Download citation
Download citation
link to html
The structure of the olivine LiInSiO4 (lithium indium silicate) is isotypic with LiScSiO4 and MgMgSiO4 (forsterite). The main differences between the title compound and the divalent-divalent olivines are found for the bond lengths and angles opposite common edges between the tetrahedron and the Li+ and In3+ ion sites. The tetrahedron shares one common edge with the Li+ site and two common edges with the In3+ site. The tetrahedron is distinctly distorted, as are the Li+ and In3+ sites.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103006346/sk1621sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103006346/sk1621Isup2.hkl
Contains datablock I

Comment top

The structure of LiInSiO4 is isotypic with LiScSiO4 (Streele et al. 1978, Hazen et al. 1996), which is the only univalent-trivalent (1: 3) olivine for which the crystal structure is known so far. Ionic radii (Shannon and Prewitt, 1969) of VILi+ and VIIn3+ are 0.75 Å and 0.79 Å respectively, thus are close to the values of VIMg2+ (0.72 Å) and VIFe2+ (0.780 Å). Structural differences between forsterite, MgMgSiO4, or fayalite, FeFeSiO4, (divalent-divalent or 2: 2 olivine type) and the new compound are mainly due to charge differences. In the following, the structure of LiInSiO4 is compared with the one of LiScSiO4 (Streele et al., 1978) and of MgMgSiO4 (Fujino et al. 1981). A portion of the LiInSiO4 structure is shown in Figs. 1 and 2.

The M1—O (Li—O) bond lengths in LiInSiO4 are on the average 3.9% above those in MgMgSiO4 and 0.4% below those in LiScSiO4. Compared with forsterite the M1—O3 bond lengths show the largest increase (4.8%), the M1—O1 bond lengths the smallest (2.7%) when going from the Mg2+ to the In3+ compound. The increase of the M1—O bond lengths from forsterite to the Li-olivines can be explained by the larger cationic size of Li+ as compared to Mg2+. However, it is interesting to note, that within the Li-olivines the average Li—O bond length in LiScSiO4 (2.186 Å) is larger than in LiInSiO4 (2.177 Å), though Sc3+ on the edge-sharing neighbouring M2 octahedron has a smaller ionic radius than In3+ (VISc3+ = 0.745 Å). The individual Li—O2 bond lengths are similar in both Li-olivines, the Li—O3 bond lengths are shorter by 2.3% in LiInSiO4, whereas the Li—O1 bond lengths are larger by only 1.3% as compared to LiScSiO4. The O1—M1—O3 angle thereby decreases by 0.6%. This alterations are mainly due to the increase in size of the InO6 octahedron (M2-site), which shares the O1—O3 edge with neighbouring M1 sites. The above facts indicate, that the M2 site dominates over the M1 site. The deviation of individual bond lengths from their mean value (bond lengths distortion, BLD; Renner and Lehmann, 1986) decreases from MgMgSiO4 (BLD = 1.59%), via LiScSiO4 (BLD = 1.19%) to LiInSiO4 (BLD = 0.86%).

The largest angular change within the M1 site is observed for the O1—M1—O2 angle, opposite the common edge between neighbouring M1 sites, which increases from 86.5 (1)° in MgMgSiO4 to 89.9 (1)° in LiInSiO4. This indicates a decrease of repulsion forces across the shared edge between the two neighbouring M1 octahedra. The octahedral angle variance OAV (Robinson et al. 1971) in LiInSiO4 (OAV = 111.6 (2)°) is larger than in MgMgSiO4 (OAV = 95.1 (2)°), but smaller than in LiScSiO4 (OAV = 123.6 (2)°). Thought distinctly distorted, the M1O6 octahedron in LiInSiO4 appears to be more regular as compared to LiScSiO4 and MgMgSiO4.

Mean and average M2—O bond lengths reflect the substitution of In3+. The mean M2—O distance is 2.1% larger than in LiScSiO4, individual In3+—O distances are 1.8% to 2.4% longer than the corresponding Sc3+—O bond lengths. Compared to MgMgSiO4 (forsterite) the average Mg—O bond length is 1.7% below the average In—O bond lengths. The BLD of the M2 site in LiInSiO4 (BLD = 3.05%) is intermediate between LiScSiO4 (BLD = 2.82%) and MgMgSiO4 (BLD = 4.6%). With respect to the BLD, but also with respect to the OAV, the M2 site appears to be more distorted than the M1 site. The OAV (M2) amounts 106.1 (2)° for LiInSiO4 and is above the values for LiScSiO4 and MgMgSiO4 (96.3 (2) and 89.5 (2)° respectively).

The O3—Si—O3 tetrahedral bond angle, which is opposite to the common edge between tetrahedron and M2 (In3+)-site, decreases from 104.8 (1)° in forsterite to 98.9 (1)° in LiInSiO4 (−5.7%). The O3—Si—O3 bond angle is close to the value found in LiScSiO4 (98.6 (1)°). The decrease in the O3—Si—O3 bond angle is accompained with an increase of the Si—O3 bond length by 1.3% from 1.635 (2) Å in forsterite to 1.658 (2) Å in LiInSiO4. The O3—Si—O3 tetrahedral angle is among the smallest values found for condensed silicates. These two effects result from the increased charge of In3+ over Mg2+ at the M2 site. The O2—Si—O3 angle, opposite a common edge between the tetrahedral and the M1 (Li+) - site behaves oppostite. It increases from 101.9 (1)° in MgMgSiO4 to 105.4 (1)° in LiInSiO4 (+3.5%), thereby the Si—O2 bond lengths decreases by 1.8% from 1.655 (2) Å to 1.626 (3) Å. Here the decrease in charge of Li+ over Mg2+ at the M1 site can be seen as driving force for the observed alterations. The mean Si—O bond lengths in LiInSiO4 amounts 1.635 Å and thus is close to the values found in LiScSiO4 (1.633 Å) and in MgMgSiO4 (1.636 Å). Except the Si—O2 bond lengths (1.626 (3) Å and 1.616 (2) Å in LiInSiO4 and LiScSiO4 respectively) the remaining Si—O bond lenghts are identical within one e.s.d in both Li-olivines. The bond lengths distortion BLD increases from the Mg2+ (0.66%) to the In3+ (1.39%) and the Sc2+ (1.52%) compound. The average O—Si—O bond angle is 109.1° in all three compounds and althought the O3—Si—O3 angle is very low and the O—Si—O bond angles change distinctly between MgMgSiO4 and the Li-olivines, the tetrahedral angle variance TAV (Robinson et al. 1971)is similar in LiInSiO4 and MgMgSiO4 (48.2 (2) and 49.5 (2)° respectively), indicating similar tetrahedral distortions in both compounds. LiScSiO4, again showing low O3—Si—O3 angles reveals less overall tetrahedral distortion (TAV = 42.4 °).

Experimental top

Single crystals were obtained as a by-product during high-temperature solution-growth of the clinopyroxene compound LiInSi2O6 (Redhammer and Roth, 2003). Li2CO3, In2O3 and SiO2 were mixed in proportions corresponding to the chemical formula of LiInSi2O6. One part of the mixture together with ten parts of Li2MoO4, serving as the high temperature solution, were placed into a platinum crucible, covered with a lid, heated to 1473 K, held at this temperature for 24 h and slowly (5 K/ hour) cooled down to 873 K. Besides the transparent prismatic crystals of the clinopyroxene sample a small amount of cuboid, transparent crystals of the title compound, up to 0.5 mm in size, were found in the synthesis batch.

Refinement top

A data-set collected previously on the same crystal up to θ=28.1° on a Stoe IPDS I system (399 unique reflections, 41 parameters, R(F)=0.0202, wR(F2)=0.0488) yield identical structural parameters within one estimated standard deviation but lower electron density residuals (Δρmax=0.809 e Å3, Δρmin=-1.058 e Å3).

Computing details top

Data collection: Stoe EXPOSE; cell refinement: Stoe CELL; data reduction: Stoe X-RED; program(s) used to solve structure: Sir97 (Altamore et al. 1999), SIR2002 (Burla et al. 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Diamonds 2.0 (Brandenburg and Berndt 1999); software used to prepare material for publication: WinGX v1.64.05 (Farrugia 1999).

Figures top
[Figure 1] Fig. 1. Portion of the crystal structure of LiInSiO4, showing atomic nomenclature. Displacement ellipsoides are plotted at the 95% probability level.
[Figure 2] Fig. 2. Polyhedral representation of a portion of the LiInSiO4 structure, viewed down the a axis, showing the connection of individual tetrahedral and octahedral M1 and M2 sites. [Symmetry codes: (i) x, y, 1/2 − z; (ii) 1 + x, y, 1/2 − z; (iii) 1 + x, y, z; (iv) 1/2 + x, 1/2 − y, −z; (v) 3/2 − x, 1/2 − y, 1/2 − z; (vi) 1/2 + x, 1/2 − y, 1/2 + z; (vii) x − 1, y, z; (viii) −x, −y, −1/2 + z; (ix) 1 − x, −y, −1/2 + z; (x) −x, −y, −z; (xi) −x, −y, 1/2 + z; (xii) 1 − x, −y, 1/2 + z; (xiii) 1/2 − x, −1/2 + y,1/2 − z; (xiv) −1/2 + x, −1/2 − y, 1 − z; (xv) 1/2 − x, −1/2 + y, 1 + z; (xvi) −x, −y, 1 − z; (xvii) 1/2 − x, −1/2 + y, z; (xviii) −1/2 − x, −1/2 + y, −1/2 − z; (xix) 1/2 − x, −1/2 + y, −1/2 − z.]
Lithium indium silicate top
Crystal data top
LiInSiO4F(000) = 392
Mr = 213.85Dx = 4.603 Mg m3
Orthorhombic, PbnmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2c 2abCell parameters from 2311 reflections
a = 4.8448 (9) Åθ = 3.4–32.0°
b = 10.5043 (19) ŵ = 7.87 mm1
c = 6.0634 (13) ÅT = 293 K
V = 308.57 (10) Å3Cuboid, colourless
Z = 40.25 × 0.17 × 0.16 mm
Data collection top
Image plate
diffractometer
552 reflections with I > 2σ(I)
image plate ω–scanRint = 0.060
Absorption correction: numerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
θmax = 32.0°, θmin = 3.9°
Tmin = 0.23, Tmax = 0.34h = 77
2460 measured reflectionsk = 1513
553 independent reflectionsl = 88
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0258P)2 + 0.431P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.025(Δ/σ)max = 0.001
wR(F2) = 0.061Δρmax = 1.38 e Å3
S = 1.39Δρmin = 2.63 e Å3
553 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
41 parametersExtinction coefficient: 0.324 (9)
Crystal data top
LiInSiO4V = 308.57 (10) Å3
Mr = 213.85Z = 4
Orthorhombic, PbnmMo Kα radiation
a = 4.8448 (9) ŵ = 7.87 mm1
b = 10.5043 (19) ÅT = 293 K
c = 6.0634 (13) Å0.25 × 0.17 × 0.16 mm
Data collection top
Image plate
diffractometer
553 independent reflections
Absorption correction: numerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
552 reflections with I > 2σ(I)
Tmin = 0.23, Tmax = 0.34Rint = 0.060
2460 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02541 parameters
wR(F2) = 0.0610 restraints
S = 1.39Δρmax = 1.38 e Å3
553 reflectionsΔρmin = 2.63 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Li0000.0196 (17)
In0.97826 (5)0.27571 (2)0.250.00495 (12)
Si0.4241 (2)0.08917 (8)0.250.00502 (18)
O10.7535 (5)0.0983 (2)0.250.0070 (4)
O20.2948 (5)0.0537 (2)0.250.0075 (4)
O30.2717 (4)0.16396 (15)0.0422 (3)0.0079 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Li0.019 (3)0.022 (4)0.018 (4)0.002 (2)0.006 (3)0.004 (4)
In0.00651 (16)0.00460 (17)0.00373 (17)0.00013 (6)00
Si0.0065 (4)0.0042 (4)0.0044 (4)0.0003 (3)00
O10.0074 (10)0.0058 (10)0.0077 (10)0.0010 (8)00
O20.0077 (9)0.0042 (9)0.0107 (10)0.0012 (8)00
O30.0085 (7)0.0095 (7)0.0057 (6)0.0018 (6)0.0008 (6)0.0012 (5)
Geometric parameters (Å, º) top
Li—O2i2.1578 (18)In—O3x2.2331 (18)
Li—O22.1578 (18)In—Six2.9163 (11)
Li—O32.1829 (18)In—Lix3.2705 (5)
Li—O3i2.1829 (18)In—Lixi3.2705 (5)
Li—O1ii2.1888 (18)Si—O11.599 (3)
Li—O1iii2.1888 (18)Si—O21.626 (3)
Li—Si2.7197 (9)Si—O3xii1.6581 (19)
Li—Sii2.7197 (9)Si—O31.6581 (19)
Li—Liiv3.0317 (6)Si—Liv2.7197 (9)
Li—Liv3.0317 (6)Si—Inii2.9163 (11)
Li—Inii3.2705 (5)O1—Lixi2.1888 (18)
Li—Iniii3.2705 (5)O1—Lix2.1888 (18)
In—O2vi2.103 (3)O2—Inxiii2.103 (3)
In—O3vii2.1312 (18)O2—Liv2.1578 (18)
In—O3viii2.1312 (18)O3—Inxiv2.1312 (18)
In—O12.158 (2)O3—Inii2.2331 (18)
In—O3ix2.2331 (18)
O2i—Li—O2180O3viii—In—O191.14 (6)
O2i—Li—O3106.00 (8)O2vi—In—O3ix96.62 (7)
O2—Li—O374.00 (8)O3vii—In—O3ix157.56 (8)
O2i—Li—O3i74.00 (8)O3viii—In—O3ix89.21 (4)
O2—Li—O3i106.00 (8)O1—In—O3ix82.39 (7)
O3—Li—O3i180.00 (5)O2vi—In—O3x96.62 (7)
O2i—Li—O1ii90.12 (7)O3vii—In—O3x89.21 (4)
O2—Li—O1ii89.88 (7)O3viii—In—O3x157.56 (8)
O3—Li—O1ii82.86 (8)O1—In—O3x82.39 (7)
O3i—Li—O1ii97.14 (8)O3ix—In—O3x68.69 (9)
O2i—Li—O1iii89.88 (7)O2vi—In—Six100.69 (7)
O2—Li—O1iii90.12 (7)O3vii—In—Six123.20 (5)
O3—Li—O1iii97.14 (8)O3viii—In—Six123.20 (5)
O3i—Li—O1iii82.86 (8)O1—In—Six78.09 (7)
O1ii—Li—O1iii180.00 (16)O3ix—In—Six34.44 (5)
O2i—Li—Si143.30 (7)O3x—In—Six34.44 (5)
O2—Li—Si36.70 (7)O2vi—In—Lix137.56 (5)
O3—Li—Si37.56 (5)O3vii—In—Lix83.86 (5)
O3i—Li—Si142.44 (5)O3viii—In—Lix131.59 (4)
O1ii—Li—Si82.17 (6)O1—In—Lix41.56 (5)
O1iii—Li—Si97.83 (6)O3ix—In—Lix77.03 (4)
O2i—Li—Sii36.70 (7)O3x—In—Lix41.63 (5)
O2—Li—Sii143.30 (7)Six—In—Lix51.771 (17)
O3—Li—Sii142.44 (5)O2vi—In—Lixi137.56 (5)
O3i—Li—Sii37.56 (5)O3vii—In—Lixi131.59 (4)
O1ii—Li—Sii97.83 (6)O3viii—In—Lixi83.86 (5)
O1iii—Li—Sii82.17 (6)O1—In—Lixi41.56 (5)
Si—Li—Sii180.00 (3)O3ix—In—Lixi41.63 (5)
O2i—Li—Liiv45.37 (5)O3x—In—Lixi77.03 (4)
O2—Li—Liiv134.63 (5)Six—In—Lixi51.771 (17)
O3—Li—Liiv96.73 (5)Lix—In—Lixi55.225 (14)
O3i—Li—Liiv83.27 (5)O1—Si—O2116.10 (14)
O1ii—Li—Liiv133.83 (5)O1—Si—O3xii114.58 (9)
O1iii—Li—Liiv46.17 (5)O2—Si—O3xii105.41 (10)
Si—Li—Liiv123.873 (14)O1—Si—O3114.58 (9)
Sii—Li—Liiv56.127 (14)O2—Si—O3105.41 (10)
O2i—Li—Liv134.63 (5)O3xii—Si—O398.90 (13)
O2—Li—Liv45.37 (5)O1—Si—Li140.79 (5)
O3—Li—Liv83.27 (5)O2—Si—Li52.50 (7)
O3i—Li—Liv96.73 (5)O3xii—Si—Li104.50 (8)
O1ii—Li—Liv46.17 (5)O3—Si—Li53.37 (7)
O1iii—Li—Liv133.83 (5)O1—Si—Liv140.79 (5)
Si—Li—Liv56.127 (14)O2—Si—Liv52.50 (7)
Sii—Li—Liv123.873 (14)O3xii—Si—Liv53.37 (7)
Liiv—Li—Liv180O3—Si—Liv104.50 (8)
O2i—Li—Inii94.19 (6)Li—Si—Liv67.75 (3)
O2—Li—Inii85.81 (6)O1—Si—Inii134.35 (10)
O3—Li—Inii42.81 (5)O2—Si—Inii109.56 (10)
O3i—Li—Inii137.19 (5)O3xii—Si—Inii49.61 (7)
O1ii—Li—Inii40.86 (6)O3—Si—Inii49.61 (7)
O1iii—Li—Inii139.14 (6)Li—Si—Inii70.84 (3)
Si—Li—Inii57.39 (2)Liv—Si—Inii70.84 (3)
Sii—Li—Inii122.61 (2)Si—O1—In123.75 (14)
Liiv—Li—Inii117.613 (7)Si—O1—Lixi121.09 (9)
Liv—Li—Inii62.387 (7)In—O1—Lixi97.58 (9)
O2i—Li—Iniii85.81 (6)Si—O1—Lix121.09 (9)
O2—Li—Iniii94.19 (6)In—O1—Lix97.58 (9)
O3—Li—Iniii137.19 (5)Lixi—O1—Lix87.66 (9)
O3i—Li—Iniii42.81 (5)Si—O2—Inxiii125.83 (15)
O1ii—Li—Iniii139.14 (6)Si—O2—Li90.80 (10)
O1iii—Li—Iniii40.86 (6)Inxiii—O2—Li124.66 (8)
Si—Li—Iniii122.61 (2)Si—O2—Liv90.80 (10)
Sii—Li—Iniii57.39 (2)Inxiii—O2—Liv124.66 (8)
Liiv—Li—Iniii62.387 (7)Li—O2—Liv89.26 (10)
Liv—Li—Iniii117.613 (7)Si—O3—Inxiv124.31 (11)
Inii—Li—Iniii180Si—O3—Li89.07 (8)
O2vi—In—O3vii89.54 (6)Inxiv—O3—Li114.85 (8)
O2vi—In—O3viii89.54 (6)Si—O3—Inii95.96 (9)
O3vii—In—O3viii112.48 (10)Inxiv—O3—Inii127.71 (8)
O2vi—In—O1178.79 (9)Li—O3—Inii95.56 (7)
O3vii—In—O191.14 (6)
Symmetry codes: (i) x, y, z; (ii) x1, y, z; (iii) x+1, y, z; (iv) x, y, z1/2; (v) x, y, z+1/2; (vi) x+3/2, y+1/2, z; (vii) x+1/2, y+1/2, z; (viii) x+1/2, y+1/2, z+1/2; (ix) x+1, y, z+1/2; (x) x+1, y, z; (xi) x+1, y, z+1/2; (xii) x, y, z+1/2; (xiii) x+3/2, y1/2, z; (xiv) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaLiInSiO4
Mr213.85
Crystal system, space groupOrthorhombic, Pbnm
Temperature (K)293
a, b, c (Å)4.8448 (9), 10.5043 (19), 6.0634 (13)
V3)308.57 (10)
Z4
Radiation typeMo Kα
µ (mm1)7.87
Crystal size (mm)0.25 × 0.17 × 0.16
Data collection
DiffractometerImage plate
diffractometer
Absorption correctionNumerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
Tmin, Tmax0.23, 0.34
No. of measured, independent and
observed [I > 2σ(I)] reflections
2460, 553, 552
Rint0.060
(sin θ/λ)max1)0.745
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.061, 1.39
No. of reflections553
No. of parameters41
Δρmax, Δρmin (e Å3)1.38, 2.63

Computer programs: Stoe EXPOSE, Stoe CELL, Stoe X-RED, Sir97 (Altamore et al. 1999), SIR2002 (Burla et al. 2003), SHELXL97 (Sheldrick, 1997), Diamonds 2.0 (Brandenburg and Berndt 1999), WinGX v1.64.05 (Farrugia 1999).

Selected geometric parameters (Å, º) top
Li—O22.1578 (18)In—O3iv2.2331 (18)
Li—O32.1829 (18)Si—O11.599 (3)
Li—O1i2.1888 (18)Si—O21.626 (3)
In—O2ii2.103 (3)Si—O3v1.6581 (19)
In—O3iii2.1312 (18)Si—O31.6581 (19)
In—O12.158 (2)
O2—Li—O374.00 (8)O3vi—In—O3iv89.21 (4)
O2—Li—O1i89.88 (7)O1—In—O3iv82.39 (7)
O3—Li—O1i82.86 (8)O3iv—In—O3vii68.69 (9)
O2ii—In—O3iii89.54 (6)O1—Si—O2116.10 (14)
O3iii—In—O3vi112.48 (10)O1—Si—O3v114.58 (9)
O3iii—In—O191.14 (6)O2—Si—O3v105.41 (10)
O2ii—In—O3iv96.62 (7)O3v—Si—O398.90 (13)
Symmetry codes: (i) x1, y, z; (ii) x+3/2, y+1/2, z; (iii) x+1/2, y+1/2, z; (iv) x+1, y, z+1/2; (v) x, y, z+1/2; (vi) x+1/2, y+1/2, z+1/2; (vii) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds