 (11) and 123.54 (16)° in (III); the Cambridge Structural Database (CSD; Version 5.26 of February 2005; Allen, 2002) average for thienyl C—S—C angles is 92.0° (range 88.7–97.9°). For S—CCcarboxy angles, the average is 111.4° (range 105.5–113.9°); the equivalent S1—C2C3 angles in (I) and (III) are 111.89 (15) and 111.94 (15)° (Allen, 2002). CSD analysis shows that both (I) and (III) have regular amidothienyl carboxylate moieties.

An intramolecular N—H···OCester hydrogen bond (Table 1) forms a ring in (I), graph set S(6), (Bernstein et al., 1995) thus enforcing planarity along the molecular axis; the N···O distance is 2.768 (2) Å, slightly longer than the corresponding value [2.727 (2) Å] in (III). Molecules of (I) assemble as one-dimensional chains along the b-axis direction through C—H···OC interactions, as shown in Fig. 2 with details in Table 1. These generate R12(7) and R23(15) motifs that in combination with the S(6) ring produce a larger R22(20) ring. Overall, the crystal structure comprises one-dimensional chains, aggregating via weak C7—H7C···π(thienyl)iii contacts (H7C···Cg3iii = 2.83 Å; symmetry code as in Table 1), which link pairs of screw-axis related chains to form a ladder extending along [010]; there are normal van der Waals separations between pairs of ladders. Examination of (I) with PLATON (Spek, 2002) reveals no solvent accessible voids in the crystal structure and a packing index of 72.6.

Compound (II) is the first structurally characterized ferrocene derivative containing a thiazole moiety to be reported and this compound crystallizes with two molecules (A and B) in the asymmetric unit of space group P1, as shown in Figs. 3(a) and 3(b). Their conformations differ slightly along their long molecular axes with respect to the orientations of the amidothiazolylcarboxylate groups and there is some minor ethoxy disorder [0.915 (7):0.085 (7)] in molecule A. Bond lengths and angles are unexceptional and are comparable to data available from corresponding fragments available in the CSD.

In (II), the Fe—C bond lengths for the η5(C5H4) ring in A are 2.031 (4)–2.048 (3) Å and are similar to those [2.033 (3)–2.040 (4) Å] for the η5(C5H5) ring. Molecule B has similar values [2.032 (4)–2.047 (3) Å] for the substituted ring, but two contrasting Fe···η5(C5H5) bond lengths [i.e. Fe1—C23B/C24B = 2.005 (4)/2.023 (5) Å]. This Fe—C pair have the largest Ueq values, of 0.0785 (17) and 0.0733 (15) Å2, compared with an average Ueq of 0.043 Å2 for all 48 C atoms present (Spek, 2002); however, no disorder is present and the bond-length contraction must be due to a small measure of librational motion and ring slippage (0.06 Å). The Fe···Cg1/Cg2 distances are 1.6407 (17) and 1.6450 (18) Å (in A), and 1.6400 (17) and 1.644 (2) Å (in B), the Cg1···Fe1···Cg2 angles are 178.76 (9) and 178.96 (10)°, and both C5/C5 interplanar angles are 1.6 (3)° [Cg1 and Cg2 are defined as for (I) above]. The η5-C5 rings deviate from eclipsed geometry, with five C1n···Cg1···Cg2···C2n (n = 1–5) torsion angles from 13.5 (3) to 14.5 (3)° in A and 5.7 (3) to 7.3 (3)° in B, in the same sense as in A.

A minor conformational difference between molecules A and B is in the orientation of the Fc—C6H4– moiety with respect to the CONH–(thiazolyl)–CO2Et fragment, resulting in the O1A—C1A—C34A—C33A [171.9 (3)°] and O1B—C1B—C34B—C33B [161.3 (3)°] torsion angles being significantly different. The amido(thiazolyl) groups adopt similar conformations in both molecules with N—H cis to N and CO cis to S. A search of the CSD for this fragment gave 11 hits all with this same orientation, indicating that this is a preferred solid-state conformation. The cis-oriented pairs of N···N and O···S distances are 2.333 (4) and 2.342 (4) Å, and 2.669 (2) and 2.660 (3) Å, respectively, and are oriented in a suitable fashion for bidentate coordination to metal systems. As found for (I), molecule A contains consecutive ring and moiety planes that are essentially coplanar along the long molecular axis; however, in B, the interplanar twists are larger; for example, the C6H4 and amide OC—N(H) group planes are inclined at 17.2 (3)° (Figs. 3a and 3b). In tandem, slight bending occurs along the long molecular axis in A, as evidenced by the C11n—C31n···C34n angle [176.4 (2)°; n = A or B], in contrast to the near linear value [178.46 (19)°] in B.

In (II), intermolecular amideN—H···OCester hydrogen bonds link the molecules, forming chains extending along [100], as shown in Fig. 4 with details in Table 2. This interaction, in combination with C—H···O Cester interactions, results in hydrogen-bonded rings with graph set R12(7), augmented by weaker secondary contacts C7B*···N2A and C7A···N2B (involving thiazolyl N atoms). Combination with the N—H···OC hydrogen bonds produces rings with graph sets R22(9) and, overall for the pairs of rings, R22(12). The chains are linked into a ladder structure extending along [100] by C5A—H5A···π(thiaz-B)# interactions [symmetry code: (#) = −x,-y,1 − z; C5A···π(thiaz-centroid) = 3.511 (4) Å]. No comparable C5B···π(thiaz-A) interaction is present; the thiazolyl S atoms and amide CO groups are not involved in hydrogen bonding. The packing index is 68.9 and based on the major conformation of molecule A.

Of interest for comparison with (II) are the high-precision structural data for the molecular structure of thiazole (IV) from a combined analysis of gas-phase electron diffraction data, rotational constants and ab-initio calculations (Bone et al., 1999). The corresponding mean values from (II) are S—C(C) = 1.713 (2) Å, S—C(N) = 1.730 (6) Å, C—N = 1.391 (2) Å and CN = 1.299 (2) Å, demonstrating that the thiazole groups are relatively unperturbed through molecular or crystal packing forces in (II) and are comparable to the gas-phase structure data for (IV).

A search for amidothienyl and amidothiazolyl fragments in crystal structures in the CSD reveals seven and 21 systems (with coordinates), respectively. A search for structures incorporating the ferrocenyl moiety (as C5FeC5) and a thiophene-type heteroaromatic ring yielded 30 structures; when the thiophene-type ring was replaced with a thiazole heteroaromatic ring, there were no hits. This lack of structural data is somewhat unusual given the vast output of structural ferrocene research to date (Adams, 1999; Allen 2002). For comparison, a CSD search with ferrocene and pyridinyl (as C5N) gives a total of 335 structures, revealing the wealth of structural data available for N-heteroaromatic groups, such as pyridine donor ligands in ferrocene chemistry, when compared with S-heteroaromatic systems, such as thiazole (Allen, 2002). Studies are in progress to extend the synthetic, structural and electrochemistry of these new systems in coordination chemistry.

Experimental top

Compounds (I) and (II) were synthesized by standard coupling procedures using 4-(ferrocenyl)benzoic acid as its acid chloride, with methyl 2-aminothiophene-3-carboxylate or ethyl 2-amino-4-thiazoleacetate in yields of ca 30 and 26%, respectively. Recrystallizations for both compounds were undertaken from petroleum spirits/Et2O to produce red plates (I) (m.p. 487–489 K) and an orange crystalline solid (II) (421–423 K). Crystals suitable for X-ray diffraction studies were grown by diffusion of pentane vapour into a CH2Cl2 solution of the appropriate compound. Although the syntheses are uncomplicated, problems arose during the purification of (I), as it decomposes on both silica and alumina to give the starting materials plus a third compound, identified by 1H and 13C NMR as methyl para-ferrocenyl benzoate. Isolation of modest quantities of (I) was achieved by repeated recrystallizations of column fractions though the eventual overall yield was poor.

Refinement top

Compound (I) crystallized in the monoclinic system; space group P21/n was assigned from the systematic absences and confirmed by the analysis. Compound (II) crystallized in the triclinic system; space group P1 was assumed and confirmed by the analysis, and the asymmetric unit was chosen so as to show clearly the overall similarity of the two independent molecules A and B. It became obvious during the refinement of (II) that there was some slight disorder at the terminal O3A—C7A—C8A moiety and this was allowed for. In the final refinement cycles, the bond lengths of the disordered ester group of molecule A were restrained via soft DFIX restraints to be the same as in the ordered molecule B; a common isotropic displacement parameter of 0.035 Å2 was assigned to the minor-occupancy atoms. The final refined occupancies for the major and minor conformers are 0.915 (7) and 0.085 (7). In (I) and (II) [except for atom H1 bonded to N1 in (I)], all H atoms bound to C and N atoms were treated as riding, with Uiso(H) values of 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C,N) for the remainder [methyl C—H = 0.98 Å, methylene C—H 0.99 Å, aromatic C—H = 0.95 Å and amide N—H 0.88 Å]. The N1—H1 distance in (I) refined to 0.81 (2) Å.

Computing details top

For both compounds, data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2002) and ORTEX (McArdle, 1995); software used to prepare material for publication: SHELXL97, NRCVAX (Gabe et al., 1989) and PREP8 (Ferguson, 1998).

Figures top
[Figure 1] Fig. 1. A view of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the hydrogen-bond interactions (dashed lines) in the crystal structure of (I). [Symmetry codes: (*) x, 1 + y, z; (#) x, −1 + y, z.]
[Figure 3] Fig. 3. (a) A view of the major conformer of molecule A in (II) and (b) a view of molecule B in (II), with the atomic numbering schemes. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4] Fig. 4. The hydrogen-bonding pattern involving molecules A and B in (II). Hyddrogen bonds are shown as dashed lines. [Symmetry codes: (*) 1 − x, 1 − y, 1 − z; ($) −x, 1 − y, 1 − z.]
(I) Methyl 2-[(4-ferrocenylbenzoyl)amino]-3-thiophenecarboxylate top
Crystal data top
C23H19FeNO3SF(000) = 920
Mr = 445.30Dx = 1.569 Mg m3
Monoclinic, P21/nMelting point: 488 K
Hall symbol: -p 2ynMo Kα radiation, λ = 0.71073 Å
a = 10.1428 (3) ÅCell parameters from 6335 reflections
b = 8.0965 (2) Åθ = 2.6–27.5°
c = 23.0557 (7) ŵ = 0.94 mm1
β = 95.4912 (14)°T = 150 K
V = 1884.67 (9) Å3Plate, red
Z = 40.22 × 0.16 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer
4313 independent reflections
Radiation source: fine-focus sealed X-ray tube3441 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ϕ scan and ω scans with κ offsetsθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
h = 1313
Tmin = 0.820, Tmax = 0.912k = 1010
6335 measured reflectionsl = 2529
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.033P)2 + 1.226P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
4313 reflectionsΔρmax = 0.35 e Å3
268 parametersΔρmin = 0.63 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0024 (6)
Crystal data top
C23H19FeNO3SV = 1884.67 (9) Å3
Mr = 445.30Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.1428 (3) ŵ = 0.94 mm1
b = 8.0965 (2) ÅT = 150 K
c = 23.0557 (7) Å0.22 × 0.16 × 0.10 mm
β = 95.4912 (14)°
Data collection top
Nonius KappaCCD
diffractometer
4313 independent reflections
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
3441 reflections with I > 2σ(I)
Tmin = 0.820, Tmax = 0.912Rint = 0.049
6335 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.35 e Å3
4313 reflectionsΔρmin = 0.63 e Å3
268 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Planes data (I) ###############

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

8.3764(0.0065)x + 1.0490(0.0092)y + 10.7730(0.0232)z = 0.4034(0.0035)

* 0.0000(0.0014) C21 * −0.0003(0.0014) C22 * 0.0005(0.0014) C23 * −0.0005(0.0014) C24 * 0.0003(0.0014) C25 1.6524(0.0010) Fe1 2.6428(0.0084) C1 2.9039(0.0091) O1 2.2242(0.0092) N1 2.3050(0.0117) S1

Rms deviation of fitted atoms = 0.0004

8.4960(0.0058)x + 1.4976(0.0083)y + 9.9470(0.0215)z = 3.5060(0.0033)

Angle to previous plane (with approximate e.s.d.) = 3.81(0.15)

* 0.0010(0.0013) C11 * −0.0006(0.0013) C12 * 0.0000(0.0013) C13 * 0.0007(0.0013) C14 * −0.0011(0.0013) C15 − 1.6460(0.0010) Fe1 − 0.1921(0.0075) C1 0.1180(0.0081) O1 − 0.5751(0.0082) N1 − 0.3236(0.0104) S1

Rms deviation of fitted atoms = 0.0008

9.2707(0.0036)x + 0.8962(0.0070)y + 6.9405(0.0191)z = 3.3457(0.0013)

Angle to previous plane (with approximate e.s.d.) = 9.36(0.11)

* 0.0057(0.0015) C31 * −0.0046(0.0015) C32 * −0.0013(0.0014) C33 * 0.0063(0.0014) C34 * −0.0052(0.0015) C35 * −0.0008(0.0015) C36 0.0340(0.0033) C1 0.2008(0.0037) O1 − 0.1415(0.0037) N1 0.0170(0.0033) C11

Rms deviation of fitted atoms = 0.0045

9.7991(0.0022)x + 0.1600(0.0080)y + 3.7750(0.0191)z = 3.3261(0.0074)

Angle to previous plane (with approximate e.s.d.) = 9.71(0.07)

* 0.0032(0.0012) C2 * −0.0030(0.0013) C3 * 0.0010(0.0014) C4 * 0.0009(0.0013) C5 * −0.0021(0.0010) S1 − 1.8223(0.0107) Fe1 − 0.0218(0.0040) C1 − 0.0182(0.0034) O1 0.0168(0.0033) N1

Rms deviation of fitted atoms = 0.0023

9.7142(0.0070)x + 0.0456(0.0241)y + 4.4864(0.0555)z = 3.2045(0.0161)

Angle to previous plane (with approximate e.s.d.) = 1.97(0.14)

* 0.0000(0.0000) C1 * 0.0000(0.0000) O1 * 0.0000(0.0000) N1 0.0029(0.0177) C31 0.1743(0.0154) C32 − 0.0057(0.0076) C34

Rms deviation of fitted atoms = 0.0000

9.7142 (0.0070)x + 0.0456(0.0241)y + 4.4864(0.0555)z = 3.2045(0.0161)

Angle to previous plane (with approximate e.s.d.) = 0.00(0.19)

* 0.0000(0.0000) C1 * 0.0000(0.0000) O1 * 0.0000(0.0000) N1 − 0.0580(0.0063) C2 − 0.1401(0.0138) C4 − 0.1312(0.0150) C5 − 0.0762(0.0098) S1

Rms deviation of fitted atoms = 0.0000

9.2707(0.0036)x + 0.8962(0.0070)y + 6.9405(0.0191)z = 3.3457(0.0013)

Angle to previous plane (with approximate e.s.d.) = 8.79(0.17)

* 0.0057(0.0015) C31 * −0.0046(0.0015) C32 * −0.0013(0.0014) C33 * 0.0063(0.0014) C34 * −0.0052(0.0015) C35 * −0.0008(0.0015) C36 0.0340(0.0033) C1 0.2008(0.0037) O1 − 0.1415(0.0037) N1 − 0.0047(0.0052) S1

Rms deviation of fitted atoms = 0.0045

9.7991(0.0022)x + 0.1600(0.0080)y + 3.7750(0.0191)z = 3.3261(0.0074)

Angle to previous plane (with approximate e.s.d.) = 9.71(0.07)

* 0.0032(0.0012) C2 * −0.0030(0.0013) C3 * 0.0010(0.0014) C4 * 0.0009(0.0013) C5 * −0.0021(0.0010) S1 − 1.8223(0.0107) Fe1 − 0.0218(0.0040) C1 − 0.0182(0.0034) O1 0.0168(0.0033) N1

Rms deviation of fitted atoms = 0.0023

9.5253(0.0054)x − 0.3900(0.0276)y + 5.7354(0.0435)z = 2.5870(0.0068)

Angle to previous plane (with approximate e.s.d.) = 6.33(0.11)

* 0.0000(0.0000) O2 * 0.0000(0.0000) O3 * 0.0000(0.0000) C6 0.0262(0.0067) C7 − 0.1572(0.0105) C4 0.6556(0.0094) C31 0.6559(0.0069) C33 0.4292(0.0108) C34

Rms deviation of fitted atoms = 0.0000

Distances and angles in (I) ###########################

Distance M.·O 7.8520 (0.0015) Fe1 - O1 8.6858 (0.0015) Fe1 - O2 10.9332 (0.0015) Fe1 - O3

Distance M.·S 10.1770 (0.0006) Fe1 - S1

Angle MCC 124.38 (0.07) Fe1 - C11 - C1

Angle CCC 179.40 (0.15) C11 - C31 - C34 177.94 (0.13) C11 - C31 - C1 175.38 (0.13) C11 - C34 - C1

Dihedral angle MCCC −80.61 (0.23) Fe1 - C11 - C31 - C32 99.11 (0.21) Fe1 - C11 - C31 - C36

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.10728 (3)0.22659 (3)0.129472 (12)0.01830 (10)
S10.36891 (5)0.75731 (6)0.10918 (2)0.02415 (14)
O10.33126 (17)0.60101 (18)0.00909 (7)0.0302 (4)
O20.38773 (15)0.22531 (17)0.17757 (6)0.0244 (3)
O30.44198 (15)0.35213 (18)0.25904 (6)0.0265 (3)
N10.36581 (17)0.4273 (2)0.08213 (7)0.0199 (4)
C10.3398 (2)0.4583 (2)0.02603 (9)0.0211 (4)
C20.37838 (19)0.5489 (2)0.12352 (9)0.0193 (4)
C30.4003 (2)0.5189 (2)0.18075 (9)0.0207 (4)
C40.4106 (2)0.6685 (3)0.21286 (10)0.0252 (5)
C50.3958 (2)0.8042 (3)0.18006 (10)0.0285 (5)
C60.4087 (2)0.3515 (3)0.20382 (9)0.0210 (4)
C70.4538 (2)0.1914 (3)0.28508 (10)0.0321 (5)
C110.2705 (2)0.0775 (2)0.13321 (8)0.0186 (4)
C120.2063 (2)0.0661 (2)0.18613 (9)0.0205 (4)
C130.2050 (2)0.2262 (3)0.21145 (9)0.0221 (4)
C140.2673 (2)0.3375 (3)0.17507 (9)0.0226 (4)
C150.3074 (2)0.2470 (2)0.12701 (9)0.0201 (4)
C210.0227 (2)0.1230 (3)0.06705 (10)0.0326 (5)
C220.0858 (2)0.1486 (3)0.11858 (10)0.0269 (5)
C230.0804 (2)0.3205 (3)0.13123 (10)0.0271 (5)
C240.0143 (2)0.4002 (3)0.08752 (11)0.0324 (5)
C250.0216 (2)0.2782 (3)0.04774 (10)0.0344 (6)
C310.28777 (19)0.0561 (2)0.09125 (9)0.0196 (4)
C320.3309 (2)0.0234 (2)0.03631 (9)0.0206 (4)
C330.3480 (2)0.1500 (3)0.00238 (9)0.0214 (4)
C340.3223 (2)0.3137 (2)0.01192 (9)0.0197 (4)
C350.2775 (2)0.3456 (3)0.06595 (9)0.0248 (5)
C360.2608 (2)0.2202 (3)0.10520 (9)0.0235 (4)
H10.362 (2)0.334 (3)0.0948 (10)0.022 (6)*
H40.42620.67210.25280.030*
H50.39970.91380.19450.034*
H7A0.52550.12980.26330.048*
H7B0.47360.20430.32560.048*
H7C0.37040.13100.28400.048*
H120.17100.03150.20150.025*
H130.16860.25400.24670.027*
H140.27990.45240.18170.027*
H150.35130.29140.09590.024*
H210.01190.01970.04860.039*
H220.12460.06580.14070.032*
H230.11510.37280.16340.032*
H240.00280.51530.08530.039*
H250.06720.29700.01420.041*
H320.34860.08710.02560.025*
H330.37770.12540.03930.026*
H350.25810.45610.07610.030*
H360.23060.24550.14190.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01750 (16)0.02174 (17)0.01567 (16)0.00155 (11)0.00158 (11)0.00031 (11)
S10.0305 (3)0.0196 (3)0.0228 (3)0.0015 (2)0.0047 (2)0.0005 (2)
O10.0476 (10)0.0200 (8)0.0246 (8)0.0027 (7)0.0112 (7)0.0018 (6)
O20.0288 (8)0.0211 (7)0.0240 (8)0.0011 (6)0.0067 (6)0.0002 (6)
O30.0333 (9)0.0269 (8)0.0201 (8)0.0032 (7)0.0076 (6)0.0039 (6)
N10.0247 (9)0.0178 (9)0.0173 (9)0.0012 (7)0.0031 (7)0.0000 (7)
C10.0190 (10)0.0232 (11)0.0212 (11)0.0027 (8)0.0025 (8)0.0015 (8)
C20.0189 (10)0.0188 (10)0.0199 (11)0.0009 (8)0.0004 (8)0.0005 (8)
C30.0195 (10)0.0211 (10)0.0214 (11)0.0006 (8)0.0021 (8)0.0005 (8)
C40.0285 (12)0.0257 (11)0.0221 (11)0.0034 (9)0.0049 (9)0.0045 (8)
C50.0339 (13)0.0243 (11)0.0276 (12)0.0046 (9)0.0044 (10)0.0059 (9)
C60.0189 (10)0.0256 (11)0.0188 (10)0.0007 (8)0.0027 (8)0.0011 (8)
C70.0337 (13)0.0337 (13)0.0299 (13)0.0033 (10)0.0080 (10)0.0121 (10)
C110.0187 (10)0.0210 (10)0.0161 (10)0.0024 (8)0.0017 (8)0.0021 (7)
C120.0210 (10)0.0233 (10)0.0168 (10)0.0013 (8)0.0000 (8)0.0031 (8)
C130.0222 (10)0.0290 (11)0.0146 (10)0.0006 (8)0.0002 (8)0.0025 (8)
C140.0230 (11)0.0228 (10)0.0215 (11)0.0010 (8)0.0005 (8)0.0030 (8)
C150.0162 (10)0.0236 (11)0.0205 (10)0.0007 (8)0.0022 (8)0.0002 (8)
C210.0283 (12)0.0415 (14)0.0265 (12)0.0038 (10)0.0050 (10)0.0109 (10)
C220.0195 (11)0.0338 (12)0.0267 (12)0.0017 (9)0.0007 (9)0.0003 (9)
C230.0197 (11)0.0342 (12)0.0271 (12)0.0064 (9)0.0010 (9)0.0019 (9)
C240.0258 (12)0.0318 (12)0.0382 (14)0.0064 (10)0.0036 (10)0.0106 (10)
C250.0263 (12)0.0579 (16)0.0182 (11)0.0042 (11)0.0019 (9)0.0073 (10)
C310.0167 (10)0.0202 (10)0.0220 (11)0.0028 (8)0.0027 (8)0.0008 (8)
C320.0237 (11)0.0186 (10)0.0196 (11)0.0006 (8)0.0036 (8)0.0022 (8)
C330.0225 (11)0.0237 (10)0.0188 (10)0.0005 (8)0.0053 (8)0.0015 (8)
C340.0191 (10)0.0208 (10)0.0191 (10)0.0010 (8)0.0008 (8)0.0007 (8)
C350.0302 (12)0.0193 (10)0.0258 (12)0.0003 (9)0.0078 (9)0.0031 (8)
C360.0285 (11)0.0234 (10)0.0196 (11)0.0001 (9)0.0076 (9)0.0031 (8)
Geometric parameters (Å, º) top
Fe1—C112.044 (2)C3—C41.429 (3)
Fe1—C122.038 (2)C3—C61.462 (3)
Fe1—C132.048 (2)C4—C51.350 (3)
Fe1—C142.054 (2)C11—C121.440 (3)
Fe1—C152.042 (2)C11—C151.433 (3)
Fe1—C212.037 (2)C12—C131.422 (3)
Fe1—C222.050 (2)C13—C141.420 (3)
Fe1—C232.054 (2)C14—C151.420 (3)
Fe1—C242.051 (2)C21—C221.418 (3)
Fe1—C252.041 (2)C21—C251.420 (4)
S1—C21.724 (2)C22—C231.422 (3)
S1—C51.724 (2)C23—C241.418 (3)
O1—C11.225 (2)C24—C251.419 (3)
O2—C61.216 (2)C31—C321.404 (3)
O3—C61.348 (2)C31—C361.401 (3)
O3—C71.443 (3)C32—C331.380 (3)
N1—C11.368 (3)C33—C341.396 (3)
N1—C21.385 (3)C34—C351.390 (3)
C1—C341.482 (3)C35—C361.381 (3)
C11—C311.473 (3)N1—H10.81 (2)
C2—C31.381 (3)
C2—S1—C590.98 (10)C24—Fe1—C14110.61 (9)
C6—O3—C7115.33 (17)C21—Fe1—C2368.15 (9)
C1—N1—C2124.05 (18)C12—Fe1—C23128.64 (9)
C1—N1—H1120.4 (17)C25—Fe1—C2368.23 (9)
C2—N1—H1114.8 (17)C15—Fe1—C23153.64 (9)
O1—C1—N1119.99 (19)C11—Fe1—C23165.07 (9)
O1—C1—C34122.73 (19)C13—Fe1—C23110.48 (9)
N1—C1—C34117.27 (17)C22—Fe1—C2340.54 (9)
S1—C2—N1123.58 (15)C24—Fe1—C2340.42 (9)
S1—C2—C3111.89 (15)C14—Fe1—C23121.11 (9)
N1—C2—C3124.53 (18)C15—C11—C12106.82 (17)
C2—C3—C4111.85 (18)C15—C11—C31126.11 (18)
C2—C3—C6122.12 (18)C12—C11—C31126.97 (18)
C4—C3—C6126.02 (19)C15—C11—Fe169.42 (11)
C3—C4—C5112.5 (2)C12—C11—Fe169.12 (11)
S1—C5—C4112.82 (17)C31—C11—Fe1123.56 (14)
O2—C6—O3123.01 (18)C13—C12—C11108.20 (18)
O2—C6—C3125.35 (19)C13—C12—Fe170.03 (11)
O3—C6—C3111.63 (17)C11—C12—Fe169.57 (11)
C21—Fe1—C12115.89 (9)C14—C13—C12108.25 (18)
C21—Fe1—C2540.75 (10)C14—C13—Fe169.95 (12)
C12—Fe1—C25149.59 (9)C12—C13—Fe169.23 (11)
C21—Fe1—C15126.25 (9)C13—C14—C15108.12 (18)
C12—Fe1—C1568.85 (8)C13—C14—Fe169.55 (12)
C25—Fe1—C15107.10 (9)C15—C14—Fe169.30 (12)
C21—Fe1—C11104.69 (9)C14—C15—C11108.60 (18)
C12—Fe1—C1141.31 (8)C14—C15—Fe170.14 (12)
C25—Fe1—C11115.55 (9)C11—C15—Fe169.52 (11)
C15—Fe1—C1141.06 (8)C22—C21—C25108.4 (2)
C21—Fe1—C13151.00 (9)C22—C21—Fe170.21 (13)
C12—Fe1—C1340.74 (8)C25—C21—Fe169.79 (13)
C25—Fe1—C13167.86 (9)C21—C22—C23107.6 (2)
C15—Fe1—C1368.38 (8)C21—C22—Fe169.20 (13)
C11—Fe1—C1369.02 (8)C23—C22—Fe169.88 (12)
C21—Fe1—C2240.59 (9)C24—C23—C22108.1 (2)
C12—Fe1—C22106.78 (9)C24—C23—Fe169.67 (12)
C25—Fe1—C2268.46 (9)C22—C23—Fe169.58 (12)
C15—Fe1—C22164.07 (9)C23—C24—C25108.1 (2)
C11—Fe1—C22125.70 (9)C23—C24—Fe169.91 (12)
C13—Fe1—C22118.99 (9)C25—C24—Fe169.34 (13)
C21—Fe1—C2468.25 (10)C24—C25—C21107.7 (2)
C12—Fe1—C24167.65 (9)C24—C25—Fe170.07 (13)
C25—Fe1—C2440.59 (10)C21—C25—Fe169.45 (13)
C15—Fe1—C24119.07 (9)C36—C31—C32118.07 (18)
C11—Fe1—C24150.81 (9)C36—C31—C11120.53 (18)
C13—Fe1—C24130.71 (9)C32—C31—C11121.40 (18)
C22—Fe1—C2468.22 (9)C33—C32—C31120.82 (18)
C21—Fe1—C14165.43 (9)C32—C33—C34120.95 (19)
C12—Fe1—C1468.50 (8)C35—C34—C33118.19 (18)
C25—Fe1—C14128.95 (9)C35—C34—C1116.73 (18)
C15—Fe1—C1440.56 (8)C33—C34—C1125.09 (18)
C11—Fe1—C1468.86 (8)C36—C35—C34121.46 (19)
C13—Fe1—C1440.49 (8)C35—C36—C31120.51 (19)
C22—Fe1—C14153.65 (9)
C2—N1—C1—O12.9 (3)C31—C11—C15—C14176.65 (19)
C2—N1—C1—C34176.86 (18)C25—C21—C22—C230.0 (2)
C1—N1—C2—C3177.7 (2)C21—C22—C23—C240.1 (2)
C1—N1—C2—S12.5 (3)C22—C23—C24—C250.1 (2)
C5—S1—C2—C30.46 (17)C23—C24—C25—C210.1 (3)
C5—S1—C2—N1179.34 (18)C22—C21—C25—C240.0 (3)
N1—C2—C3—C4179.22 (19)C15—C11—C31—C36173.1 (2)
S1—C2—C3—C40.6 (2)C12—C11—C31—C3611.2 (3)
N1—C2—C3—C61.8 (3)Fe1—C11—C31—C3699.1 (2)
S1—C2—C3—C6178.42 (16)C15—C11—C31—C327.2 (3)
C2—C3—C4—C50.4 (3)C12—C11—C31—C32168.55 (19)
C6—C3—C4—C5178.5 (2)Fe1—C11—C31—C3280.6 (2)
C3—C4—C5—S10.1 (3)C36—C31—C32—C330.9 (3)
C2—S1—C5—C40.21 (19)C11—C31—C32—C33179.33 (19)
C7—O3—C6—O21.2 (3)C31—C32—C33—C340.3 (3)
C7—O3—C6—C3179.41 (17)C32—C33—C34—C350.7 (3)
C2—C3—C6—O26.0 (3)C32—C33—C34—C1178.9 (2)
C4—C3—C6—O2172.9 (2)O1—C1—C34—C358.6 (3)
C2—C3—C6—O3174.58 (18)N1—C1—C34—C35171.15 (19)
C4—C3—C6—O36.6 (3)O1—C1—C34—C33171.0 (2)
C15—C11—C12—C130.2 (2)N1—C1—C34—C339.2 (3)
C31—C11—C12—C13176.56 (19)C33—C34—C35—C361.1 (3)
C11—C12—C13—C140.1 (2)C1—C34—C35—C36178.5 (2)
C12—C13—C14—C150.1 (2)C34—C35—C36—C310.5 (3)
C13—C14—C15—C110.2 (2)C32—C31—C36—C350.6 (3)
C12—C11—C15—C140.2 (2)C11—C31—C36—C35179.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.81 (2)2.14 (2)2.768 (2)134 (2)
C5—H5···O2i0.952.563.411 (3)150
C15—H15···O1ii0.952.563.401 (3)147
C32—H32···O1ii0.952.653.577 (2)165
C7—H7C···Cg3iii0.982.833.604 (2)136
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x+1/2, y1/2, z1/2.
(II) Ethyl 2-[(4-ferrocenylbenzoyl)amino]-4-(1,3-thiazole)acetate top
Crystal data top
C24H22FeN2O3SZ = 4
Mr = 474.36F(000) = 984
Triclinic, P1Dx = 1.476 Mg m3
Hall symbol: -P 1Melting point: 422 K
a = 12.7466 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.8752 (8) ÅCell parameters from 12087 reflections
c = 13.5661 (7) Åθ = 2.6–27.5°
α = 91.811 (3)°µ = 0.83 mm1
β = 106.096 (3)°T = 150 K
γ = 92.735 (3)°Needle, red
V = 2134.35 (18) Å30.20 × 0.07 × 0.04 mm
Data collection top
Nonius KappaCCD
diffractometer
9714 independent reflections
Radiation source: fine-focus sealed X-ray tube5617 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
ϕ scan and ω scans with κ offsetsθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
h = 1616
Tmin = 0.851, Tmax = 0.967k = 1616
15129 measured reflectionsl = 1617
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0472P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
9714 reflectionsΔρmax = 0.35 e Å3
573 parametersΔρmin = 0.47 e Å3
6 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0015 (4)
Crystal data top
C24H22FeN2O3Sγ = 92.735 (3)°
Mr = 474.36V = 2134.35 (18) Å3
Triclinic, P1Z = 4
a = 12.7466 (4) ÅMo Kα radiation
b = 12.8752 (8) ŵ = 0.83 mm1
c = 13.5661 (7) ÅT = 150 K
α = 91.811 (3)°0.20 × 0.07 × 0.04 mm
β = 106.096 (3)°
Data collection top
Nonius KappaCCD
diffractometer
9714 independent reflections
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
5617 reflections with I > 2σ(I)
Tmin = 0.851, Tmax = 0.967Rint = 0.069
15129 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0506 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.00Δρmax = 0.35 e Å3
9714 reflectionsΔρmin = 0.47 e Å3
573 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.10206 (4)0.65069 (4)0.89920 (4)0.03399 (14)
S1A0.72421 (6)0.54294 (7)0.60277 (7)0.0378 (2)
O1A0.56479 (17)0.48700 (19)0.68635 (17)0.0388 (6)
O2A0.96302 (18)0.7918 (2)0.50731 (18)0.0442 (6)
N1A0.51968 (19)0.6159 (2)0.57640 (19)0.0320 (6)
H1A0.46840.65680.54560.038*
N2A0.63768 (19)0.6924 (2)0.4917 (2)0.0327 (6)
C1A0.4973 (2)0.5486 (3)0.6456 (2)0.0317 (8)
C2A0.6182 (2)0.6227 (3)0.5527 (2)0.0298 (7)
C3A0.7421 (2)0.6839 (3)0.4806 (2)0.0309 (7)
C4A0.7989 (2)0.6089 (3)0.5347 (2)0.0362 (8)
H4A0.87140.59430.53510.043*
C5A0.7758 (2)0.7565 (3)0.4093 (3)0.0372 (8)
H510.74080.73030.33770.045*
H520.74780.82560.41810.045*
C6A0.8968 (3)0.7697 (3)0.4249 (2)0.0383 (8)
O3A0.92290 (18)0.7616 (3)0.33630 (19)0.0426 (10)0.915 (7)
C7A1.0400 (3)0.7803 (4)0.3411 (4)0.0507 (13)0.915 (7)
H711.04710.80300.27410.061*0.915 (7)
H721.07450.83550.39420.061*0.915 (7)
C8A1.0942 (4)0.6815 (5)0.3669 (4)0.0626 (16)0.915 (7)
H811.17050.69030.36530.094*0.915 (7)
H821.05610.62620.31660.094*0.915 (7)
H831.09190.66270.43570.094*0.915 (7)
C11A0.0997 (2)0.5680 (3)0.7683 (2)0.0334 (8)
C12A0.0684 (3)0.5021 (3)0.8399 (3)0.0366 (8)
H12A0.10450.44260.86850.044*
C13A0.0255 (3)0.5413 (3)0.8604 (3)0.0386 (8)
H13A0.06340.51240.90530.046*
C14A0.0535 (3)0.6309 (3)0.8030 (3)0.0420 (9)
H14A0.11320.67250.80270.050*
C15A0.0233 (2)0.6474 (3)0.7463 (2)0.0364 (8)
H15A0.02390.70220.70120.044*
C21A0.2610 (3)0.6949 (3)0.9703 (3)0.0500 (10)
H21A0.32290.67180.95160.060*
C22A0.2129 (3)0.6474 (3)1.0400 (3)0.0467 (10)
H22A0.23600.58691.07650.056*
C23A0.1237 (3)0.7062 (3)1.0458 (3)0.0513 (10)
H23A0.07590.69221.08720.062*
C24A0.1180 (3)0.7893 (3)0.9795 (3)0.0563 (11)
H24A0.06590.84110.96830.068*
C25A0.2035 (3)0.7817 (3)0.9327 (3)0.0526 (11)
H25A0.21910.82740.88430.063*
C31A0.1972 (2)0.5610 (3)0.7307 (2)0.0314 (7)
C32A0.2219 (3)0.6345 (3)0.6658 (3)0.0394 (9)
H32A0.17290.68740.64200.047*
C33A0.3170 (3)0.6313 (3)0.6357 (3)0.0405 (9)
H33A0.33230.68170.59120.049*
C34A0.3906 (2)0.5548 (3)0.6702 (2)0.0305 (7)
C35A0.3651 (3)0.4808 (3)0.7328 (3)0.0419 (9)
H35A0.41370.42720.75580.050*
C36A0.2703 (3)0.4835 (3)0.7623 (3)0.0425 (9)
H36A0.25430.43160.80510.051*
O3C0.9272 (19)0.699 (2)0.366 (2)0.035*0.085 (7)
C7C1.032 (2)0.734 (4)0.349 (4)0.035*0.085 (7)
H731.05680.80520.37930.042*0.085 (7)
H741.02840.73230.27510.042*0.085 (7)
C8C1.105 (5)0.655 (4)0.404 (4)0.035*0.085 (7)
H841.18040.68500.42620.052*0.085 (7)
H851.10030.59420.35790.052*0.085 (7)
H861.08180.63510.46410.052*0.085 (7)
Fe20.37355 (3)0.23279 (4)0.07428 (4)0.03324 (14)
S1B0.30369 (7)0.00479 (8)0.25740 (7)0.0422 (2)
O1B0.14071 (18)0.0188 (2)0.17146 (18)0.0463 (7)
O2B0.3855 (2)0.2100 (2)0.5140 (2)0.0561 (7)
O3B0.3776 (2)0.1416 (2)0.66424 (18)0.0487 (7)
N1B0.0847 (2)0.0488 (2)0.3338 (2)0.0368 (7)
H1B0.03000.07770.38310.044*
N2B0.1961 (2)0.0458 (2)0.4451 (2)0.0380 (7)
C1B0.0669 (3)0.0227 (3)0.2415 (3)0.0355 (8)
C2B0.1859 (2)0.0317 (3)0.3530 (3)0.0348 (8)
C3B0.3053 (3)0.0267 (3)0.4423 (3)0.0359 (8)
C4B0.3734 (3)0.0010 (3)0.3484 (3)0.0448 (9)
H4B0.45020.01220.33460.054*
C5B0.3346 (3)0.0336 (3)0.5422 (3)0.0419 (9)
H530.27100.01460.59800.050*
H540.39560.01830.53880.050*
C6B0.3677 (2)0.1390 (3)0.5694 (3)0.0348 (8)
C7B0.4060 (3)0.2413 (4)0.7034 (3)0.0587 (12)
H750.46780.26980.65190.070*
H760.34260.29260.71830.070*
C8B0.4369 (3)0.2198 (4)0.7985 (3)0.0707 (15)
H870.50780.18030.78090.106*
H880.44220.28570.83450.106*
H890.38130.17910.84300.106*
C11B0.3496 (2)0.1131 (3)0.1621 (2)0.0318 (7)
C12B0.3789 (3)0.0753 (3)0.0738 (3)0.0367 (8)
H12B0.33610.02700.02220.044*
C13B0.4829 (3)0.1221 (3)0.0762 (3)0.0405 (9)
H13B0.52130.11090.02630.049*
C14B0.5192 (3)0.1880 (3)0.1658 (3)0.0396 (9)
H14B0.58660.22840.18700.048*
C15B0.4376 (2)0.1834 (3)0.2183 (2)0.0344 (8)
H15B0.44080.22080.28060.041*
C21B0.2282 (3)0.3007 (3)0.0225 (3)0.0483 (10)
H21B0.16050.27880.03400.058*
C22B0.2649 (3)0.2662 (4)0.0599 (3)0.0557 (11)
H22B0.22780.21730.11360.067*
C23B0.3684 (4)0.3183 (5)0.0478 (4)0.0785 (17)
H23B0.41420.31070.09190.094*
C24B0.3910 (4)0.3841 (4)0.0428 (4)0.0733 (15)
H24B0.45450.42910.06980.088*
C25B0.3040 (3)0.3709 (3)0.0844 (3)0.0587 (11)
H25B0.29790.40480.14560.070*
C31B0.2456 (2)0.0904 (3)0.1871 (2)0.0314 (7)
C32B0.2212 (2)0.1389 (3)0.2701 (2)0.0318 (8)
H32B0.27350.18780.31330.038*
C33B0.1223 (2)0.1177 (3)0.2919 (2)0.0318 (8)
H33B0.10770.15150.34950.038*
C34B0.0448 (2)0.0467 (3)0.2290 (2)0.0323 (8)
C35B0.0693 (3)0.0022 (3)0.1463 (3)0.0468 (10)
H35B0.01720.05100.10290.056*
C36B0.1676 (3)0.0189 (3)0.1262 (3)0.0477 (10)
H36B0.18270.01620.06950.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0359 (3)0.0337 (3)0.0330 (3)0.0011 (2)0.0111 (2)0.0004 (2)
S1A0.0320 (4)0.0398 (6)0.0421 (5)0.0052 (4)0.0098 (4)0.0083 (4)
O1A0.0388 (12)0.0366 (16)0.0425 (14)0.0057 (11)0.0128 (11)0.0094 (11)
O2A0.0441 (13)0.0513 (18)0.0396 (14)0.0107 (12)0.0189 (11)0.0104 (12)
O3A0.0380 (14)0.058 (3)0.0358 (15)0.0060 (13)0.0157 (12)0.0045 (15)
N1A0.0302 (13)0.0336 (18)0.0334 (15)0.0028 (11)0.0107 (12)0.0036 (13)
N2A0.0318 (14)0.0322 (18)0.0336 (15)0.0015 (12)0.0085 (12)0.0001 (13)
C1A0.0315 (16)0.032 (2)0.0306 (17)0.0017 (14)0.0079 (14)0.0061 (15)
C2A0.0279 (16)0.032 (2)0.0288 (16)0.0020 (13)0.0067 (13)0.0031 (15)
C3A0.0286 (16)0.033 (2)0.0311 (17)0.0023 (13)0.0091 (14)0.0034 (15)
C4A0.0297 (16)0.040 (2)0.041 (2)0.0014 (15)0.0133 (15)0.0044 (17)
C5A0.0359 (17)0.039 (2)0.0411 (19)0.0025 (15)0.0186 (15)0.0009 (17)
C6A0.0448 (19)0.036 (2)0.039 (2)0.0005 (16)0.0216 (17)0.0022 (17)
C7A0.049 (2)0.057 (4)0.053 (3)0.004 (2)0.026 (2)0.003 (3)
C8A0.053 (3)0.075 (5)0.055 (4)0.012 (3)0.005 (3)0.002 (3)
C11A0.0362 (17)0.032 (2)0.0316 (18)0.0002 (14)0.0099 (14)0.0008 (15)
C12A0.0371 (18)0.037 (2)0.0357 (19)0.0021 (15)0.0109 (15)0.0003 (16)
C13A0.0359 (18)0.042 (2)0.0404 (19)0.0047 (15)0.0162 (15)0.0024 (17)
C14A0.0301 (17)0.056 (3)0.041 (2)0.0048 (16)0.0114 (15)0.0024 (18)
C15A0.0354 (17)0.041 (2)0.0335 (18)0.0057 (15)0.0094 (15)0.0078 (16)
C21A0.043 (2)0.058 (3)0.044 (2)0.0107 (19)0.0064 (17)0.005 (2)
C22A0.049 (2)0.047 (3)0.039 (2)0.0056 (18)0.0046 (17)0.0006 (18)
C23A0.062 (2)0.054 (3)0.040 (2)0.009 (2)0.0217 (19)0.014 (2)
C24A0.074 (3)0.035 (3)0.056 (3)0.002 (2)0.015 (2)0.012 (2)
C25A0.062 (2)0.048 (3)0.044 (2)0.018 (2)0.0126 (19)0.002 (2)
C31A0.0367 (17)0.029 (2)0.0285 (16)0.0013 (14)0.0101 (14)0.0013 (15)
C32A0.0394 (18)0.041 (2)0.043 (2)0.0138 (16)0.0169 (16)0.0126 (17)
C33A0.0449 (19)0.039 (2)0.043 (2)0.0039 (16)0.0195 (16)0.0131 (17)
C34A0.0357 (17)0.029 (2)0.0265 (16)0.0003 (14)0.0088 (14)0.0024 (14)
C35A0.0454 (19)0.038 (2)0.051 (2)0.0126 (16)0.0244 (17)0.0152 (18)
C36A0.047 (2)0.036 (2)0.053 (2)0.0091 (16)0.0255 (17)0.0175 (18)
Fe20.0322 (2)0.0350 (3)0.0354 (3)0.0050 (2)0.0132 (2)0.0056 (2)
S1B0.0348 (4)0.0496 (6)0.0448 (5)0.0034 (4)0.0152 (4)0.0034 (4)
O1B0.0416 (13)0.0576 (19)0.0410 (14)0.0107 (12)0.0173 (11)0.0112 (13)
O2B0.0802 (19)0.0459 (18)0.0618 (17)0.0311 (15)0.0456 (15)0.0245 (15)
O3B0.0612 (16)0.0533 (19)0.0373 (14)0.0206 (13)0.0198 (12)0.0068 (13)
N1B0.0349 (15)0.042 (2)0.0371 (16)0.0043 (13)0.0178 (12)0.0043 (14)
N2B0.0427 (16)0.0363 (19)0.0418 (17)0.0002 (13)0.0235 (13)0.0009 (14)
C1B0.0403 (18)0.033 (2)0.0385 (19)0.0003 (15)0.0200 (16)0.0003 (16)
C2B0.0366 (17)0.030 (2)0.043 (2)0.0014 (14)0.0203 (15)0.0023 (16)
C3B0.0389 (18)0.028 (2)0.050 (2)0.0081 (14)0.0260 (16)0.0061 (16)
C4B0.0351 (18)0.049 (3)0.058 (2)0.0105 (16)0.0240 (18)0.009 (2)
C5B0.0461 (19)0.036 (2)0.057 (2)0.0086 (16)0.0335 (18)0.0153 (18)
C6B0.0297 (16)0.038 (2)0.043 (2)0.0092 (14)0.0169 (15)0.0091 (17)
C7B0.061 (2)0.067 (3)0.051 (2)0.021 (2)0.018 (2)0.007 (2)
C8B0.055 (2)0.098 (4)0.059 (3)0.011 (2)0.020 (2)0.030 (3)
C11B0.0329 (16)0.029 (2)0.0358 (18)0.0049 (14)0.0129 (14)0.0023 (15)
C12B0.0399 (18)0.033 (2)0.044 (2)0.0046 (15)0.0221 (16)0.0020 (16)
C13B0.0397 (18)0.043 (2)0.047 (2)0.0074 (16)0.0256 (16)0.0036 (18)
C14B0.0323 (17)0.044 (2)0.044 (2)0.0035 (15)0.0124 (15)0.0075 (18)
C15B0.0352 (17)0.037 (2)0.0311 (17)0.0080 (14)0.0087 (14)0.0004 (15)
C21B0.043 (2)0.055 (3)0.048 (2)0.0124 (18)0.0117 (18)0.013 (2)
C22B0.066 (3)0.058 (3)0.040 (2)0.021 (2)0.0048 (19)0.007 (2)
C23B0.075 (3)0.109 (5)0.078 (3)0.046 (3)0.052 (3)0.066 (3)
C24B0.056 (3)0.051 (3)0.101 (4)0.000 (2)0.001 (3)0.038 (3)
C25B0.065 (3)0.047 (3)0.060 (3)0.022 (2)0.007 (2)0.007 (2)
C31B0.0332 (16)0.028 (2)0.0353 (18)0.0033 (13)0.0136 (14)0.0052 (15)
C32B0.0324 (16)0.035 (2)0.0294 (17)0.0051 (14)0.0103 (14)0.0002 (15)
C33B0.0343 (17)0.036 (2)0.0278 (16)0.0072 (14)0.0125 (14)0.0001 (15)
C34B0.0346 (17)0.032 (2)0.0334 (18)0.0006 (14)0.0148 (14)0.0043 (15)
C35B0.051 (2)0.047 (3)0.048 (2)0.0161 (18)0.0287 (18)0.0203 (19)
C36B0.054 (2)0.049 (3)0.048 (2)0.0103 (18)0.0324 (18)0.0149 (19)
Geometric parameters (Å, º) top
Fe1—C11A2.034 (3)C33A—H33A0.9500
Fe1—C12A2.031 (4)C35A—H35A0.9500
Fe1—C13A2.040 (3)C36A—H36A0.9500
Fe1—C14A2.048 (3)Fe2—C11B2.040 (3)
Fe1—C15A2.036 (3)Fe2—C12B2.032 (4)
Fe1—C21A2.033 (3)Fe2—C13B2.037 (3)
Fe1—C22A2.040 (4)Fe2—C14B2.047 (3)
Fe1—C23A2.033 (4)Fe2—C15B2.033 (3)
Fe1—C24A2.033 (4)Fe2—C21B2.041 (4)
Fe1—C25A2.035 (4)Fe2—C23B2.005 (4)
S1A—C2A1.735 (3)Fe2—C22B2.031 (4)
S1A—C4A1.716 (3)Fe2—C24B2.023 (5)
O1A—C1A1.226 (4)Fe2—C25B2.042 (4)
O2A—C6A1.215 (4)S1B—C2B1.724 (3)
O3A—C6A1.335 (3)S1B—C4B1.711 (4)
O3A—C7A1.483 (3)O1B—C1B1.224 (4)
N1A—C1A1.374 (4)O2B—C6B1.192 (4)
N1A—C2A1.379 (4)O3B—C6B1.327 (4)
N2A—C2A1.300 (4)O3B—C7B1.472 (5)
N2A—C3A1.390 (4)N1B—C1B1.367 (4)
C1A—C34A1.493 (4)N1B—C2B1.394 (4)
C3A—C4A1.346 (5)N2B—C2B1.299 (4)
C3A—C5A1.498 (5)N2B—C3B1.393 (4)
C5A—C6A1.498 (4)C1B—C34B1.498 (4)
C7A—C8A1.482 (5)C3B—C4B1.348 (5)
C11A—C12A1.435 (5)C3B—C5B1.504 (5)
C11A—C15A1.426 (5)C5B—C6B1.505 (5)
C11A—C31A1.473 (4)C7B—C8B1.480 (6)
C12A—C13A1.414 (5)C11B—C12B1.428 (4)
C13A—C14A1.416 (5)C11B—C15B1.430 (4)
C14A—C15A1.416 (5)C11B—C31B1.475 (4)
C21A—C22A1.403 (5)C12B—C13B1.421 (4)
C21A—C25A1.398 (6)C13B—C14B1.414 (5)
C22A—C23A1.415 (5)C14B—C15B1.413 (4)
C23A—C24A1.412 (6)C21B—C25B1.369 (6)
C24A—C25A1.411 (6)C21B—C22B1.395 (5)
C31A—C32A1.395 (5)C22B—C23B1.417 (6)
C31A—C36A1.394 (5)C23B—C24B1.423 (7)
C32A—C33A1.384 (4)C24B—C25B1.382 (6)
C33A—C34A1.394 (5)C31B—C32B1.387 (4)
C34A—C35A1.382 (5)C31B—C36B1.388 (5)
C35A—C36A1.376 (4)C32B—C33B1.389 (4)
O3C—C7C1.474 (5)C33B—C34B1.392 (4)
C7C—C8C1.480 (6)C34B—C35B1.385 (4)
N1A—H1A0.8800C35B—C36B1.372 (5)
C4A—H4A0.9500N1B—H1B0.8800
C5A—H510.9900C4B—H4B0.9500
C5A—H520.9900C5B—H530.9900
C7A—H710.9900C5B—H540.9900
C7A—H720.9900C7B—H750.9900
C8A—H810.9800C7B—H760.9900
C8A—H820.9800C8B—H870.9800
C8A—H830.9800C8B—H880.9800
C7C—H730.9900C8B—H890.9800
C7C—H740.9900C12B—H12B0.9500
C8C—H840.9800C13B—H13B0.9500
C8C—H850.9800C14B—H14B0.9500
C8C—H860.9800C15B—H15B0.9500
C12A—H12A0.9500C21B—H21B0.9500
C13A—H13A0.9500C22B—H22B0.9500
C14A—H14A0.9500C23B—H23B0.9500
C15A—H15A0.9500C24B—H24B0.9500
C21A—H21A0.9500C25B—H25B0.9500
C22A—H22A0.9500C32B—H32B0.9500
C23A—H23A0.9500C33B—H33B0.9500
C24A—H24A0.9500C35B—H35B0.9500
C25A—H25A0.9500C36B—H36B0.9500
C32A—H32A0.9500
C12A—Fe1—C23A129.21 (16)C7C—C8C—H86109.5
C12A—Fe1—C24A167.90 (16)H84—C8C—H86109.5
C23A—Fe1—C24A40.64 (16)H85—C8C—H86109.5
C12A—Fe1—C21A117.36 (16)C23B—Fe2—C24B41.4 (2)
C23A—Fe1—C21A67.86 (16)C23B—Fe2—C22B41.09 (19)
C24A—Fe1—C21A67.83 (17)C24B—Fe2—C22B68.62 (19)
C12A—Fe1—C11A41.34 (13)C23B—Fe2—C12B124.5 (2)
C23A—Fe1—C11A167.01 (16)C24B—Fe2—C12B163.3 (2)
C24A—Fe1—C11A150.01 (17)C22B—Fe2—C12B106.53 (16)
C21A—Fe1—C11A106.95 (14)C23B—Fe2—C15B156.0 (2)
C12A—Fe1—C25A150.07 (16)C24B—Fe2—C15B120.95 (18)
C23A—Fe1—C25A68.22 (17)C22B—Fe2—C15B161.75 (16)
C24A—Fe1—C25A40.58 (16)C12B—Fe2—C15B68.65 (14)
C21A—Fe1—C25A40.21 (16)C23B—Fe2—C13B107.31 (17)
C11A—Fe1—C25A116.12 (15)C24B—Fe2—C13B126.50 (18)
C12A—Fe1—C15A68.87 (14)C22B—Fe2—C13B120.21 (16)
C23A—Fe1—C15A151.46 (16)C12B—Fe2—C13B40.88 (13)
C24A—Fe1—C15A117.54 (16)C15B—Fe2—C13B68.44 (14)
C21A—Fe1—C15A128.10 (15)C23B—Fe2—C11B161.5 (2)
C11A—Fe1—C15A41.03 (13)C24B—Fe2—C11B155.0 (2)
C25A—Fe1—C15A107.50 (16)C22B—Fe2—C11B123.82 (16)
C12A—Fe1—C22A107.94 (16)C12B—Fe2—C11B41.07 (13)
C23A—Fe1—C22A40.67 (15)C15B—Fe2—C11B41.11 (13)
C24A—Fe1—C22A68.34 (17)C13B—Fe2—C11B69.12 (13)
C21A—Fe1—C22A40.29 (14)C23B—Fe2—C21B67.67 (17)
C11A—Fe1—C22A127.82 (15)C24B—Fe2—C21B66.66 (17)
C25A—Fe1—C22A68.12 (16)C22B—Fe2—C21B40.06 (15)
C15A—Fe1—C22A166.15 (14)C12B—Fe2—C21B120.64 (15)
C12A—Fe1—C13A40.66 (13)C15B—Fe2—C21B126.02 (14)
C23A—Fe1—C13A109.56 (15)C13B—Fe2—C21B155.43 (15)
C24A—Fe1—C13A129.98 (16)C11B—Fe2—C21B107.60 (14)
C21A—Fe1—C13A151.38 (17)C23B—Fe2—C25B68.1 (2)
C11A—Fe1—C13A68.89 (13)C24B—Fe2—C25B39.76 (19)
C25A—Fe1—C13A167.69 (16)C22B—Fe2—C25B67.55 (17)
C15A—Fe1—C13A68.29 (14)C12B—Fe2—C25B154.80 (16)
C22A—Fe1—C13A118.70 (15)C15B—Fe2—C25B108.87 (16)
C12A—Fe1—C14A68.61 (15)C13B—Fe2—C25B163.52 (16)
C23A—Fe1—C14A118.91 (15)C11B—Fe2—C25B120.32 (16)
C24A—Fe1—C14A108.94 (17)C21B—Fe2—C25B39.19 (16)
C21A—Fe1—C14A166.50 (16)C23B—Fe2—C14B120.93 (17)
C11A—Fe1—C14A68.89 (13)C24B—Fe2—C14B109.01 (16)
C25A—Fe1—C14A128.93 (17)C22B—Fe2—C14B155.79 (15)
C15A—Fe1—C14A40.57 (13)C12B—Fe2—C14B68.44 (14)
C22A—Fe1—C14A152.17 (15)C15B—Fe2—C14B40.54 (13)
C13A—Fe1—C14A40.53 (14)C13B—Fe2—C14B40.52 (14)
C2A—S1A—C4A88.04 (16)C11B—Fe2—C14B68.89 (13)
C6A—O3A—C7A116.9 (3)C21B—Fe2—C14B162.92 (15)
C1A—N1A—C2A123.5 (3)C25B—Fe2—C14B126.99 (16)
C1A—N1A—H1A118.2C4B—S1B—C2B88.03 (17)
C2A—N1A—H1A118.2C6B—O3B—C7B116.6 (3)
C2A—N2A—C3A110.1 (3)C1B—N1B—C2B122.9 (3)
O1A—C1A—N1A120.1 (3)C1B—N1B—H1B118.6
O1A—C1A—C34A121.9 (3)C2B—N1B—H1B118.6
N1A—C1A—C34A118.0 (3)C2B—N2B—C3B109.0 (3)
N2A—C2A—N1A121.0 (3)O1B—C1B—N1B120.4 (3)
N2A—C2A—S1A115.6 (2)O1B—C1B—C34B121.4 (3)
N1A—C2A—S1A123.3 (3)N1B—C1B—C34B118.2 (3)
C4A—C3A—N2A114.7 (3)N2B—C2B—N1B120.8 (3)
C4A—C3A—C5A128.6 (3)N2B—C2B—S1B116.6 (2)
N2A—C3A—C5A116.7 (3)N1B—C2B—S1B122.6 (2)
C3A—C4A—S1A111.6 (2)C4B—C3B—N2B115.0 (3)
C3A—C4A—H4A124.2C4B—C3B—C5B127.1 (3)
S1A—C4A—H4A124.2N2B—C3B—C5B117.9 (3)
C6A—C5A—C3A114.6 (3)C3B—C4B—S1B111.3 (2)
C6A—C5A—H51108.6C3B—C4B—H4B124.4
C3A—C5A—H51108.6S1B—C4B—H4B124.4
C6A—C5A—H52108.6C3B—C5B—C6B114.6 (3)
C3A—C5A—H52108.6C3B—C5B—H53108.6
H51—C5A—H52107.6C6B—C5B—H53108.6
O2A—C6A—O3A123.7 (3)C3B—C5B—H54108.6
O2A—C6A—C5A124.2 (3)C6B—C5B—H54108.6
O3A—C6A—C5A111.9 (3)H53—C5B—H54107.6
C8A—C7A—O3A107.9 (4)O2B—C6B—O3B124.0 (3)
C8A—C7A—H71110.1O2B—C6B—C5B125.8 (3)
O3A—C7A—H71110.1O3B—C6B—C5B110.2 (3)
C8A—C7A—H72110.1O3B—C7B—C8B106.8 (4)
O3A—C7A—H72110.1O3B—C7B—H75110.4
H71—C7A—H72108.4C8B—C7B—H75110.4
C15A—C11A—C12A107.0 (3)O3B—C7B—H76110.4
C15A—C11A—C31A126.0 (3)C8B—C7B—H76110.4
C12A—C11A—C31A126.8 (3)H75—C7B—H76108.6
C15A—C11A—Fe169.58 (19)C7B—C8B—H87109.5
C12A—C11A—Fe169.21 (19)C7B—C8B—H88109.5
C31A—C11A—Fe1122.6 (2)H87—C8B—H88109.5
C13A—C12A—C11A108.0 (3)C7B—C8B—H89109.5
C13A—C12A—Fe170.0 (2)H87—C8B—H89109.5
C11A—C12A—Fe169.5 (2)H88—C8B—H89109.5
C13A—C12A—H12A126.0C12B—C11B—C15B106.6 (3)
C11A—C12A—H12A126.0C12B—C11B—C31B126.9 (3)
Fe1—C12A—H12A126.1C15B—C11B—C31B126.3 (3)
C12A—C13A—C14A108.6 (3)C12B—C11B—Fe269.2 (2)
C12A—C13A—Fe169.31 (19)C15B—C11B—Fe269.18 (19)
C14A—C13A—Fe170.0 (2)C31B—C11B—Fe2123.3 (2)
C12A—C13A—H13A125.7C13B—C12B—C11B108.5 (3)
C14A—C13A—H13A125.7C13B—C12B—Fe269.7 (2)
Fe1—C13A—H13A126.5C11B—C12B—Fe269.8 (2)
C13A—C14A—C15A107.8 (3)C13B—C12B—H12B125.8
C13A—C14A—Fe169.42 (19)C11B—C12B—H12B125.8
C15A—C14A—Fe169.25 (18)Fe2—C12B—H12B126.3
C13A—C14A—H14A126.1C14B—C13B—C12B108.0 (3)
C15A—C14A—H14A126.1C14B—C13B—Fe270.1 (2)
Fe1—C14A—H14A126.8C12B—C13B—Fe269.38 (19)
C14A—C15A—C11A108.7 (3)C14B—C13B—H13B126.0
C14A—C15A—Fe170.18 (19)C12B—C13B—H13B126.0
C11A—C15A—Fe169.40 (18)Fe2—C13B—H13B126.1
C14A—C15A—H15A125.7C15B—C14B—C13B108.1 (3)
C11A—C15A—H15A125.7C15B—C14B—Fe269.20 (18)
Fe1—C15A—H15A126.3C13B—C14B—Fe269.36 (19)
C25A—C21A—C22A109.1 (4)C15B—C14B—H14B126.0
C25A—C21A—Fe170.0 (2)C13B—C14B—H14B126.0
C22A—C21A—Fe170.1 (2)Fe2—C14B—H14B127.0
C25A—C21A—H21A125.4C14B—C15B—C11B108.8 (3)
C22A—C21A—H21A125.4C14B—C15B—Fe270.26 (19)
Fe1—C21A—H21A126.0C11B—C15B—Fe269.72 (18)
C21A—C22A—C23A107.3 (4)C14B—C15B—H15B125.6
C21A—C22A—Fe169.6 (2)C11B—C15B—H15B125.6
C23A—C22A—Fe169.4 (2)Fe2—C15B—H15B126.0
C21A—C22A—H22A126.4C25B—C21B—C22B110.0 (4)
C23A—C22A—H22A126.4C25B—C21B—Fe270.5 (2)
Fe1—C22A—H22A126.2C22B—C21B—Fe269.6 (2)
C24A—C23A—C22A108.0 (4)C25B—C21B—H21B125.0
C24A—C23A—Fe169.7 (2)C22B—C21B—H21B125.0
C22A—C23A—Fe169.9 (2)Fe2—C21B—H21B126.5
C24A—C23A—H23A126.0C21B—C22B—C23B106.5 (4)
C22A—C23A—H23A126.0C21B—C22B—Fe270.3 (2)
Fe1—C23A—H23A126.0C23B—C22B—Fe268.5 (2)
C25A—C24A—C23A107.9 (4)C21B—C22B—H22B126.7
C25A—C24A—Fe169.8 (2)C23B—C22B—H22B126.7
C23A—C24A—Fe169.7 (2)Fe2—C22B—H22B126.0
C25A—C24A—H24A126.1C22B—C23B—C24B107.1 (4)
C23A—C24A—H24A126.1C22B—C23B—Fe270.4 (2)
Fe1—C24A—H24A126.0C24B—C23B—Fe270.0 (3)
C21A—C25A—C24A107.7 (4)C22B—C23B—H23B126.4
C21A—C25A—Fe169.8 (2)C24B—C23B—H23B126.4
C24A—C25A—Fe169.6 (2)Fe2—C23B—H23B124.8
C21A—C25A—H25A126.1C25B—C24B—C23B107.8 (4)
C24A—C25A—H25A126.1C25B—C24B—Fe270.9 (3)
Fe1—C25A—H25A126.0C23B—C24B—Fe268.7 (3)
C36A—C31A—C32A117.7 (3)C25B—C24B—H24B126.1
C36A—C31A—C11A121.1 (3)C23B—C24B—H24B126.1
C32A—C31A—C11A121.1 (3)Fe2—C24B—H24B126.0
C33A—C32A—C31A120.9 (3)C21B—C25B—C24B108.5 (4)
C33A—C32A—H32A119.5C21B—C25B—Fe270.4 (2)
C31A—C32A—H32A119.5C24B—C25B—Fe269.4 (3)
C32A—C33A—C34A120.6 (3)C21B—C25B—H25B125.8
C32A—C33A—H33A119.7C24B—C25B—H25B125.8
C34A—C33A—H33A119.7Fe2—C25B—H25B126.1
C35A—C34A—C33A118.5 (3)C32B—C31B—C36B117.6 (3)
C35A—C34A—C1A117.4 (3)C32B—C31B—C11B122.3 (3)
C33A—C34A—C1A124.1 (3)C36B—C31B—C11B120.1 (3)
C36A—C35A—C34A120.9 (3)C31B—C32B—C33B121.7 (3)
C36A—C35A—H35A119.6C31B—C32B—H32B119.2
C34A—C35A—H35A119.6C33B—C32B—H32B119.2
C35A—C36A—C31A121.3 (3)C32B—C33B—C34B119.8 (3)
C35A—C36A—H36A119.3C32B—C33B—H33B120.1
C31A—C36A—H36A119.3C34B—C33B—H33B120.1
O3C—C7C—C8C101 (3)C35B—C34B—C33B118.6 (3)
O3C—C7C—H73111.5C35B—C34B—C1B117.0 (3)
C8C—C7C—H73111.5C33B—C34B—C1B124.3 (3)
O3C—C7C—H74111.5C36B—C35B—C34B120.9 (3)
C8C—C7C—H74111.5C36B—C35B—H35B119.5
H73—C7C—H74109.3C34B—C35B—H35B119.5
C7C—C8C—H84109.5C35B—C36B—C31B121.4 (3)
C7C—C8C—H85109.5C35B—C36B—H36B119.3
H84—C8C—H85109.5C31B—C36B—H36B119.3
C2A—N1A—C1A—O1A3.4 (5)C6A—O3A—O3C—C7C122 (3)
C2A—N1A—C1A—C34A175.3 (3)C7A—O3A—O3C—C7C6 (3)
C3A—N2A—C2A—N1A179.6 (3)O3A—O3C—C7C—C8C172 (4)
C3A—N2A—C2A—S1A0.9 (3)C2B—N1B—C1B—O1B0.9 (5)
C1A—N1A—C2A—N2A175.5 (3)C2B—N1B—C1B—C34B178.9 (3)
C1A—N1A—C2A—S1A3.1 (4)C3B—N2B—C2B—N1B178.0 (3)
C4A—S1A—C2A—N2A0.5 (3)C3B—N2B—C2B—S1B0.0 (4)
C4A—S1A—C2A—N1A179.2 (3)C1B—N1B—C2B—N2B171.5 (3)
C2A—N2A—C3A—C4A0.8 (4)C1B—N1B—C2B—S1B10.6 (5)
C2A—N2A—C3A—C5A177.8 (3)C4B—S1B—C2B—N2B0.8 (3)
N2A—C3A—C4A—S1A0.4 (4)C4B—S1B—C2B—N1B177.2 (3)
C5A—C3A—C4A—S1A178.0 (3)C2B—N2B—C3B—C4B1.2 (5)
C2A—S1A—C4A—C3A0.0 (3)C2B—N2B—C3B—C5B177.1 (3)
C4A—C3A—C5A—C6A20.6 (5)N2B—C3B—C4B—S1B1.8 (4)
N2A—C3A—C5A—C6A161.0 (3)C5B—C3B—C4B—S1B176.3 (3)
O3C—O3A—C6A—O2A89.9 (17)C2B—S1B—C4B—C3B1.4 (3)
C7A—O3A—C6A—O2A0.4 (6)C4B—C3B—C5B—C6B89.9 (5)
O3C—O3A—C6A—C5A94.5 (17)N2B—C3B—C5B—C6B92.0 (4)
C7A—O3A—C6A—C5A176.0 (3)C7B—O3B—C6B—O2B3.9 (5)
C3A—C5A—C6A—O2A51.5 (5)C7B—O3B—C6B—C5B178.0 (3)
C3A—C5A—C6A—O3A132.9 (3)C3B—C5B—C6B—O2B10.3 (5)
O3C—O3A—C7A—C8A12.9 (12)C3B—C5B—C6B—O3B171.6 (3)
C6A—O3A—C7A—C8A84.6 (5)C6B—O3B—C7B—C8B167.5 (3)
C12A—Fe1—C11A—C15A118.4 (3)C23B—Fe2—C11B—C12B44.7 (5)
C23A—Fe1—C11A—C15A166.4 (6)C24B—Fe2—C11B—C12B170.9 (3)
C24A—Fe1—C11A—C15A54.4 (4)C22B—Fe2—C11B—C12B75.7 (2)
C21A—Fe1—C11A—C15A129.2 (2)C15B—Fe2—C11B—C12B118.2 (3)
C25A—Fe1—C11A—C15A86.9 (2)C13B—Fe2—C11B—C12B37.45 (18)
C22A—Fe1—C11A—C15A168.6 (2)C21B—Fe2—C11B—C12B116.7 (2)
C13A—Fe1—C11A—C15A80.8 (2)C25B—Fe2—C11B—C12B157.6 (2)
C14A—Fe1—C11A—C15A37.2 (2)C14B—Fe2—C11B—C12B81.0 (2)
C23A—Fe1—C11A—C12A48.0 (7)C23B—Fe2—C11B—C15B162.9 (5)
C24A—Fe1—C11A—C12A172.7 (3)C24B—Fe2—C11B—C15B52.7 (4)
C21A—Fe1—C11A—C12A112.4 (2)C22B—Fe2—C11B—C15B166.2 (2)
C25A—Fe1—C11A—C12A154.7 (2)C12B—Fe2—C11B—C15B118.2 (3)
C15A—Fe1—C11A—C12A118.4 (3)C13B—Fe2—C11B—C15B80.7 (2)
C22A—Fe1—C11A—C12A73.0 (2)C21B—Fe2—C11B—C15B125.1 (2)
C13A—Fe1—C11A—C12A37.60 (19)C25B—Fe2—C11B—C15B84.2 (2)
C14A—Fe1—C11A—C12A81.2 (2)C14B—Fe2—C11B—C15B37.19 (19)
C12A—Fe1—C11A—C31A121.2 (4)C23B—Fe2—C11B—C31B76.6 (6)
C23A—Fe1—C11A—C31A73.2 (7)C24B—Fe2—C11B—C31B67.8 (5)
C24A—Fe1—C11A—C31A66.0 (4)C22B—Fe2—C11B—C31B45.6 (3)
C21A—Fe1—C11A—C31A8.8 (3)C12B—Fe2—C11B—C31B121.3 (3)
C25A—Fe1—C11A—C31A33.4 (3)C15B—Fe2—C11B—C31B120.5 (3)
C15A—Fe1—C11A—C31A120.4 (4)C13B—Fe2—C11B—C31B158.7 (3)
C22A—Fe1—C11A—C31A48.2 (4)C21B—Fe2—C11B—C31B4.6 (3)
C13A—Fe1—C11A—C31A158.8 (3)C25B—Fe2—C11B—C31B36.3 (3)
C14A—Fe1—C11A—C31A157.6 (3)C14B—Fe2—C11B—C31B157.7 (3)
C15A—C11A—C12A—C13A0.1 (4)C15B—C11B—C12B—C13B0.1 (4)
C31A—C11A—C12A—C13A175.5 (3)C31B—C11B—C12B—C13B175.8 (3)
Fe1—C11A—C12A—C13A59.7 (2)Fe2—C11B—C12B—C13B59.2 (3)
C15A—C11A—C12A—Fe159.6 (2)C15B—C11B—C12B—Fe259.3 (2)
C31A—C11A—C12A—Fe1115.8 (3)C31B—C11B—C12B—Fe2116.6 (3)
C23A—Fe1—C12A—C13A73.3 (3)C23B—Fe2—C12B—C13B75.9 (3)
C24A—Fe1—C12A—C13A43.4 (8)C24B—Fe2—C12B—C13B46.8 (6)
C21A—Fe1—C12A—C13A156.1 (2)C22B—Fe2—C12B—C13B117.3 (2)
C11A—Fe1—C12A—C13A119.1 (3)C15B—Fe2—C12B—C13B81.3 (2)
C25A—Fe1—C12A—C13A169.4 (3)C11B—Fe2—C12B—C13B119.8 (3)
C15A—Fe1—C12A—C13A80.9 (2)C21B—Fe2—C12B—C13B158.5 (2)
C22A—Fe1—C12A—C13A113.4 (2)C25B—Fe2—C12B—C13B170.4 (3)
C14A—Fe1—C12A—C13A37.2 (2)C14B—Fe2—C12B—C13B37.6 (2)
C23A—Fe1—C12A—C11A167.5 (2)C23B—Fe2—C12B—C11B164.3 (2)
C24A—Fe1—C12A—C11A162.5 (7)C24B—Fe2—C12B—C11B166.6 (5)
C21A—Fe1—C12A—C11A84.8 (2)C22B—Fe2—C12B—C11B122.9 (2)
C25A—Fe1—C12A—C11A50.3 (4)C15B—Fe2—C12B—C11B38.48 (17)
C15A—Fe1—C12A—C11A38.26 (18)C13B—Fe2—C12B—C11B119.8 (3)
C22A—Fe1—C12A—C11A127.4 (2)C21B—Fe2—C12B—C11B81.7 (2)
C13A—Fe1—C12A—C11A119.1 (3)C25B—Fe2—C12B—C11B50.6 (4)
C14A—Fe1—C12A—C11A81.9 (2)C14B—Fe2—C12B—C11B82.19 (19)
C11A—C12A—C13A—C14A0.1 (4)C11B—C12B—C13B—C14B0.5 (4)
Fe1—C12A—C13A—C14A59.2 (2)Fe2—C12B—C13B—C14B59.7 (3)
C11A—C12A—C13A—Fe159.3 (2)C11B—C12B—C13B—Fe259.2 (2)
C23A—Fe1—C13A—C12A128.0 (2)C23B—Fe2—C13B—C14B117.6 (3)
C24A—Fe1—C13A—C12A169.2 (2)C24B—Fe2—C13B—C14B76.0 (3)
C21A—Fe1—C13A—C12A48.6 (4)C22B—Fe2—C13B—C14B160.6 (2)
C11A—Fe1—C13A—C12A38.2 (2)C12B—Fe2—C13B—C14B119.2 (3)
C25A—Fe1—C13A—C12A154.6 (7)C15B—Fe2—C13B—C14B37.3 (2)
C15A—Fe1—C13A—C12A82.4 (2)C11B—Fe2—C13B—C14B81.6 (2)
C22A—Fe1—C13A—C12A84.3 (2)C21B—Fe2—C13B—C14B168.3 (3)
C14A—Fe1—C13A—C12A120.0 (3)C25B—Fe2—C13B—C14B46.4 (6)
C12A—Fe1—C13A—C14A120.0 (3)C23B—Fe2—C13B—C12B123.2 (3)
C23A—Fe1—C13A—C14A112.0 (2)C24B—Fe2—C13B—C12B164.9 (3)
C24A—Fe1—C13A—C14A70.8 (3)C22B—Fe2—C13B—C12B80.2 (3)
C21A—Fe1—C13A—C14A168.6 (3)C15B—Fe2—C13B—C12B81.9 (2)
C11A—Fe1—C13A—C14A81.8 (2)C11B—Fe2—C13B—C12B37.6 (2)
C25A—Fe1—C13A—C14A34.6 (8)C21B—Fe2—C13B—C12B49.2 (4)
C15A—Fe1—C13A—C14A37.6 (2)C25B—Fe2—C13B—C12B165.5 (5)
C22A—Fe1—C13A—C14A155.6 (2)C14B—Fe2—C13B—C12B119.2 (3)
C12A—C13A—C14A—C15A0.1 (4)C12B—C13B—C14B—C15B0.7 (4)
Fe1—C13A—C14A—C15A58.8 (2)Fe2—C13B—C14B—C15B58.5 (2)
C12A—C13A—C14A—Fe158.7 (2)C12B—C13B—C14B—Fe259.2 (2)
C12A—Fe1—C14A—C13A37.3 (2)C23B—Fe2—C14B—C15B159.8 (3)
C23A—Fe1—C14A—C13A86.7 (3)C24B—Fe2—C14B—C15B115.7 (3)
C24A—Fe1—C14A—C13A130.1 (2)C22B—Fe2—C14B—C15B164.3 (4)
C21A—Fe1—C14A—C13A156.2 (6)C12B—Fe2—C14B—C15B81.9 (2)
C11A—Fe1—C14A—C13A81.8 (2)C13B—Fe2—C14B—C15B119.8 (3)
C25A—Fe1—C14A—C13A171.1 (2)C11B—Fe2—C14B—C15B37.7 (2)
C15A—Fe1—C14A—C13A119.4 (3)C21B—Fe2—C14B—C15B43.5 (6)
C22A—Fe1—C14A—C13A50.8 (4)C25B—Fe2—C14B—C15B75.1 (3)
C12A—Fe1—C14A—C15A82.1 (2)C23B—Fe2—C14B—C13B80.4 (3)
C23A—Fe1—C14A—C15A153.9 (2)C24B—Fe2—C14B—C13B124.4 (3)
C24A—Fe1—C14A—C15A110.5 (2)C22B—Fe2—C14B—C13B44.5 (5)
C21A—Fe1—C14A—C15A36.8 (8)C12B—Fe2—C14B—C13B37.9 (2)
C11A—Fe1—C14A—C15A37.6 (2)C15B—Fe2—C14B—C13B119.8 (3)
C25A—Fe1—C14A—C15A69.6 (3)C11B—Fe2—C14B—C13B82.2 (2)
C22A—Fe1—C14A—C15A170.2 (3)C21B—Fe2—C14B—C13B163.4 (5)
C13A—Fe1—C14A—C15A119.4 (3)C25B—Fe2—C14B—C13B165.1 (2)
C13A—C14A—C15A—C11A0.0 (4)C13B—C14B—C15B—C11B0.6 (4)
Fe1—C14A—C15A—C11A58.9 (2)Fe2—C14B—C15B—C11B59.3 (2)
C13A—C14A—C15A—Fe158.9 (2)C13B—C14B—C15B—Fe258.6 (3)
C12A—C11A—C15A—C14A0.0 (4)C12B—C11B—C15B—C14B0.3 (4)
C31A—C11A—C15A—C14A175.5 (3)C31B—C11B—C15B—C14B176.3 (3)
Fe1—C11A—C15A—C14A59.4 (2)Fe2—C11B—C15B—C14B59.6 (2)
C12A—C11A—C15A—Fe159.3 (2)C12B—C11B—C15B—Fe259.3 (2)
C31A—C11A—C15A—Fe1116.1 (3)C31B—C11B—C15B—Fe2116.7 (3)
C12A—Fe1—C15A—C14A81.4 (2)C23B—Fe2—C15B—C14B46.9 (5)
C23A—Fe1—C15A—C14A53.7 (4)C24B—Fe2—C15B—C14B83.3 (3)
C24A—Fe1—C15A—C14A87.4 (3)C22B—Fe2—C15B—C14B159.3 (5)
C21A—Fe1—C15A—C14A169.8 (2)C12B—Fe2—C15B—C14B81.4 (2)
C11A—Fe1—C15A—C14A119.9 (3)C13B—Fe2—C15B—C14B37.3 (2)
C25A—Fe1—C15A—C14A130.2 (2)C11B—Fe2—C15B—C14B119.8 (3)
C22A—Fe1—C15A—C14A160.5 (6)C21B—Fe2—C15B—C14B165.5 (2)
C13A—Fe1—C15A—C14A37.6 (2)C25B—Fe2—C15B—C14B125.4 (2)
C12A—Fe1—C15A—C11A38.54 (19)C23B—Fe2—C15B—C11B166.7 (4)
C23A—Fe1—C15A—C11A173.6 (3)C24B—Fe2—C15B—C11B156.9 (2)
C24A—Fe1—C15A—C11A152.7 (2)C22B—Fe2—C15B—C11B39.4 (6)
C21A—Fe1—C15A—C11A70.3 (3)C12B—Fe2—C15B—C11B38.44 (18)
C25A—Fe1—C15A—C11A109.9 (2)C13B—Fe2—C15B—C11B82.5 (2)
C22A—Fe1—C15A—C11A40.6 (7)C21B—Fe2—C15B—C11B74.7 (2)
C13A—Fe1—C15A—C11A82.4 (2)C25B—Fe2—C15B—C11B114.8 (2)
C14A—Fe1—C15A—C11A119.9 (3)C14B—Fe2—C15B—C11B119.8 (3)
C12A—Fe1—C21A—C25A154.1 (2)C23B—Fe2—C21B—C25B82.3 (3)
C23A—Fe1—C21A—C25A82.0 (3)C24B—Fe2—C21B—C25B37.3 (3)
C24A—Fe1—C21A—C25A38.0 (2)C22B—Fe2—C21B—C25B121.3 (4)
C11A—Fe1—C21A—C25A110.6 (2)C12B—Fe2—C21B—C25B159.7 (3)
C15A—Fe1—C21A—C25A70.4 (3)C15B—Fe2—C21B—C25B75.0 (3)
C22A—Fe1—C21A—C25A120.2 (4)C13B—Fe2—C21B—C25B165.2 (3)
C13A—Fe1—C21A—C25A172.5 (3)C11B—Fe2—C21B—C25B116.7 (3)
C14A—Fe1—C21A—C25A40.7 (8)C14B—Fe2—C21B—C25B41.4 (6)
C12A—Fe1—C21A—C22A85.7 (3)C23B—Fe2—C21B—C22B39.0 (3)
C23A—Fe1—C21A—C22A38.2 (2)C24B—Fe2—C21B—C22B84.0 (3)
C24A—Fe1—C21A—C22A82.2 (3)C12B—Fe2—C21B—C22B79.0 (3)
C11A—Fe1—C21A—C22A129.2 (2)C15B—Fe2—C21B—C22B163.7 (3)
C25A—Fe1—C21A—C22A120.2 (4)C13B—Fe2—C21B—C22B43.9 (5)
C15A—Fe1—C21A—C22A169.4 (2)C11B—Fe2—C21B—C22B122.0 (3)
C13A—Fe1—C21A—C22A52.3 (4)C25B—Fe2—C21B—C22B121.3 (4)
C14A—Fe1—C21A—C22A160.9 (6)C14B—Fe2—C21B—C22B162.7 (5)
C25A—C21A—C22A—C23A0.1 (4)C25B—C21B—C22B—C23B0.2 (5)
Fe1—C21A—C22A—C23A59.4 (2)Fe2—C21B—C22B—C23B59.2 (3)
C25A—C21A—C22A—Fe159.3 (3)C25B—C21B—C22B—Fe259.0 (3)
C12A—Fe1—C22A—C21A111.4 (3)C23B—Fe2—C22B—C21B117.7 (4)
C23A—Fe1—C22A—C21A118.6 (4)C24B—Fe2—C22B—C21B78.7 (3)
C24A—Fe1—C22A—C21A80.8 (3)C12B—Fe2—C22B—C21B118.2 (3)
C11A—Fe1—C22A—C21A69.8 (3)C15B—Fe2—C22B—C21B46.5 (6)
C25A—Fe1—C22A—C21A37.0 (2)C13B—Fe2—C22B—C21B160.5 (2)
C15A—Fe1—C22A—C21A37.1 (8)C11B—Fe2—C22B—C21B76.6 (3)
C13A—Fe1—C22A—C21A154.4 (2)C25B—Fe2—C22B—C21B35.7 (3)
C14A—Fe1—C22A—C21A170.6 (3)C14B—Fe2—C22B—C21B167.7 (3)
C12A—Fe1—C22A—C23A130.0 (2)C24B—Fe2—C22B—C23B39.0 (3)
C24A—Fe1—C22A—C23A37.8 (2)C12B—Fe2—C22B—C23B124.0 (3)
C21A—Fe1—C22A—C23A118.6 (4)C15B—Fe2—C22B—C23B164.2 (5)
C11A—Fe1—C22A—C23A171.6 (2)C13B—Fe2—C22B—C23B81.7 (3)
C25A—Fe1—C22A—C23A81.6 (3)C11B—Fe2—C22B—C23B165.6 (3)
C15A—Fe1—C22A—C23A155.6 (6)C21B—Fe2—C22B—C23B117.7 (4)
C13A—Fe1—C22A—C23A87.1 (3)C25B—Fe2—C22B—C23B82.0 (3)
C14A—Fe1—C22A—C23A52.0 (4)C14B—Fe2—C22B—C23B50.0 (5)
C21A—C22A—C23A—C24A0.0 (4)C21B—C22B—C23B—C24B0.3 (5)
Fe1—C22A—C23A—C24A59.5 (3)Fe2—C22B—C23B—C24B60.7 (3)
C21A—C22A—C23A—Fe159.5 (2)C21B—C22B—C23B—Fe260.4 (3)
C12A—Fe1—C23A—C24A170.8 (2)C24B—Fe2—C23B—C22B117.5 (4)
C21A—Fe1—C23A—C24A81.3 (3)C12B—Fe2—C23B—C22B74.7 (3)
C11A—Fe1—C23A—C24A149.9 (6)C15B—Fe2—C23B—C22B167.9 (3)
C25A—Fe1—C23A—C24A37.8 (2)C13B—Fe2—C23B—C22B116.4 (3)
C15A—Fe1—C23A—C24A49.0 (4)C11B—Fe2—C23B—C22B40.6 (6)
C22A—Fe1—C23A—C24A119.1 (3)C21B—Fe2—C23B—C22B38.0 (3)
C13A—Fe1—C23A—C24A129.3 (2)C25B—Fe2—C23B—C22B80.4 (3)
C14A—Fe1—C23A—C24A85.8 (3)C14B—Fe2—C23B—C22B158.5 (2)
C12A—Fe1—C23A—C22A70.1 (3)C22B—Fe2—C23B—C24B117.5 (4)
C24A—Fe1—C23A—C22A119.1 (3)C12B—Fe2—C23B—C24B167.8 (2)
C21A—Fe1—C23A—C22A37.8 (2)C15B—Fe2—C23B—C24B50.3 (5)
C11A—Fe1—C23A—C22A30.8 (8)C13B—Fe2—C23B—C24B126.1 (3)
C25A—Fe1—C23A—C22A81.3 (3)C11B—Fe2—C23B—C24B158.1 (4)
C15A—Fe1—C23A—C22A168.1 (3)C21B—Fe2—C23B—C24B79.5 (3)
C13A—Fe1—C23A—C22A111.6 (2)C25B—Fe2—C23B—C24B37.1 (3)
C14A—Fe1—C23A—C22A155.1 (2)C14B—Fe2—C23B—C24B83.9 (3)
C22A—C23A—C24A—C25A0.1 (4)C22B—C23B—C24B—C25B0.7 (5)
Fe1—C23A—C24A—C25A59.6 (3)Fe2—C23B—C24B—C25B60.3 (3)
C22A—C23A—C24A—Fe159.7 (3)C22B—C23B—C24B—Fe261.0 (3)
C12A—Fe1—C24A—C25A155.5 (7)C23B—Fe2—C24B—C25B118.9 (4)
C23A—Fe1—C24A—C25A119.0 (4)C22B—Fe2—C24B—C25B80.2 (3)
C21A—Fe1—C24A—C25A37.6 (2)C12B—Fe2—C24B—C25B156.3 (5)
C11A—Fe1—C24A—C25A48.0 (4)C15B—Fe2—C24B—C25B82.5 (3)
C15A—Fe1—C24A—C25A85.0 (3)C13B—Fe2—C24B—C25B167.3 (2)
C22A—Fe1—C24A—C25A81.2 (3)C11B—Fe2—C24B—C25B44.9 (5)
C13A—Fe1—C24A—C25A168.8 (2)C21B—Fe2—C24B—C25B36.7 (2)
C14A—Fe1—C24A—C25A128.4 (3)C14B—Fe2—C24B—C25B125.5 (3)
C12A—Fe1—C24A—C23A36.5 (9)C22B—Fe2—C24B—C23B38.7 (2)
C21A—Fe1—C24A—C23A81.4 (3)C12B—Fe2—C24B—C23B37.3 (7)
C11A—Fe1—C24A—C23A167.0 (3)C15B—Fe2—C24B—C23B158.6 (2)
C25A—Fe1—C24A—C23A119.0 (4)C13B—Fe2—C24B—C23B73.7 (3)
C15A—Fe1—C24A—C23A156.0 (2)C11B—Fe2—C24B—C23B163.8 (3)
C22A—Fe1—C24A—C23A37.8 (2)C21B—Fe2—C24B—C23B82.2 (3)
C13A—Fe1—C24A—C23A72.2 (3)C25B—Fe2—C24B—C23B118.9 (4)
C14A—Fe1—C24A—C23A112.6 (2)C14B—Fe2—C24B—C23B115.6 (3)
C22A—C21A—C25A—C24A0.1 (4)C22B—C21B—C25B—C24B0.6 (5)
Fe1—C21A—C25A—C24A59.5 (3)Fe2—C21B—C25B—C24B59.1 (3)
C22A—C21A—C25A—Fe159.4 (2)C22B—C21B—C25B—Fe258.5 (3)
C23A—C24A—C25A—C21A0.1 (4)C23B—C24B—C25B—C21B0.8 (5)
Fe1—C24A—C25A—C21A59.6 (3)Fe2—C24B—C25B—C21B59.7 (3)
C23A—C24A—C25A—Fe159.5 (3)C23B—C24B—C25B—Fe258.9 (3)
C12A—Fe1—C25A—C21A51.1 (4)C23B—Fe2—C25B—C21B81.0 (3)
C23A—Fe1—C25A—C21A81.0 (3)C24B—Fe2—C25B—C21B119.6 (4)
C24A—Fe1—C25A—C21A118.9 (4)C22B—Fe2—C25B—C21B36.5 (2)
C11A—Fe1—C25A—C21A85.6 (3)C12B—Fe2—C25B—C21B44.6 (5)
C15A—Fe1—C25A—C21A129.0 (2)C15B—Fe2—C25B—C21B124.4 (2)
C22A—Fe1—C25A—C21A37.0 (2)C13B—Fe2—C25B—C21B158.0 (5)
C13A—Fe1—C25A—C21A163.0 (6)C11B—Fe2—C25B—C21B80.6 (3)
C14A—Fe1—C25A—C21A168.7 (2)C14B—Fe2—C25B—C21B165.9 (2)
C12A—Fe1—C25A—C24A170.0 (3)C23B—Fe2—C25B—C24B38.6 (3)
C23A—Fe1—C25A—C24A37.8 (2)C22B—Fe2—C25B—C24B83.1 (3)
C21A—Fe1—C25A—C24A118.9 (4)C12B—Fe2—C25B—C24B164.2 (4)
C11A—Fe1—C25A—C24A155.6 (2)C15B—Fe2—C25B—C24B116.0 (3)
C15A—Fe1—C25A—C24A112.2 (3)C13B—Fe2—C25B—C24B38.4 (7)
C22A—Fe1—C25A—C24A81.8 (3)C11B—Fe2—C25B—C24B159.8 (3)
C13A—Fe1—C25A—C24A44.1 (8)C21B—Fe2—C25B—C24B119.6 (4)
C14A—Fe1—C25A—C24A72.4 (3)C14B—Fe2—C25B—C24B74.5 (3)
C15A—C11A—C31A—C36A175.8 (3)C12B—C11B—C31B—C32B173.8 (3)
C12A—C11A—C31A—C36A1.3 (5)C15B—C11B—C31B—C32B1.3 (5)
Fe1—C11A—C31A—C36A88.6 (4)Fe2—C11B—C31B—C32B86.1 (4)
C15A—C11A—C31A—C32A1.3 (5)C12B—C11B—C31B—C36B5.8 (5)
C12A—C11A—C31A—C32A175.8 (3)C15B—C11B—C31B—C36B179.1 (3)
Fe1—C11A—C31A—C32A88.5 (4)Fe2—C11B—C31B—C36B93.5 (4)
C36A—C31A—C32A—C33A1.2 (5)C36B—C31B—C32B—C33B0.4 (5)
C11A—C31A—C32A—C33A176.0 (3)C11B—C31B—C32B—C33B179.2 (3)
C31A—C32A—C33A—C34A0.4 (5)C31B—C32B—C33B—C34B0.4 (5)
C32A—C33A—C34A—C35A1.7 (5)C32B—C33B—C34B—C35B0.7 (5)
C32A—C33A—C34A—C1A177.1 (3)C32B—C33B—C34B—C1B176.2 (3)
O1A—C1A—C34A—C35A6.8 (5)O1B—C1B—C34B—C35B15.6 (5)
N1A—C1A—C34A—C35A174.4 (3)N1B—C1B—C34B—C35B164.6 (3)
O1A—C1A—C34A—C33A171.9 (3)O1B—C1B—C34B—C33B161.3 (3)
N1A—C1A—C34A—C33A6.8 (5)N1B—C1B—C34B—C33B18.5 (5)
C33A—C34A—C35A—C36A1.3 (5)C33B—C34B—C35B—C36B0.2 (6)
C1A—C34A—C35A—C36A177.5 (3)C1B—C34B—C35B—C36B176.9 (4)
C34A—C35A—C36A—C31A0.3 (6)C34B—C35B—C36B—C31B0.7 (6)
C32A—C31A—C36A—C35A1.6 (5)C32B—C31B—C36B—C35B1.0 (6)
C11A—C31A—C36A—C35A175.7 (3)C11B—C31B—C36B—C35B178.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O2Bi0.882.122.972 (4)162
N1B—H1B···O2Aii0.882.182.971 (3)149
C33A—H33A···O2Bi0.952.243.184 (5)173
C33B—H33B···O2Aii0.952.463.395 (4)167
C7A—H72···N2Bii0.992.683.654 (6)168
C7B—H75···N2Ai0.992.563.536 (5)169
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC23H19FeNO3SC24H22FeN2O3S
Mr445.30474.36
Crystal system, space groupMonoclinic, P21/nTriclinic, P1
Temperature (K)150150
a, b, c (Å)10.1428 (3), 8.0965 (2), 23.0557 (7)12.7466 (4), 12.8752 (8), 13.5661 (7)
α, β, γ (°)90, 95.4912 (14), 9091.811 (3), 106.096 (3), 92.735 (3)
V3)1884.67 (9)2134.35 (18)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.940.83
Crystal size (mm)0.22 × 0.16 × 0.100.20 × 0.07 × 0.04
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
Multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
Tmin, Tmax0.820, 0.9120.851, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
6335, 4313, 3441 15129, 9714, 5617
Rint0.0490.069
(sin θ/λ)max1)0.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.088, 1.06 0.050, 0.127, 1.00
No. of reflections43139714
No. of parameters268573
No. of restraints06
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.630.35, 0.47

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2002) and ORTEX (McArdle, 1995), SHELXL97, NRCVAX (Gabe et al., 1989) and PREP8 (Ferguson, 1998).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.81 (2)2.14 (2)2.768 (2)134 (2)
C5—H5···O2i0.952.563.411 (3)150
C15—H15···O1ii0.952.563.401 (3)147
C32—H32···O1ii0.952.653.577 (2)165
C7—H7C···Cg3iii0.982.833.604 (2)136
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x+1/2, y1/2, z1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O2Bi0.882.122.972 (4)162
N1B—H1B···O2Aii0.882.182.971 (3)149
C33A—H33A···O2Bi0.952.243.184 (5)173
C33B—H33B···O2Aii0.952.463.395 (4)167
C7A—H72···N2Bii0.992.683.654 (6)168
C7B—H75···N2Ai0.992.563.536 (5)169
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

SA, JFG and PTMK thank Dublin City University and the Department of Education, Ireland, for funding the National Institute for Cellular Biotechnology (PRTLI programme, round #3, 2001–2008).

References

First citationAdams, R. D. (1999). J. Organomet. Chem. 619, 1–875.  Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAlley, S., Gallagher, J. F., Kenny, P. T. M. & Lough, A. J. (2005). Acta Cryst. E61, m201–m203.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAnderson, F. P., Gallagher, J. F., Kenny, P. T. M., Ryan, C. & Savage, D. (2003). Acta Cryst. C59, m13–m15.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBone, S. F., Smart, B. A., Gierens, H., Morrison, C. A., Brain, P. T. & Rankin, D. W. H. (1999). Phys. Chem. Chem. Phys. 1, 2421–2426.  Web of Science CrossRef CAS Google Scholar
First citationFerguson, G. (1998). PREP8. University of Guelph, Canada.  Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGallagher, J. F., Hudson, R. D. A. & Manning, A. R. (2001). Acta Cryst. C57, 28–30.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHudson, R. D. A., Asselsbergh, I., Clays, K., Cuffe, L. P., Gallagher, J. F., Manning, A. R., Persoons, A. & Wostyn, K. (2001). J. Organomet. Chem. 637, 435–444.  Web of Science CSD CrossRef Google Scholar
First citationMcArdle, P. (1995). J. Appl. Cryst. 28, 65.  CrossRef IUCr Journals Google Scholar
First citationNonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSavage, D., Gallagher, J. F., Ida, Y. & Kenny, P. T. M. (2002). Inorg. Chem. Commun. 5, 1034–1040.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2002). PLATON. University of Utrecht, The Netherlands.  Google Scholar
First citationTogni, A. & Halterman, R. L. (1998). Editors. Metallocenes. Weinheim, Germany: Wiley-VCH.  Google Scholar
First citationTogni, A. & Hayashi, T. (1995). Editors. Ferrocenes: Homogeneous Catalysis – Organic Synthesis – Materials Science. Weinheim, Germany: VCH.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds