Download citation
Download citation
link to html
X-ray studies reveal that tert-butyl (6S)-6-iso­butyl-2,4-dioxo­piperidine-1-carboxyl­ate occurs in the 4-enol form, viz. tert-butyl (6S)-4-hydroxy-6-iso­butyl-2-oxo-1,2,5,6-tetra­hydropyri­dine-1-carboxyl­ate, C14H23NO4, when crystals are grown from a mixture of di­chloro­methane and pentane, and has an axial orientation of the iso­butyl side chain at the 6-position of the piperidine ring. Reduction of the keto functionality leads predominantly to the corresponding [beta]-hydroxy­lated [delta]-lactam, tert-butyl (4R,6S)-4-hydroxy-6-iso­butyl-2-oxo­piperidine-1-car­boxyl­ate, C14H25NO4, with a cis configuration of the 4-hydroxy and 6-iso­butyl groups. The two compounds show similar molecular packing driven by strong O-H...O=C hydrogen bonds, leading to infinite chains in the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103024053/sx1124sup1.cif
Contains datablocks global, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103024053/sx1124IIsup2.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103024053/sx1124IIIsup3.hkl
Contains datablock III

CCDC references: 235345; 235346

Comment top

The δ-lactam ring system is an important structural subunit in many natural products as well as a useful precursor for the asymmetric synthesis of a variety of biologically relevant compounds, including δ-amino acids (Rodriguez et al., 1990; Casimir et al., 2000), 5-hydroxylysine derivatives (Marin et al., 2002) and substituted piperidines (Varea et al., 1995; Enders & Bartzen, 1997; Hanessian et al., 1997; Laschat & Dickner, 2000). In the course of our studies on the synthesis of enantiopure δ-lactams, monohydroxylated at the β-position, we have investigated the stereoselective reduction of various 6-substituted 2,4-dioxo-piperidine-1-carboxylates, including tert-butyl (6S)-6-isobutyl-2,4-dioxo-piperidine-carboxylate, (I). The side chain at the 6-position in (I) is believed to adopt a quasi-axial orientation to minimize pseudo-allylic A(1,3) strain, and should dictate the stereochemical outcome of the reduction reaction. We report here the crystal structures of both the enol form, (II) [tert-butyl (6S)-4-hydroxy-6-isobutyl-2-oxo-2,5-dihydro(2H)-pyridine- carboxylate], of the diketo compound (I) and the β-hydroxylated-δ-lactam, (III) [tert-butyl (4R,6S)-4-hydroxy-6-isobutyl-2-oxo-1-piperidine-carboxylate], obtained by reduction of the keto functionality in (I).

The keto–enol equilibrium between (I) and (II) is strongly influenced by the solvent. While only the keto form, (I), is observed by NMR spectroscopy in CDCl3, the enol form is populated exclusively in DMSO-d6. The reduction of (I) by NaBH4 in a mixture of CH2Cl2 and 10% acetic acid gave the desired 4-hydroxy derivative in 93% yield, with a preference for the expected cis isomer, (III) (diastereomeric ratio = 9:1). The ratio of cis and trans diastereomers was determined by C18 RP-HPLC. Isomer (III) was finally isolated in 71% yield and greater than 99% diastereomeric excess after crystallization of the crude mixture.

Compound (II) crystallizes with Z'= 2 in an orthorhombic cell, whereas the reduced (III) crystallizes with Z' = 1 in a monoclinic cell. The absolute configuration of atom C6 atom in both compounds was assumed from our knowledge of the stereochemistry of the precursor Boc-βLeu-OH compound (Seebach et al., 1996). Views of the independent molecules of (II) and (III), with atom-numbering schemes, are shown in Figs. 1 and 2, respectively. The bond lengths and angles in (II) and (III) are in agreement with those of related piperidine rings (Marin et al., 2002; Thomas et al., 1996; Bocelli & Grenier-Loustalot 1981) and with Allen et al. (1987). Selected geometrical data are given in Tables 1 and 3.

In the crystal structure of (II), the two independent molecules, (IIA) and (IIB), have similar conformations. The piperidine ring adopts a sofa conformation, with the C atom at the 6-position displaced from the mean plane defined by the five other atoms of the ring [by 0.562 (4) and 0.618 (5) Å in (IIA) and (IIB), respectively]. The sums of the bond angles about atom N1 [359.9 (s.u.?) °] in (IIA) and about atom N21 [359.6 (s.u.?)°] in (IIB) indicate a planar geometry for the N atom of both independent piperidine rings. The dihedral angles around the C11—N1 and N1—C2 bonds in (IIA) [the bonds C31—N21 and N21—C22 in (IIB); Table 2] show that the amido moiety of the ring and the t-butyloxycarbonyl group are nearly coplanar. The observed C4—O2 and C3—C4 bond distances in (IIA) [C24—O22 and C23—C24 in (IIB)] indicate that these bonds correspond to single and double bonds, respectively, revealing the presence of an enolic tautomer in the solid state. In addition, the hydroxy group at the 4-position, the only potential strong proton donor of the molecules of (II), is involved in the crystal packing described below. The expected axial orientation of the C6-substituent due to the minimization of the allylic A(1,3) strain was confirmed in (IIA) and (IIB), as can be seen from the C7—C6—C5—C4 [78.9 (4)°] and C27—C26—C25—C24 [74.8 (4)°] dihedral angles. This side-chain orientation could induce the very high diasteroselectivity observed in the reduction of (I) into (III).

The crystal structure of (III) reveals the selected (4R,6S)- diastereomer obtained by reduction of (I). The reduced piperidine ring at the 4-position adopts a chair conformation, with atoms N1 and C4 displaced on opposite sides of the C2/C3/C5/C6 mean plane by −0.221 (5) and 0.659 (1) Å, respectively. The sum of the bond angles about atom N1 [355.9 (s.u.?)°] reveals a planar geometry for the N atom in (III), which is? less pronounced than in (II). The dihedral angle around the urethane bound (Table 3) shows that the amido moiety of the ring and the t-butyloxycarbonyl group are not coplanar and that the t-butyloxycarbonyl group in (II) and (III) have very different orientations relative to the ring. The hydroxy and isobutyl groups in the 4- and 6-positions of the piperidine ring assume an equatorial orientation, as can be seen from the C2—C3—C4—O2 [170.1 (3)°] and C4—C5—C6—C7 [166.7 (4)°] torsional angles.

The rules governing the crystal packing of (II) and (III) are similar. First, strong hydrogen bonds, involving the hydroxy group at the 4-position as proton donor and the carbonyl group at the 2-position as proton acceptor, link the molecules into infinite C(6) (Bernstein et al., 1995) chains (Tables 2 and 4). Second, van der Waals interactions between the chains produce bilayers with aliphatic groups on the surfaces, and finally, the bilayers pack together to produce a loosely held three-dimensional structure. In the crystal of (II), the hydrogen-bonded molecules lead to helical columns running along the [100] direction, and planar zigzag chains formed by the screw axes are observed in the crystal of (III). The bilayers are parallel to the (010) and (001) planes in the crystals of (II) (Fig. 3) and of (III) (Fig. 4), respectively.

Experimental top

For the preparation of tert-butyl (6S)-4-hydroxy-6-isobutyl-2-oxo-2,5-dihydro(2H)-pyridine-carboxylate, (II), N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide (4.44 g, 23.14 mmol), 4-dimethylaminopyridine (2.83 g, 23.14 mmol) and Meldrum's acid (2.22 g, 15.43 mmol) were added to a solution of Boc-βLeu-OH (Seebach et al., 1996) (3.57 g, 15.43 mmol) in dichloromethane at 273 K. The mixture was allowed to reach room temperature, stirred for 3 h and then extracted with 1 N KHSO4. The organic layer was dried over Na2SO4, filtered and concentrated in vacuo. The residue was dissolved in AcOEt to afford a ca 0.1 M solution, which was refluxed for 5 h. After being allowed to cool to room temperature, the mixture was extracted with 1 N KHSO4 and brine. Drying over Na2SO4 and evaporation of the filtrate afforded crude (II), which was recrystallized from dichloromethane/pentane to give pure (II) (2.69 g, 68%). 1H NMR (300 MHz, DMSO-d6): δ 4.94 (m, 1H), 4.40–4.34 (m, 1H), 3.32 (bs, 1H), 2.85 (m, 1H), 2.18–2.07 (m, 1H), 1.56–1.34 (m, 3H), 1.43 (s, 9H), 0.89 (d, J = 6.6 Hz, 3H), 0.87 (d, J = 6.8 Hz, 3H). Single crystals suitable for X-ray analysis were grown from a mixture of dichloromethane and pentane. For the preparation of tert-butyl (4R,6S)-4-hydroxy-6-isobutyl-2-oxo-1-piperidine-carboxylate, (III), to a stirred solution of (I) (100 mg, 0.37 mmol) in a mixture of dichloromethane and of acetic acid (10% v/v) at room temperature, was added sodium borohydride (42 mg, 1.11 mmol). After 72 h, the mixture was quenched with water. Dichloromethane was evaporated under reduced pressure. Ethyl acetate was added and the organic phase was extracted with water and brine. The organic layer was dried over Na2SO4, filtered and evaporated to afford a residue, which was purified by flash chromatography (ethyl acetate/hexane, 6:4) to give a 9:1 mixture (94 mg, 93%) of (III) and the corresponding (4S,6S)-diastereomer. Single crystals of (III) suitable for X-ray analysis were grown from a mixture of dichloromethane and pentane (m.p. 367–368 K). 1H NMR (300 MHz, CDCl3): δ 4.18–4.09 (m, 2H), 2.82 (ddd, J = 16.6, 5.7, 1.8 Hz, 1H), 2.59 (m, 1H), 2.48 (dd, J = 16.6, 8.7 Hz, 1H), 2.30–2.21 (m, 1H), 1.71–1.57 (m, 3H), 1.51 (s, 9H), 0.92 (d, J = 4.2 Hz, 3H), 0.90 (d, J = 4.2 Hz, 3H).

Refinement top

Because of the lack of any significant anomalous dispersion effects, the absolute configurations of (II) and (III) could not be determined from the diffraction experiments but were, in any case, known from the method of synthesis. Bijvoet pairs were merged prior to refinement. All H atoms were placed at calculated positions and refined using a riding model, with C—H distances of 0.93–0.97 Å and an O—H distance of 0.82 Å. The H-atom Uiso parameters were fixed at 1.2Ueq(C) for methine, methylene and the aromatic CH groups, at 1.3Ueq(O) for the OH group, and at 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: COLLECT (Nonius, 1998) for (II); CAD-4 Software (Enraf–Nonius, 1989) for (III). Cell refinement: COLLECT for (II); CAD-4 Software for (III). Data reduction: HKL Suite (Otwinoski & Minor, 1997) for (II); XCAD4 (Harms & Wocadlo, 1995) for (III). For both compounds, program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and WebLab ViewerPro 3.5 (MSI, 1999) for (II); ORTEP-3 for Windows (Farrugia, 1997)and WebLab ViewerPro 3.5 (MSI, 1999) for (III). For both compounds, software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) view of the asymmetric unit of (II), with the atom-numbering scheme and displacement ellipsoids shown at the 25% probability level. H atoms, except those of the hydroxy groups, have been omitted for clarity.
[Figure 2] Fig. 2. ORTEP-3 (Farrugia, 1997) view of the asymmetric unit of (III), with the atom-numbering scheme and displacement ellipsoids shown at the 25% probability. H atoms, except those of the hydroxy groups, have been omitted for clarity.
[Figure 3] Fig. 3. Part of the crystal structure of (II), showing the formation C(7) chains along [100]. Intermolecular hydrogen bonds are marked as dashed lines.
[Figure 4] Fig. 4. Part of the crystal structure of (III), showing the formation C(6) chains along [010]. Intermolecular hydrogen bonds are marked as dashed lines.
(II) top
Crystal data top
C14H23NO4F(000) = 1168
Mr = 269.33Dx = 1.13 Mg m3
Orthorhombic, P21212Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 2abCell parameters from 3128 reflections
a = 14.6670 (3) Åθ = 3.3–25.4°
b = 34.0857 (8) ŵ = 0.08 mm1
c = 6.3334 (1) ÅT = 293 K
V = 3166.29 (11) Å3Prism, colorless
Z = 80.1 × 0.1 × 0.1 mm
Data collection top
Nonius KappaCCD
diffractometer
2116 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.047
Graphite monochromatorθmax = 25.4°, θmin = 3.3°
oscillation scansh = 1717
14369 measured reflectionsk = 4040
3294 independent reflectionsl = 77
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.0772P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.135(Δ/σ)max = 0.002
S = 1.02Δρmax = 0.14 e Å3
3294 reflectionsΔρmin = 0.16 e Å3
344 parameters
Crystal data top
C14H23NO4V = 3166.29 (11) Å3
Mr = 269.33Z = 8
Orthorhombic, P21212Mo Kα radiation
a = 14.6670 (3) ŵ = 0.08 mm1
b = 34.0857 (8) ÅT = 293 K
c = 6.3334 (1) Å0.1 × 0.1 × 0.1 mm
Data collection top
Nonius KappaCCD
diffractometer
2116 reflections with I > 2σ(I)
14369 measured reflectionsRint = 0.047
3294 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.02Δρmax = 0.14 e Å3
3294 reflectionsΔρmin = 0.16 e Å3
344 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.67525 (19)0.62697 (8)0.4110 (5)0.0473 (8)
C20.6717 (3)0.64962 (12)0.5930 (7)0.0538 (10)
O10.71251 (19)0.63905 (8)0.7551 (5)0.0711 (8)
C30.6174 (2)0.68499 (11)0.5880 (7)0.0512 (10)
H30.6090.69910.71210.061*
C40.5793 (2)0.69790 (10)0.4106 (6)0.0466 (9)
O20.53682 (15)0.73237 (8)0.3879 (5)0.0590 (7)
H20.54870.74650.4890.077*
C50.5850 (2)0.67514 (10)0.2126 (6)0.0478 (9)
H5A0.63330.68590.12570.057*
H5B0.52810.67810.13580.057*
C60.6032 (2)0.63155 (10)0.2475 (6)0.0458 (9)
H60.62630.62050.1150.055*
C70.5192 (2)0.60814 (12)0.3125 (7)0.0607 (11)
H7A0.53880.58230.35750.073*
H7B0.49170.62090.43360.073*
C80.4470 (3)0.60325 (14)0.1446 (11)0.0945 (18)
H80.4260.62950.10430.113*
C90.3645 (3)0.5808 (2)0.2351 (14)0.160 (4)
H9A0.34180.59430.35720.24*
H9B0.3830.55480.27430.24*
H9C0.31740.57930.13010.24*
C100.4823 (5)0.5835 (3)0.0508 (11)0.166 (4)
H10A0.4350.58270.15550.249*
H10B0.50110.55730.01710.249*
H10C0.53340.5980.10480.249*
C110.7439 (3)0.59891 (12)0.3857 (7)0.0574 (11)
O30.8146 (2)0.59845 (9)0.4805 (6)0.0876 (10)
O40.71767 (17)0.57297 (8)0.2400 (5)0.0639 (8)
C120.7791 (3)0.54184 (13)0.1668 (9)0.0784 (14)
C130.7987 (5)0.51378 (16)0.3422 (10)0.126 (2)
H13A0.83470.52660.44820.188*
H13B0.83160.49160.28780.188*
H13C0.74240.5050.40330.188*
C140.8640 (4)0.55960 (17)0.0677 (12)0.130 (3)
H14A0.84670.57620.04780.196*
H14B0.90280.5390.01680.196*
H14C0.8960.57480.17150.196*
C150.7212 (4)0.52218 (16)0.0028 (11)0.118 (2)
H15A0.71080.54030.11640.177*
H15B0.66380.51440.05670.177*
H15C0.75250.49950.05560.177*
N210.57893 (18)0.80358 (8)1.0282 (4)0.0448 (7)
C220.5388 (2)0.79918 (11)0.8310 (6)0.0467 (9)
O210.57911 (17)0.78284 (8)0.6841 (4)0.0632 (8)
C230.4486 (2)0.81548 (10)0.8038 (6)0.0495 (9)
H230.42510.8180.6680.059*
C240.3983 (2)0.82689 (11)0.9659 (6)0.0447 (9)
O220.31132 (17)0.83671 (9)0.9349 (5)0.0641 (8)
H220.29180.84811.03980.11 (2)*
C250.4364 (2)0.82697 (11)1.1844 (6)0.0441 (9)
H25A0.42090.80251.25390.053*
H25B0.40920.84821.26440.053*
C260.5401 (2)0.83190 (10)1.1820 (6)0.0428 (8)
H260.56310.8251.32240.051*
C270.5719 (2)0.87366 (10)1.1321 (6)0.0495 (9)
H27A0.63730.8731.10840.059*
H27B0.54360.88171.00080.059*
C280.5525 (3)0.90469 (11)1.2962 (7)0.0648 (12)
H280.48620.90651.31330.078*
C290.5867 (3)0.94444 (12)1.2209 (9)0.0933 (17)
H29A0.57380.96391.32620.14*
H29B0.55670.95131.09150.14*
H29C0.65130.94321.19760.14*
C300.5929 (4)0.89587 (15)1.5082 (8)0.1055 (19)
H30A0.5770.91631.60560.158*
H30B0.65810.89431.49610.158*
H30C0.56960.87131.55880.158*
C310.6623 (2)0.78429 (12)1.0710 (7)0.0501 (10)
O230.68661 (17)0.75421 (8)0.9922 (5)0.0656 (7)
O240.70741 (15)0.80504 (7)1.2173 (5)0.0602 (8)
C320.7965 (2)0.79121 (12)1.2991 (7)0.0619 (12)
C330.7857 (3)0.75331 (13)1.4161 (7)0.0675 (12)
H33A0.74080.75641.5250.101*
H33B0.8430.7461.47830.101*
H33C0.76650.73321.31980.101*
C340.8646 (3)0.78786 (16)1.1188 (9)0.0940 (18)
H34A0.8470.76671.02730.141*
H34B0.92420.78281.17490.141*
H34C0.86540.81191.04030.141*
C350.8215 (3)0.82383 (15)1.4499 (11)0.109 (2)
H35A0.77730.8251.56160.164*
H35B0.82220.84841.37550.164*
H35C0.88070.81881.50860.164*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0465 (16)0.0514 (18)0.0441 (19)0.0041 (14)0.0016 (15)0.0039 (16)
C20.054 (2)0.061 (3)0.046 (3)0.0099 (19)0.000 (2)0.002 (2)
O10.085 (2)0.081 (2)0.0476 (18)0.0023 (16)0.0187 (17)0.0029 (15)
C30.060 (2)0.054 (2)0.040 (2)0.0039 (18)0.003 (2)0.007 (2)
C40.0448 (19)0.047 (2)0.048 (2)0.0035 (17)0.0073 (19)0.005 (2)
O20.0682 (16)0.0536 (16)0.0552 (17)0.0068 (13)0.0008 (14)0.0087 (13)
C50.0477 (19)0.053 (2)0.043 (2)0.0000 (17)0.0048 (18)0.0006 (18)
C60.047 (2)0.049 (2)0.041 (2)0.0006 (16)0.0024 (18)0.0064 (17)
C70.053 (2)0.055 (2)0.074 (3)0.0113 (18)0.001 (2)0.007 (2)
C80.076 (3)0.072 (3)0.135 (6)0.012 (2)0.034 (4)0.007 (3)
C90.072 (3)0.150 (6)0.257 (10)0.046 (3)0.010 (5)0.084 (7)
C100.145 (6)0.268 (10)0.085 (5)0.095 (6)0.026 (5)0.030 (6)
C110.055 (3)0.063 (3)0.054 (3)0.000 (2)0.005 (2)0.005 (2)
O30.0653 (17)0.099 (3)0.098 (3)0.0228 (16)0.021 (2)0.007 (2)
O40.0664 (16)0.0593 (17)0.0661 (19)0.0117 (14)0.0004 (15)0.0088 (16)
C120.083 (3)0.054 (3)0.098 (4)0.020 (2)0.017 (3)0.002 (3)
C130.177 (6)0.074 (4)0.126 (6)0.037 (4)0.002 (5)0.016 (4)
C140.117 (4)0.099 (4)0.175 (7)0.015 (3)0.068 (5)0.016 (5)
C150.147 (5)0.084 (4)0.122 (5)0.025 (3)0.008 (5)0.035 (4)
N210.0443 (16)0.0482 (17)0.0419 (19)0.0032 (14)0.0007 (15)0.0070 (15)
C220.048 (2)0.051 (2)0.041 (2)0.0075 (17)0.0055 (19)0.0046 (19)
O210.0627 (16)0.0788 (19)0.0481 (17)0.0039 (14)0.0083 (15)0.0197 (15)
C230.050 (2)0.065 (2)0.034 (2)0.0022 (18)0.0001 (18)0.0037 (18)
C240.039 (2)0.051 (2)0.044 (2)0.0023 (16)0.0021 (17)0.0030 (18)
O220.0477 (15)0.095 (2)0.0499 (18)0.0041 (14)0.0024 (14)0.0056 (17)
C250.049 (2)0.047 (2)0.037 (2)0.0035 (16)0.0047 (18)0.0012 (17)
C260.0442 (18)0.046 (2)0.038 (2)0.0023 (16)0.0047 (17)0.0044 (17)
C270.0489 (19)0.050 (2)0.050 (2)0.0041 (16)0.0027 (19)0.0034 (18)
C280.068 (3)0.047 (2)0.079 (3)0.0059 (19)0.003 (2)0.013 (2)
C290.120 (4)0.052 (3)0.108 (4)0.017 (2)0.020 (4)0.000 (3)
C300.184 (6)0.075 (4)0.058 (3)0.022 (3)0.017 (4)0.010 (3)
C310.049 (2)0.051 (2)0.050 (2)0.0031 (19)0.005 (2)0.002 (2)
O230.0715 (16)0.0526 (17)0.0726 (19)0.0127 (13)0.0023 (16)0.0107 (15)
O240.0467 (14)0.0546 (16)0.079 (2)0.0044 (12)0.0148 (14)0.0118 (15)
C320.041 (2)0.061 (3)0.084 (3)0.0023 (18)0.009 (2)0.002 (2)
C330.052 (2)0.078 (3)0.072 (3)0.003 (2)0.002 (2)0.009 (3)
C340.052 (2)0.107 (4)0.123 (5)0.000 (2)0.014 (3)0.040 (4)
C350.076 (3)0.084 (4)0.168 (6)0.003 (2)0.062 (4)0.027 (4)
Geometric parameters (Å, º) top
C3—C41.330 (5)C32—C331.497 (6)
O2—C41.338 (4)C32—C351.511 (6)
C23—C241.322 (5)C32—C341.521 (6)
O22—C241.333 (4)C7—C81.510 (7)
O2—H20.82C7—H7A0.97
O1—C21.242 (5)C7—H7B0.97
O24—C311.341 (5)C33—H33A0.96
O24—C321.483 (4)C33—H33B0.96
O21—C221.236 (4)C33—H33C0.96
O4—C111.335 (5)C34—H34A0.96
O4—C121.467 (5)C34—H34B0.96
O23—C311.195 (4)C34—H34C0.96
O22—H220.82C30—H30A0.96
N21—C221.389 (4)C30—H30B0.96
N21—C311.414 (5)C30—H30C0.96
N21—C261.485 (4)C12—C131.494 (7)
N1—C21.389 (5)C12—C141.520 (7)
N1—C111.398 (5)C12—C151.524 (7)
N1—C61.487 (5)C8—C101.501 (9)
C3—C21.445 (5)C8—C91.542 (8)
C3—H30.93C8—H80.98
O3—C111.199 (5)C35—H35A0.96
C23—C241.322 (5)C35—H35B0.96
C23—C221.445 (5)C35—H35C0.96
C23—H230.93C29—H29A0.96
C6—C71.525 (5)C29—H29B0.96
C6—C51.526 (5)C29—H29C0.96
C6—H60.98C15—H15A0.96
C24—C251.493 (5)C15—H15B0.96
C26—C251.530 (5)C15—H15C0.96
C26—C271.531 (5)C14—H14A0.96
C26—H260.98C14—H14B0.96
C25—H25A0.97C14—H14C0.96
C25—H25B0.97C13—H13A0.96
C4—C51.477 (5)C13—H13B0.96
C5—H5A0.97C13—H13C0.96
C5—H5B0.97C10—H10A0.96
C27—C281.510 (6)C10—H10B0.96
C27—H27A0.97C10—H10C0.96
C27—H27B0.97C9—H9A0.96
C28—C301.498 (6)C9—H9B0.96
C28—C291.522 (6)C9—H9C0.96
C28—H280.98
C4—O2—H2109.5C8—C7—H7A108.3
C31—O24—C32120.6 (3)C6—C7—H7A108.4
C11—O4—C12121.4 (3)C8—C7—H7B108.4
C24—O22—H22109.5C6—C7—H7B108.4
C22—N21—C31119.3 (3)H7A—C7—H7B107.4
C22—N21—C26119.8 (3)C32—C33—H33A109.5
C31—N21—C26120.5 (3)C32—C33—H33B109.5
C2—N1—C11120.2 (3)H33A—C33—H33B109.5
C2—N1—C6119.5 (3)C32—C33—H33C109.5
C11—N1—C6120.2 (3)H33A—C33—H33C109.5
C4—C3—C2121.8 (4)H33B—C33—H33C109.5
C4—C3—H3119.1C32—C34—H34A109.5
C2—C3—H3119.1C32—C34—H34B109.5
C24—C23—C22122.1 (4)H34A—C34—H34B109.5
C24—C23—H23119C32—C34—H34C109.5
C22—C23—H23119H34A—C34—H34C109.5
N1—C6—C7109.3 (3)H34B—C34—H34C109.5
N1—C6—C5109.1 (3)C28—C30—H30A109.5
C7—C6—C5114.0 (3)C28—C30—H30B109.5
N1—C6—H6108.1H30A—C30—H30B109.5
C7—C6—H6108.1C28—C30—H30C109.5
C5—C6—H6108.1H30A—C30—H30C109.5
C23—C24—O22119.6 (3)H30B—C30—H30C109.5
C23—C24—C25120.8 (3)O4—C12—C13110.3 (4)
O22—C24—C25119.6 (3)O4—C12—C14110.2 (4)
O1—C2—N1120.5 (4)C13—C12—C14113.9 (5)
O1—C2—C3121.7 (4)O4—C12—C15101.5 (4)
N1—C2—C3117.8 (4)C13—C12—C15110.5 (5)
N21—C26—C25108.4 (3)C14—C12—C15109.9 (5)
N21—C26—C27110.6 (3)C10—C8—C7112.8 (4)
C25—C26—C27114.0 (3)C10—C8—C9110.8 (5)
N21—C26—H26107.8C7—C8—C9110.0 (5)
C25—C26—H26107.8C10—C8—H8107.7
C27—C26—H26107.8C7—C8—H8107.7
C24—C25—C26111.3 (3)C9—C8—H8107.7
C24—C25—H25A109.4C32—C35—H35A109.5
C26—C25—H25A109.4C32—C35—H35B109.5
C24—C25—H25B109.4H35A—C35—H35B109.5
C26—C25—H25B109.4C32—C35—H35C109.5
H25A—C25—H25B108H35A—C35—H35C109.5
O21—C22—N21121.5 (3)H35B—C35—H35C109.5
O21—C22—C23121.4 (3)C28—C29—H29A109.5
N21—C22—C23117.0 (3)C28—C29—H29B109.5
C3—C4—O2125.3 (3)H29A—C29—H29B109.5
C3—C4—C5121.3 (3)C28—C29—H29C109.5
O2—C4—C5113.3 (3)H29A—C29—H29C109.5
C4—C5—C6113.5 (3)H29B—C29—H29C109.5
C4—C5—H5A108.9C12—C15—H15A109.5
C6—C5—H5A108.9C12—C15—H15B109.5
C4—C5—H5B108.9H15A—C15—H15B109.5
C6—C5—H5B108.9C12—C15—H15C109.5
H5A—C5—H5B107.7H15A—C15—H15C109.5
O3—C11—O4125.9 (4)H15B—C15—H15C109.5
O3—C11—N1125.1 (4)C12—C14—H14A109.5
O4—C11—N1109.0 (3)C12—C14—H14B109.5
C28—C27—C26116.9 (3)H14A—C14—H14B109.5
C28—C27—H27A108.1C12—C14—H14C109.5
C26—C27—H27A108.1H14A—C14—H14C109.5
C28—C27—H27B108.1H14B—C14—H14C109.5
C26—C27—H27B108.1C12—C13—H13A109.5
H27A—C27—H27B107.3C12—C13—H13B109.5
C30—C28—C27113.7 (4)H13A—C13—H13B109.5
C30—C28—C29109.2 (4)C12—C13—H13C109.5
C27—C28—C29110.2 (4)H13A—C13—H13C109.5
C30—C28—H28107.8H13B—C13—H13C109.5
C27—C28—H28107.8C8—C10—H10A109.5
C29—C28—H28107.8C8—C10—H10B109.5
O23—C31—O24126.4 (3)H10A—C10—H10B109.5
O23—C31—N21125.2 (4)C8—C10—H10C109.5
O24—C31—N21108.3 (3)H10A—C10—H10C109.5
O24—C32—C33110.7 (3)H10B—C10—H10C109.5
O24—C32—C35101.6 (3)C8—C9—H9A109.5
C33—C32—C35110.4 (4)C8—C9—H9B109.5
O24—C32—C34109.9 (3)H9A—C9—H9B109.5
C33—C32—C34112.1 (4)C8—C9—H9C109.5
C35—C32—C34111.8 (4)H9A—C9—H9C109.5
C8—C7—C6115.7 (4)H9B—C9—H9C109.5
C4—C3—C2—N16.6 (5)C31—N21—C22—O218.9 (5)
C2—C3—C4—C54.5 (5)C26—N21—C22—O21164.0 (3)
C3—C4—C5—C622.2 (5)C24—C23—C22—O21168.1 (4)
N1—C6—C5—C443.7 (4)C2—C3—C4—O2172.3 (3)
C2—N1—C6—C544.2 (4)O2—C4—C5—C6160.7 (3)
C6—N1—C2—C319.9 (5)C12—O4—C11—O35.2 (6)
C11—N1—C2—C3162.8 (3)C12—O4—C11—N1174.8 (3)
C2—N1—C11—O4160.0 (3)C2—N1—C11—O320.0 (6)
C7—C6—C5—C478.9 (4)C6—N1—C11—O3162.8 (4)
C24—C23—C22—N2113.5 (5)C6—N1—C11—O417.3 (4)
C22—C23—C24—C255.9 (5)N21—C26—C27—C28169.2 (3)
C23—C24—C25—C2626.7 (5)C25—C26—C27—C2868.3 (4)
N21—C26—C25—C2448.9 (4)C26—C27—C28—C3058.1 (5)
C22—N21—C26—C2545.0 (4)C26—C27—C28—C29178.9 (3)
C26—N21—C22—C2314.5 (4)C32—O24—C31—O230.4 (6)
C31—N21—C22—C23172.7 (3)C32—O24—C31—N21178.1 (3)
C22—N21—C31—O24152.5 (3)C22—N21—C31—O2328.9 (5)
C27—C26—C25—C2474.8 (4)C26—N21—C31—O23158.2 (4)
C2—N1—C6—C781.1 (4)C26—N21—C31—O2420.4 (4)
C11—N1—C6—C796.2 (4)C31—O24—C32—C3364.6 (5)
C11—N1—C6—C5138.5 (3)C31—O24—C32—C35178.2 (4)
C22—C23—C24—O22171.0 (3)C31—O24—C32—C3459.7 (4)
C11—N1—C2—O118.6 (5)N1—C6—C7—C8168.5 (3)
C6—N1—C2—O1158.6 (3)C5—C6—C7—C869.1 (5)
C4—C3—C2—O1174.8 (4)C11—O4—C12—C1366.0 (6)
C31—N21—C26—C25142.2 (3)C11—O4—C12—C1460.5 (6)
C22—N21—C26—C2780.7 (4)C11—O4—C12—C15176.9 (4)
C31—N21—C26—C2792.1 (4)C6—C7—C8—C1058.3 (6)
O22—C24—C25—C26156.4 (3)C6—C7—C8—C9177.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O210.821.812.620 (4)172
O22—H22···O1i0.821.802.576 (4)158
Symmetry code: (i) x1/2, y+3/2, z+2.
(III) top
Crystal data top
C14H25NO4F(000) = 296
Mr = 271.35Dx = 1.111 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.5418 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 5.563 (2) Åθ = 5.4–25.9°
b = 9.891 (3) ŵ = 0.66 mm1
c = 14.800 (3) ÅT = 293 K
β = 95.02 (2)°Prism, colorless
V = 811.2 (4) Å30.3 × 0.1 × 0.1 mm
Z = 2
Data collection top
Nonius Mach3
diffractometer
Rint = 0.081
Radiation source: Nonius FR591 rotating Cu anodeθmax = 70.0°, θmin = 3°
Graphite monochromatorh = 06
non–profiled ω/2θ scansk = 1210
2974 measured reflectionsl = 1817
1630 independent reflections2 standard reflections every 60 min
1160 reflections with I > 2σ(I) intensity decay: 3%
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.2013P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.155(Δ/σ)max = 0.006
S = 1.16Δρmax = 0.20 e Å3
1630 reflectionsΔρmin = 0.21 e Å3
172 parameters
Crystal data top
C14H25NO4V = 811.2 (4) Å3
Mr = 271.35Z = 2
Monoclinic, P21Cu Kα radiation
a = 5.563 (2) ŵ = 0.66 mm1
b = 9.891 (3) ÅT = 293 K
c = 14.800 (3) Å0.3 × 0.1 × 0.1 mm
β = 95.02 (2)°
Data collection top
Nonius Mach3
diffractometer
Rint = 0.081
2974 measured reflections2 standard reflections every 60 min
1630 independent reflections intensity decay: 3%
1160 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0481 restraint
wR(F2) = 0.155H-atom parameters constrained
S = 1.16Δρmax = 0.20 e Å3
1630 reflectionsΔρmin = 0.21 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6715 (6)0.6476 (3)0.8044 (2)0.0448 (8)
C20.5983 (8)0.6477 (4)0.8906 (3)0.0512 (10)
O10.6715 (7)0.5629 (4)0.9451 (2)0.0764 (10)
C30.4280 (8)0.7562 (5)0.9140 (3)0.0538 (10)
H3A0.26410.72350.90120.065*
H3B0.45280.77390.97860.065*
C40.4542 (9)0.8861 (5)0.8641 (3)0.0580 (11)
H40.60850.92850.88480.07*
O20.2628 (8)0.9766 (4)0.8775 (2)0.0928 (15)
H20.27431.00250.93030.121*
C50.4467 (8)0.8579 (5)0.7645 (3)0.0515 (10)
H5A0.45880.94260.73210.062*
H5B0.29280.81690.74430.062*
C60.6481 (7)0.7650 (4)0.7413 (3)0.0444 (9)
H60.80010.81560.74630.053*
C70.5989 (9)0.7126 (6)0.6436 (3)0.0577 (11)
H7A0.71730.64350.63350.069*
H7B0.44130.66990.63780.069*
C80.6057 (10)0.8182 (8)0.5701 (3)0.0778 (16)
H80.48820.88860.58160.093*
C90.5292 (15)0.7552 (11)0.4783 (4)0.120 (3)
H9A0.37410.71330.48010.18*
H9B0.64550.68840.46430.18*
H9C0.51990.82420.43250.18*
C100.8486 (13)0.8842 (11)0.5687 (5)0.124 (3)
H10A0.84280.95020.5210.186*
H10B0.96740.81690.55840.186*
H10C0.89070.92780.62590.186*
C110.8544 (8)0.5538 (4)0.7865 (3)0.0496 (10)
O31.0470 (6)0.5873 (4)0.7641 (3)0.0760 (11)
O40.7753 (5)0.4284 (3)0.7917 (2)0.0514 (7)
C120.9471 (7)0.3129 (5)0.7962 (3)0.0545 (10)
C131.0684 (10)0.3023 (8)0.7105 (4)0.0883 (18)
H13A1.17140.37920.70510.132*
H13B0.94880.29970.65970.132*
H13C1.16320.22110.71160.132*
C140.7834 (10)0.1945 (6)0.8076 (5)0.092 (2)
H14A0.70810.20410.86320.137*
H14B0.87590.11240.80930.137*
H14C0.66150.19120.75750.137*
C151.1237 (10)0.3290 (6)0.8792 (4)0.0826 (16)
H15A1.03670.33540.93230.124*
H15B1.21710.40970.87350.124*
H15C1.22940.25220.88460.124*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0562 (19)0.0295 (16)0.0486 (17)0.0024 (15)0.0040 (14)0.0061 (15)
C20.076 (3)0.034 (2)0.0423 (19)0.002 (2)0.0029 (18)0.0047 (19)
O10.126 (3)0.048 (2)0.0560 (18)0.017 (2)0.0071 (18)0.0136 (17)
C30.068 (3)0.048 (2)0.044 (2)0.005 (2)0.0019 (18)0.004 (2)
C40.080 (3)0.036 (2)0.057 (2)0.010 (2)0.006 (2)0.0103 (19)
O20.133 (3)0.080 (3)0.062 (2)0.055 (3)0.005 (2)0.021 (2)
C50.072 (3)0.035 (2)0.046 (2)0.007 (2)0.0010 (18)0.0041 (18)
C60.056 (2)0.0265 (18)0.050 (2)0.0006 (17)0.0014 (17)0.0091 (16)
C70.069 (3)0.058 (3)0.046 (2)0.007 (2)0.0024 (19)0.001 (2)
C80.086 (3)0.096 (4)0.052 (2)0.018 (4)0.015 (2)0.019 (3)
C90.146 (5)0.159 (9)0.055 (3)0.001 (6)0.008 (3)0.014 (4)
C100.121 (5)0.154 (9)0.099 (4)0.036 (6)0.024 (4)0.050 (6)
C110.054 (2)0.030 (2)0.064 (3)0.0024 (18)0.0041 (19)0.0030 (19)
O30.0555 (17)0.0474 (19)0.128 (3)0.0044 (17)0.0231 (18)0.011 (2)
O40.0468 (15)0.0322 (14)0.0751 (18)0.0058 (12)0.0050 (13)0.0014 (14)
C120.050 (2)0.032 (2)0.082 (3)0.0078 (19)0.005 (2)0.002 (2)
C130.093 (4)0.082 (4)0.092 (4)0.022 (4)0.021 (3)0.011 (4)
C140.077 (3)0.038 (3)0.161 (6)0.002 (3)0.020 (4)0.006 (3)
C150.084 (3)0.053 (3)0.105 (4)0.012 (3)0.023 (3)0.003 (3)
Geometric parameters (Å, º) top
C12—O41.487 (5)C7—H7A0.97
C12—C131.491 (7)C7—H7B0.97
C12—C141.503 (7)C8—C101.503 (9)
C12—C151.514 (7)C8—C91.521 (9)
C15—H15A0.96C8—H80.98
C15—H15B0.96C9—H9A0.96
C15—H15C0.96C9—H9B0.96
C14—H14A0.96C9—H9C0.96
C14—H14B0.96C10—H10A0.96
C14—H14C0.96C10—H10B0.96
C13—H13A0.96C10—H10C0.96
C13—H13B0.96C5—C41.498 (6)
C13—H13C0.96C5—H5A0.97
O4—C111.320 (5)C5—H5B0.97
C11—O31.196 (5)C4—O21.418 (6)
C11—N11.419 (5)C4—C31.495 (7)
N1—C21.372 (5)C4—H40.98
N1—C61.489 (5)O2—H20.82
C6—C51.511 (6)C3—C21.492 (6)
C6—C71.538 (6)C3—H3A0.97
C6—H60.98C3—H3B0.97
C7—C81.511 (7)C2—O11.210 (5)
O4—C12—C13110.7 (4)H7A—C7—H7B107.5
O4—C12—C14102.2 (3)C10—C8—C7112.9 (5)
C13—C12—C14111.4 (5)C10—C8—C9110.3 (5)
O4—C12—C15108.9 (4)C7—C8—C9109.7 (6)
C13—C12—C15112.8 (4)C10—C8—H8107.9
C14—C12—C15110.3 (5)C7—C8—H8107.9
C12—C15—H15A109.5C9—C8—H8107.9
C12—C15—H15B109.5C8—C9—H9A109.5
H15A—C15—H15B109.5C8—C9—H9B109.5
C12—C15—H15C109.5H9A—C9—H9B109.5
H15A—C15—H15C109.5C8—C9—H9C109.5
H15B—C15—H15C109.5H9A—C9—H9C109.5
C12—C14—H14A109.5H9B—C9—H9C109.5
C12—C14—H14B109.5C8—C10—H10A109.5
H14A—C14—H14B109.5C8—C10—H10B109.5
C12—C14—H14C109.5H10A—C10—H10B109.5
H14A—C14—H14C109.5C8—C10—H10C109.5
H14B—C14—H14C109.5H10A—C10—H10C109.5
C12—C13—H13A109.5H10B—C10—H10C109.5
C12—C13—H13B109.5C4—C5—C6112.3 (3)
H13A—C13—H13B109.5C4—C5—H5A109.1
C12—C13—H13C109.5C6—C5—H5A109.1
H13A—C13—H13C109.5C4—C5—H5B109.1
H13B—C13—H13C109.5C6—C5—H5B109.1
C11—O4—C12120.5 (3)H5A—C5—H5B107.9
O3—C11—O4126.0 (4)O2—C4—C3111.5 (4)
O3—C11—N1123.0 (4)O2—C4—C5107.4 (4)
O4—C11—N1110.8 (3)C3—C4—C5109.3 (4)
C2—N1—C11116.8 (3)O2—C4—H4109.5
C2—N1—C6124.4 (3)C3—C4—H4109.5
C11—N1—C6114.7 (3)C5—C4—H4109.5
N1—C6—C5111.0 (3)C4—O2—H2109.5
N1—C6—C7109.0 (4)C2—C3—C4114.3 (3)
C5—C6—C7110.1 (3)C2—C3—H3A108.7
N1—C6—H6108.9C4—C3—H3A108.7
C5—C6—H6108.9C2—C3—H3B108.7
C7—C6—H6108.9C4—C3—H3B108.7
C8—C7—C6115.5 (5)H3A—C3—H3B107.6
C8—C7—H7A108.4O1—C2—N1120.6 (4)
C6—C7—H7A108.4O1—C2—C3121.8 (4)
C8—C7—H7B108.4N1—C2—C3117.6 (3)
C6—C7—H7B108.4
C4—C3—C2—N130.2 (6)C12—O4—C11—N1166.2 (4)
C5—C4—C3—C251.5 (5)O3—C11—N1—C639.7 (6)
C6—C5—C4—C360.5 (5)O4—C11—N1—C6135.9 (4)
N1—C6—C5—C445.9 (5)C11—N1—C6—C5179.0 (3)
C2—N1—C6—C524.7 (5)C2—N1—C6—C7146.1 (4)
C6—N1—C2—C317.0 (6)C11—N1—C6—C757.6 (5)
C11—N1—C2—C3172.9 (4)N1—C6—C7—C8171.6 (4)
O4—C11—N1—C265.8 (5)C5—C6—C7—C866.4 (5)
O2—C4—C3—C2170.1 (3)C6—C7—C8—C1062.2 (7)
C7—C6—C5—C4166.7 (4)C6—C7—C8—C9174.3 (5)
O3—C11—N1—C2118.5 (5)C6—C5—C4—O2178.3 (4)
C13—C12—O4—C1164.9 (5)C11—N1—C2—O16.7 (6)
C14—C12—O4—C11176.4 (5)C6—N1—C2—O1162.6 (4)
C15—C12—O4—C1159.7 (6)C4—C3—C2—O1149.4 (4)
C12—O4—C11—O318.3 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.942.755 (5)175
Symmetry code: (i) x+1, y+1/2, z+2.

Experimental details

(II)(III)
Crystal data
Chemical formulaC14H23NO4C14H25NO4
Mr269.33271.35
Crystal system, space groupOrthorhombic, P21212Monoclinic, P21
Temperature (K)293293
a, b, c (Å)14.6670 (3), 34.0857 (8), 6.3334 (1)5.563 (2), 9.891 (3), 14.800 (3)
α, β, γ (°)90, 90, 9090, 95.02 (2), 90
V3)3166.29 (11)811.2 (4)
Z82
Radiation typeMo KαCu Kα
µ (mm1)0.080.66
Crystal size (mm)0.1 × 0.1 × 0.10.3 × 0.1 × 0.1
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius Mach3
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14369, 3294, 2116 2974, 1630, 1160
Rint0.0470.081
(sin θ/λ)max1)0.6020.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.135, 1.02 0.048, 0.155, 1.16
No. of reflections32941630
No. of parameters344172
No. of restraints01
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.160.20, 0.21

Computer programs: COLLECT (Nonius, 1998), CAD-4 Software (Enraf–Nonius, 1989), COLLECT, CAD-4 Software, HKL Suite (Otwinoski & Minor, 1997), XCAD4 (Harms & Wocadlo, 1995), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and WebLab ViewerPro 3.5 (MSI, 1999), ORTEP-3 for Windows (Farrugia, 1997)and WebLab ViewerPro 3.5 (MSI, 1999), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) for (II) top
C3—C41.330 (5)C23—C241.322 (5)
O2—C41.338 (4)O22—C241.333 (4)
C4—C3—C2—N16.6 (5)C24—C23—C22—N2113.5 (5)
C2—C3—C4—C54.5 (5)C22—C23—C24—C255.9 (5)
C3—C4—C5—C622.2 (5)C23—C24—C25—C2626.7 (5)
N1—C6—C5—C443.7 (4)N21—C26—C25—C2448.9 (4)
C2—N1—C6—C544.2 (4)C22—N21—C26—C2545.0 (4)
C6—N1—C2—C319.9 (5)C26—N21—C22—C2314.5 (4)
C11—N1—C2—C3162.8 (3)C31—N21—C22—C23172.7 (3)
C2—N1—C11—O4160.0 (3)C22—N21—C31—O24152.5 (3)
C7—C6—C5—C478.9 (4)C27—C26—C25—C2474.8 (4)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O210.821.812.620 (4)172
O22—H22···O1i0.821.802.576 (4)158
Symmetry code: (i) x1/2, y+3/2, z+2.
Selected torsion angles (º) for (III) top
C4—C3—C2—N130.2 (6)C6—N1—C2—C317.0 (6)
C5—C4—C3—C251.5 (5)C11—N1—C2—C3172.9 (4)
C6—C5—C4—C360.5 (5)O4—C11—N1—C265.8 (5)
N1—C6—C5—C445.9 (5)O2—C4—C3—C2170.1 (3)
C2—N1—C6—C524.7 (5)C7—C6—C5—C4166.7 (4)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.942.755 (5)175
Symmetry code: (i) x+1, y+1/2, z+2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds