Download citation
Download citation
link to html
In ferrocene-1,1'-diyl­bis­(di­phenyl­methanol)-2,2'-dipyridyl­amine (1/1), [Fe(C18H15O)2]·C10H9N3, (I), there is an intramolecular O-H...O hydrogen bond [H...O 2.03 Å, O...O 2.775 (2) Å and O-H...O 147°] in the ferrocenediol component, and the two neutral molecular components are linked by one O-H...N hydrogen bond [H...N 1.96 Å, O...N 2.755 (2) Å and O-H...N, 157°] and one N-H...O hydrogen bond [H...O 2.26 Å, N...O 3.112 (2) Å and N-H...O 164°] forming a cyclic R_{3}^{3}(8) motif. One of the pyridyl N atoms plays no part in the intermolecular hydrogen bonding, but participates in a short intramolecular C-H...N contact [H...N 2.31 Å, C...N 2.922 (2) Å and C-H...N 122°].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101018844/sk1523sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101018844/sk1523Isup2.hkl
Contains datablock I

CCDC reference: 180125

Comment top

Ferrocene-1,1'-diylbis(diphenylmethanol), [Fe(C5H4CPh2OH)2], forms hydrogen-bonded adducts with a wide range of amines, particularly heteroaromatic amines and diamines. Thus with pyridine, this diol forms an adduct of stoichiometry (diol).(amine)2 (Ferguson et al., 1993), in which the number of hydrogen bond donor hydroxyl groups is equal to the number of amine N acceptors: despite this, the molecular aggregate contains disordered O—H···O and O—H···N hydrogen bonds indicative of mobile hydroxyl H atoms.

Similarly, in the 1: 1 adduct formed by the diol with 4,4'-bipyridyl (Glidewell et al., 1994), the number of hydroxyl groups is equal to the number of N atoms but only half of the bipyridyl molecules are involved in the supramolecular aggregation, which takes the form of the centrosymmetric three-component aggregate (diol)-(diamine)-(diol), while the remainder of the bipyridyl molecules simply occupy isolated sites in the structure (Glidewell et al., 1994). By contrast, in each of the similar 1:1 adducts formed with 1,2-bis(4'-pyridyl)ethane (Zakaria et al., 2001) and 1,2-bis(4'-pyridyl)ethene (Zakaria et al., 2002), there is a finite two-component aggregate containing one intramolecular O—H···O hydrogen bond and one intermolecular O—H···N hydrogen bond, while the second N plays no part in the hydrogen bonding. Continuing this theme, we have now synthesized and characterized a 1:1 adduct [C36H30FeO2]·[C10H9N3], (I), formed between the ferrocenediol and 2,2'-dipyridylamine, which was selected in order to increase the ratio of hydrogen-bond donors to acceptors in the expectation of forcing both pyridyl N atoms to participate in the supramolecular aggregation.

Compound (I) forms a finite 1:1 aggregate (Fig. 1) and, in addition to the intramolecular O—H···O hydrogen bond so commonly found in adducts involving this diol (Ferguson et al., 1993; 1995; Glidewell et al., 1994; Zakaria et al., 2001, 2002), there are two other hydrogen bonds, one each of O—H···N and N—H···O types, linking the two molecular components by forming an R33(8) ring (Table 2, Fig. 1). It is striking that both of the hydroxyl O atoms act as both hydrogen-bond donors and acceptors, while pyridyl N3 forms no intermolecular hydrogen bonds. Moreover the conformation of the nearly planar diamine (Table 1) is such that N2 is on the same edge of the diamine as the N11—H1 bond, while N3 is on the opposite edge. Atom N3 does, however, participate in a short intramolecular C—H···N contact (Table 2). In order to investigate whether this contact makes any significant contribution to the preferred conformation of the amine, we have undertaken SCF-MO calculations using the AM1 technique (Dewar et al., 1985; Stewart, 1990), for the three possible near-planar conformers (A) - (C) (Scheme 1). Conformers (A) and (C) were both calculated to have C2 symmetry, with torsional angles N—C—N—C of 155.0° and -24.3° respectively, suggestive of repulsion between the ortho C—H bonds in (A) and between the pyridyl N lone pairs in (C), and with enthalpies of formation respectively 1.5 kJ mol-1 and 2.2 kJ mol-1 higher than that of the planar conformer (B). Clearly these energy differences are insufficient to determine the overall conformation.

However, it is interesting to note that pure 2,2'-dipyridylamine crystallizes in three polymorphs: orthorhombic Pccn with Z' = 1 (Johnson & Jacobson, 1973); triclinic P-1 with Z' = 2 (Pyrka & Pinkerton, 1992); and monoclinic P21/c with Z' = 2 (Schödel et al., 1996), and that in each of these forms, the molecules adopt the same overall conformation as that observed here in (I). In the orthorhombic and triclinic forms, the molecules are linked into dimeric units by means of paired N—H···N hydrogen bonds forming an R22(8) motif, with no involvement in the supramolecular aggregation of the N on the opposite edge of each molecule. On the other hand, in the monoclinic polymorph where the molecules are linked into tetrameric aggregates, half of the molecules utilize all of their N atoms in the hydrogen bonding, acting as single donors and double acceptors, while the other half act as single donors only, leaving both pyridyl N atoms in these molecules uninvolved in the hydrogen bonding.

Experimental top

Equimolar quantities of the two components were separately dissolved in methanol: the solutions were mixed and the mixture was then set aside to crystallize, producing analytically pure (I). Analysis: found C 77.1, H 5.4, N 5.7%; C46H39FeN3O2 requires C 76.6, H 5.4, N 5.8%. Crystals suitable for single-crystal X-ray diffraction were selected directly from the analytical sample.

Refinement top

Compound (I) crystallized in the monoclinic system; the space group P21/c was uniquely assigned from the systematic absences. H atoms were treated as riding atoms with distances C—H 0.95 Å, N—H 0.88 Å and O—H 0.84 Å.

Computing details top

Data collection: Kappa-CCD server software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecular components of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
Ferrocene-1,1'-diylbis(diphenylmethanol)–2,2'-dipyridylamine (1/1) top
Crystal data top
C36H30FeO2·C10H9N3F(000) = 1512
Mr = 721.65Dx = 1.322 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8310 reflections
a = 13.3507 (1) Åθ = 2.7–27.5°
b = 16.8198 (2) ŵ = 0.46 mm1
c = 17.6306 (2) ÅT = 150 K
β = 113.6410 (7)°Block, colourless
V = 3626.80 (7) Å30.35 × 0.32 × 0.30 mm
Z = 4
Data collection top
Kappa-CCD
diffractometer
8294 independent reflections
Radiation source: fine-focus sealed X-ray tube7142 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
h = 017
Tmin = 0.856, Tmax = 0.874k = 210
32220 measured reflectionsl = 2220
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0352P)2 + 2.0419P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
8294 reflectionsΔρmax = 0.34 e Å3
472 parametersΔρmin = 0.36 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0049 (8)
Crystal data top
C36H30FeO2·C10H9N3V = 3626.80 (7) Å3
Mr = 721.65Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.3507 (1) ŵ = 0.46 mm1
b = 16.8198 (2) ÅT = 150 K
c = 17.6306 (2) Å0.35 × 0.32 × 0.30 mm
β = 113.6410 (7)°
Data collection top
Kappa-CCD
diffractometer
8294 independent reflections
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
7142 reflections with I > 2σ(I)
Tmin = 0.856, Tmax = 0.874Rint = 0.039
32220 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.04Δρmax = 0.34 e Å3
8294 reflectionsΔρmin = 0.36 e Å3
472 parameters
Special details top

Experimental. The program DENZO-SMN (Otwinowski & Minor, 1997) uses a scaling algorithm [Fox, G·C. & Holmes, K·C. (1966). Acta Cryst. 20, 886–891] which effectively corrects for absorption effects. High redundancy data were used in the scaling program hence the 'multi-scan' code word was used. No transmission coefficients are available from the program (only scale factors for each frame). The scale factors in the experimental table are calculated from the 'size' command in the SHELXL97 input file.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.045060 (17)0.084402 (12)0.207326 (12)0.02114 (8)
O10.23510 (9)0.07110 (7)0.28146 (7)0.0305 (3)
O20.03877 (8)0.10551 (7)0.29356 (6)0.0249 (2)
C110.18101 (12)0.04398 (9)0.19363 (9)0.0228 (3)
C120.08563 (12)0.00649 (9)0.13432 (9)0.0246 (3)
C130.01421 (13)0.06650 (10)0.08470 (9)0.0284 (3)
C140.06504 (13)0.14147 (10)0.11203 (10)0.0293 (3)
C150.16814 (13)0.12796 (9)0.17914 (10)0.0263 (3)
C160.27662 (12)0.00100 (9)0.25646 (9)0.0237 (3)
C410.34308 (13)0.05025 (11)0.33177 (10)0.0314 (4)
C420.40371 (15)0.11411 (12)0.32292 (13)0.0435 (5)
C430.46390 (18)0.16147 (16)0.39134 (18)0.0668 (7)
C440.46474 (19)0.1429 (2)0.46854 (16)0.0773 (10)
C450.40805 (18)0.0784 (2)0.47764 (13)0.0685 (9)
C460.34689 (15)0.03199 (14)0.40995 (11)0.0453 (5)
C310.35319 (12)0.03387 (9)0.21811 (10)0.0260 (3)
C320.33558 (14)0.02205 (10)0.13593 (10)0.0300 (3)
C330.40530 (16)0.05694 (11)0.10404 (12)0.0376 (4)
C340.49201 (16)0.10283 (12)0.15336 (13)0.0428 (5)
C350.51188 (16)0.11328 (13)0.23608 (14)0.0472 (5)
C360.44287 (14)0.07898 (12)0.26826 (12)0.0382 (4)
C240.05373 (13)0.14473 (10)0.31086 (10)0.0285 (3)
C230.04668 (13)0.16119 (10)0.24317 (10)0.0296 (3)
C220.10340 (13)0.08806 (9)0.21506 (10)0.0266 (3)
C210.03730 (12)0.02520 (9)0.26575 (9)0.0222 (3)
C250.05928 (12)0.06139 (9)0.32545 (9)0.0244 (3)
C260.06313 (12)0.06269 (9)0.26519 (9)0.0216 (3)
C510.11991 (12)0.08036 (9)0.32396 (9)0.0229 (3)
C520.14965 (13)0.15837 (9)0.33107 (9)0.0261 (3)
C530.19582 (14)0.17801 (10)0.38667 (10)0.0300 (3)
C540.21276 (15)0.11995 (11)0.43577 (11)0.0349 (4)
C550.18580 (17)0.04228 (11)0.42799 (12)0.0411 (4)
C560.13967 (15)0.02203 (10)0.37220 (11)0.0343 (4)
C610.13319 (12)0.09287 (9)0.17821 (9)0.0231 (3)
C620.08970 (14)0.14282 (9)0.13628 (10)0.0276 (3)
C630.15347 (15)0.16938 (10)0.05656 (10)0.0352 (4)
C640.26197 (16)0.14683 (12)0.01843 (11)0.0408 (4)
C650.30682 (15)0.09836 (12)0.06025 (11)0.0391 (4)
C660.24306 (13)0.07165 (10)0.13974 (10)0.0303 (3)
N10.26014 (11)0.21590 (8)0.39752 (8)0.0286 (3)
N20.14606 (11)0.16261 (8)0.45231 (8)0.0298 (3)
C710.21649 (13)0.22138 (9)0.45669 (9)0.0269 (3)
C730.09999 (14)0.16259 (11)0.50760 (10)0.0332 (4)
C740.12027 (15)0.21891 (11)0.56817 (10)0.0370 (4)
C750.19201 (16)0.28001 (12)0.57154 (11)0.0396 (4)
C760.24093 (15)0.28200 (11)0.51593 (10)0.0345 (4)
C810.31651 (12)0.27194 (9)0.37130 (10)0.0260 (3)
N30.35893 (11)0.33620 (8)0.41723 (8)0.0285 (3)
C830.40947 (13)0.38892 (10)0.38696 (11)0.0310 (3)
C840.42006 (16)0.38102 (11)0.31333 (12)0.0408 (4)
C850.37664 (19)0.31289 (13)0.26699 (14)0.0524 (6)
C860.32443 (16)0.25778 (11)0.29573 (12)0.0410 (4)
H10.17230.06170.27950.046*
H20.06170.11290.34490.037*
H120.07220.04910.12890.030*
H130.05530.05800.04100.034*
H140.03560.19180.08960.035*
H150.21930.16770.20900.032*
H420.40430.12560.27030.052*
H430.50390.20590.38520.080*
H440.50480.17520.51510.093*
H450.41070.06530.53080.082*
H460.30740.01240.41690.054*
H320.27600.00980.10130.036*
H330.39260.04880.04760.045*
H340.53820.12730.13090.051*
H350.57280.14390.27080.057*
H360.45690.08630.32500.046*
H240.10770.18270.34110.034*
H230.07180.21220.22050.035*
H220.17280.08200.17050.032*
H250.11740.03420.36780.029*
H520.13830.19870.29760.031*
H530.21580.23150.39090.036*
H540.24280.13360.47460.042*
H550.19870.00210.46090.049*
H560.12170.03180.36720.041*
H620.01550.15910.16240.033*
H630.12240.20300.02840.042*
H640.30550.16450.03610.049*
H650.38150.08330.03450.047*
H660.27470.03870.16800.036*
H1A0.25080.16960.37240.034*
H730.05040.12100.50450.040*
H740.08660.21630.60640.044*
H750.20740.32050.61220.048*
H760.29010.32350.51770.041*
H830.44000.43500.41910.037*
H840.45570.42050.29460.049*
H850.38310.30460.21580.063*
H860.29430.21100.26490.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.02265 (12)0.01971 (12)0.02113 (12)0.00083 (8)0.00885 (8)0.00129 (8)
O10.0272 (6)0.0299 (6)0.0391 (6)0.0069 (5)0.0183 (5)0.0123 (5)
O20.0239 (5)0.0277 (5)0.0250 (5)0.0070 (4)0.0119 (4)0.0049 (4)
C110.0252 (7)0.0235 (7)0.0221 (7)0.0002 (6)0.0120 (6)0.0009 (5)
C120.0281 (8)0.0240 (7)0.0232 (7)0.0014 (6)0.0120 (6)0.0020 (6)
C130.0303 (8)0.0333 (8)0.0202 (7)0.0010 (6)0.0087 (6)0.0015 (6)
C140.0338 (8)0.0282 (8)0.0277 (8)0.0029 (6)0.0143 (6)0.0084 (6)
C150.0299 (8)0.0237 (7)0.0284 (7)0.0024 (6)0.0149 (6)0.0021 (6)
C160.0230 (7)0.0244 (7)0.0246 (7)0.0006 (6)0.0106 (6)0.0016 (6)
C410.0222 (7)0.0409 (9)0.0287 (8)0.0058 (7)0.0078 (6)0.0075 (7)
C420.0302 (9)0.0458 (11)0.0502 (11)0.0050 (8)0.0115 (8)0.0180 (9)
C430.0352 (11)0.0661 (16)0.0883 (19)0.0107 (10)0.0136 (11)0.0418 (14)
C440.0387 (12)0.118 (2)0.0594 (15)0.0045 (14)0.0032 (11)0.0580 (16)
C450.0320 (11)0.130 (3)0.0335 (10)0.0167 (13)0.0027 (8)0.0290 (13)
C460.0275 (9)0.0773 (15)0.0274 (8)0.0144 (9)0.0071 (7)0.0068 (9)
C310.0232 (7)0.0270 (8)0.0300 (8)0.0030 (6)0.0130 (6)0.0054 (6)
C320.0334 (8)0.0278 (8)0.0337 (8)0.0077 (6)0.0185 (7)0.0056 (6)
C330.0464 (10)0.0357 (9)0.0431 (10)0.0155 (8)0.0310 (8)0.0141 (8)
C340.0376 (10)0.0408 (10)0.0631 (13)0.0095 (8)0.0340 (9)0.0188 (9)
C350.0317 (9)0.0529 (12)0.0587 (12)0.0092 (9)0.0198 (9)0.0061 (10)
C360.0302 (9)0.0478 (11)0.0367 (9)0.0087 (8)0.0135 (7)0.0022 (8)
C240.0338 (8)0.0249 (8)0.0301 (8)0.0019 (6)0.0161 (7)0.0063 (6)
C230.0324 (8)0.0235 (7)0.0377 (9)0.0054 (6)0.0191 (7)0.0015 (6)
C220.0229 (7)0.0261 (8)0.0313 (8)0.0044 (6)0.0113 (6)0.0034 (6)
C210.0235 (7)0.0223 (7)0.0229 (7)0.0023 (6)0.0116 (6)0.0014 (5)
C250.0263 (7)0.0272 (7)0.0211 (7)0.0009 (6)0.0109 (6)0.0007 (6)
C260.0209 (7)0.0218 (7)0.0232 (7)0.0031 (5)0.0101 (5)0.0020 (5)
C510.0224 (7)0.0261 (7)0.0215 (7)0.0024 (6)0.0100 (6)0.0015 (5)
C520.0286 (8)0.0259 (7)0.0269 (7)0.0019 (6)0.0143 (6)0.0009 (6)
C530.0341 (8)0.0286 (8)0.0325 (8)0.0011 (7)0.0188 (7)0.0055 (6)
C540.0417 (10)0.0377 (9)0.0359 (9)0.0035 (7)0.0265 (8)0.0038 (7)
C550.0592 (12)0.0343 (9)0.0462 (10)0.0002 (8)0.0382 (10)0.0064 (8)
C560.0472 (10)0.0259 (8)0.0405 (9)0.0009 (7)0.0287 (8)0.0027 (7)
C610.0261 (7)0.0221 (7)0.0229 (7)0.0026 (6)0.0116 (6)0.0009 (5)
C620.0335 (8)0.0246 (7)0.0286 (8)0.0011 (6)0.0165 (6)0.0000 (6)
C630.0477 (10)0.0321 (9)0.0291 (8)0.0051 (8)0.0187 (7)0.0060 (7)
C640.0477 (11)0.0454 (11)0.0246 (8)0.0088 (8)0.0097 (7)0.0055 (7)
C650.0308 (9)0.0501 (11)0.0302 (9)0.0025 (8)0.0058 (7)0.0016 (8)
C660.0276 (8)0.0370 (9)0.0262 (8)0.0013 (7)0.0106 (6)0.0003 (6)
N10.0333 (7)0.0235 (6)0.0290 (7)0.0059 (5)0.0123 (6)0.0049 (5)
N20.0314 (7)0.0297 (7)0.0248 (6)0.0067 (6)0.0078 (5)0.0000 (5)
C710.0264 (7)0.0268 (8)0.0233 (7)0.0024 (6)0.0055 (6)0.0009 (6)
C730.0339 (9)0.0355 (9)0.0277 (8)0.0052 (7)0.0099 (7)0.0057 (7)
C740.0424 (10)0.0425 (10)0.0284 (8)0.0031 (8)0.0165 (7)0.0020 (7)
C750.0505 (11)0.0394 (10)0.0287 (8)0.0065 (8)0.0156 (8)0.0065 (7)
C760.0407 (9)0.0328 (9)0.0293 (8)0.0102 (7)0.0133 (7)0.0057 (7)
C810.0222 (7)0.0243 (7)0.0293 (8)0.0002 (6)0.0078 (6)0.0004 (6)
N30.0262 (6)0.0269 (7)0.0297 (7)0.0041 (5)0.0083 (5)0.0026 (5)
C830.0258 (8)0.0271 (8)0.0372 (9)0.0047 (6)0.0095 (7)0.0036 (7)
C840.0451 (10)0.0384 (10)0.0456 (10)0.0145 (8)0.0252 (9)0.0064 (8)
C850.0691 (14)0.0536 (12)0.0514 (12)0.0251 (11)0.0418 (11)0.0174 (10)
C860.0513 (11)0.0364 (10)0.0428 (10)0.0154 (8)0.0269 (9)0.0146 (8)
Geometric parameters (Å, º) top
Fe1—C152.0344 (15)C22—C211.436 (2)
Fe1—C112.0412 (15)C22—H220.95
Fe1—C222.0415 (15)C21—C251.433 (2)
Fe1—C212.0421 (14)C21—C261.517 (2)
Fe1—C142.0433 (15)C25—H250.95
Fe1—C232.0465 (15)C26—C611.528 (2)
Fe1—C242.0508 (15)C26—C511.538 (2)
Fe1—C252.0509 (15)C51—C521.391 (2)
Fe1—C132.0544 (15)C51—C561.391 (2)
Fe1—C122.0559 (15)C52—C531.391 (2)
O1—C161.4449 (18)C52—H520.95
O1—H10.84C53—C541.383 (2)
O2—C261.4400 (17)C53—H530.95
O2—H20.84C54—C551.377 (3)
C11—C121.430 (2)C54—H540.95
C11—C151.433 (2)C55—C561.396 (2)
C11—C161.515 (2)C55—H550.95
C12—C131.423 (2)C56—H560.95
C12—H120.95C61—C621.391 (2)
C13—C141.421 (2)C61—C661.393 (2)
C13—H130.95C62—C631.393 (2)
C14—C151.428 (2)C62—H620.95
C14—H140.95C63—C641.383 (3)
C15—H150.95C63—H630.95
C16—C411.533 (2)C64—C651.386 (3)
C16—C311.537 (2)C64—H640.95
C41—C421.391 (3)C65—C661.390 (2)
C41—C461.393 (3)C65—H650.95
C42—C431.399 (3)C66—H660.95
C42—H420.95N1—C711.387 (2)
C43—C441.392 (4)N1—C811.396 (2)
C43—H430.95N1—H1A0.88
C44—C451.370 (4)N2—C711.345 (2)
C44—H440.95N2—C731.345 (2)
C45—C461.385 (3)C71—C761.401 (2)
C45—H450.95C73—C741.371 (3)
C46—H460.95C73—H730.95
C31—C321.386 (2)C74—C751.390 (3)
C31—C361.394 (2)C74—H740.95
C32—C331.395 (2)C75—C761.379 (2)
C32—H320.95C75—H750.95
C33—C341.373 (3)C76—H760.95
C33—H330.95C81—N31.333 (2)
C34—C351.385 (3)C81—C861.399 (2)
C34—H340.95N3—C831.347 (2)
C35—C361.387 (3)C83—C841.367 (2)
C35—H350.95C83—H830.95
C36—H360.95C84—C851.392 (3)
C24—C231.420 (2)C84—H840.95
C24—C251.422 (2)C85—C861.373 (3)
C24—H240.95C85—H850.95
C23—C221.425 (2)C86—H860.95
C23—H230.95
C16—O1—H1109.5C21—C26—C61112.10 (12)
C26—O2—H2109.5O2—C26—C51108.76 (11)
C12—C11—C15107.23 (13)C21—C26—C51110.85 (12)
C12—C11—C16123.82 (13)C61—C26—C51110.07 (12)
C15—C11—C16128.91 (13)C52—C51—C56118.63 (14)
C13—C12—C11108.51 (13)C52—C51—C26118.58 (13)
C13—C12—H12125.7C56—C51—C26122.75 (14)
C11—C12—H12125.7C51—C52—C53120.71 (15)
C14—C13—C12108.05 (14)C51—C52—H52119.6
C14—C13—H13126.0C53—C52—H52119.6
C12—C13—H13126.0C54—C53—C52120.23 (15)
C13—C14—C15108.07 (14)C54—C53—H53119.9
C13—C14—H14126.0C52—C53—H53119.9
C15—C14—H14126.0C55—C54—C53119.54 (15)
C14—C15—C11108.14 (14)C55—C54—H54120.2
C14—C15—H15125.9C53—C54—H54120.2
C11—C15—H15125.9C54—C55—C56120.57 (16)
O1—C16—C11108.47 (12)C54—C55—H55119.7
O1—C16—C41110.75 (13)C56—C55—H55119.7
C11—C16—C41112.20 (13)C51—C56—C55120.27 (16)
O1—C16—C31104.18 (12)C51—C56—H56119.9
C11—C16—C31111.84 (12)C55—C56—H56119.9
C41—C16—C31109.11 (12)C62—C61—C66118.59 (14)
C42—C41—C46119.30 (17)C62—C61—C26121.08 (14)
C42—C41—C16119.86 (15)C66—C61—C26120.32 (13)
C46—C41—C16120.80 (17)C61—C62—C63120.91 (16)
C41—C42—C43120.1 (2)C61—C62—H62119.5
C41—C42—H42119.9C63—C62—H62119.5
C43—C42—H42119.9C64—C63—C62119.98 (16)
C44—C43—C42119.5 (3)C64—C63—H63120.0
C44—C43—H43120.3C62—C63—H63120.0
C42—C43—H43120.3C63—C64—C65119.63 (16)
C45—C44—C43120.3 (2)C63—C64—H64120.2
C45—C44—H44119.9C65—C64—H64120.2
C43—C44—H44119.9C64—C65—C66120.38 (17)
C44—C45—C46120.6 (2)C64—C65—H65119.8
C44—C45—H45119.7C66—C65—H65119.8
C46—C45—H45119.7C65—C66—C61120.49 (16)
C45—C46—C41120.2 (2)C65—C66—H66119.8
C45—C46—H46119.9C61—C66—H66119.8
C41—C46—H46119.9C71—N1—C81130.49 (14)
C32—C31—C36118.94 (15)C71—N1—H1A114.8
C32—C31—C16122.98 (14)C81—N1—H1A114.8
C36—C31—C16118.07 (14)C71—N2—C73118.10 (14)
C31—C32—C33120.01 (17)N2—C71—N1113.76 (14)
C31—C32—H32120.0N2—C71—C76121.74 (15)
C33—C32—H32120.0N1—C71—C76124.49 (15)
C34—C33—C32120.70 (17)N2—C73—C74124.02 (16)
C34—C33—H33119.6N2—C73—H73118.0
C32—C33—H33119.6C74—C73—H73118.0
C33—C34—C35119.68 (16)C73—C74—C75117.50 (16)
C33—C34—H34120.2C73—C74—H74121.3
C35—C34—H34120.2C75—C74—H74121.3
C34—C35—C36120.00 (19)C76—C75—C74120.15 (17)
C34—C35—H35120.0C76—C75—H75119.9
C36—C35—H35120.0C74—C75—H75119.9
C35—C36—C31120.64 (18)C75—C76—C71118.48 (16)
C35—C36—H36119.7C75—C76—H76120.8
C31—C36—H36119.7C71—C76—H76120.8
C23—C24—C25107.90 (14)N3—C81—N1120.04 (14)
C23—C24—H24126.0N3—C81—C86122.73 (15)
C25—C24—H24126.0N1—C81—C86117.22 (14)
C24—C23—C22108.37 (14)C81—N3—C83116.83 (14)
C24—C23—H23125.8N3—C83—C84124.81 (16)
C22—C23—H23125.8N3—C83—H83117.6
C23—C22—C21108.10 (14)C84—C83—H83117.6
C23—C22—H22125.9C83—C84—C85117.39 (17)
C21—C22—H22125.9C83—C84—H84121.3
C25—C21—C22106.97 (13)C85—C84—H84121.3
C25—C21—C26123.64 (13)C86—C85—C84119.53 (18)
C22—C21—C26129.19 (13)C86—C85—H85120.2
C24—C25—C21108.65 (13)C84—C85—H85120.2
C24—C25—H25125.7C85—C86—C81118.69 (17)
C21—C25—H25125.7C85—C86—H86120.7
O2—C26—C21107.72 (12)C81—C86—H86120.7
O2—C26—C61107.18 (11)
C15—C11—C12—C130.81 (16)C22—C21—C26—C6134.2 (2)
C16—C11—C12—C13178.92 (13)C25—C21—C26—C5184.94 (16)
C11—C12—C13—C140.69 (17)C22—C21—C26—C5189.26 (18)
C12—C13—C14—C150.30 (18)O2—C26—C51—C5261.81 (17)
C13—C14—C15—C110.21 (17)C21—C26—C51—C52179.93 (13)
C12—C11—C15—C140.62 (16)C61—C26—C51—C5255.33 (17)
C16—C11—C15—C14178.60 (14)O2—C26—C51—C56116.13 (16)
C12—C11—C16—O134.27 (18)C21—C26—C51—C562.1 (2)
C15—C11—C16—O1148.06 (14)C61—C26—C51—C56126.73 (16)
C12—C11—C16—C41156.94 (14)C56—C51—C52—C531.5 (2)
C15—C11—C16—C4125.4 (2)C26—C51—C52—C53176.52 (14)
C12—C11—C16—C3180.06 (17)C51—C52—C53—C540.0 (2)
C15—C11—C16—C3197.61 (17)C52—C53—C54—C551.4 (3)
O1—C16—C41—C42170.43 (15)C53—C54—C55—C561.2 (3)
C11—C16—C41—C4268.20 (19)C52—C51—C56—C551.7 (3)
C31—C16—C41—C4256.33 (19)C26—C51—C56—C55176.29 (16)
O1—C16—C41—C467.2 (2)C54—C55—C56—C510.3 (3)
C11—C16—C41—C46114.20 (17)O2—C26—C61—C629.20 (18)
C31—C16—C41—C46121.28 (16)C21—C26—C61—C62108.80 (15)
C46—C41—C42—C432.8 (3)C51—C26—C61—C62127.32 (14)
C16—C41—C42—C43179.53 (17)O2—C26—C61—C66169.78 (13)
C41—C42—C43—C441.6 (3)C21—C26—C61—C6672.22 (17)
C42—C43—C44—C450.7 (4)C51—C26—C61—C6651.66 (18)
C43—C44—C45—C461.7 (4)C66—C61—C62—C631.8 (2)
C44—C45—C46—C410.5 (3)C26—C61—C62—C63179.16 (14)
C42—C41—C46—C451.8 (3)C61—C62—C63—C640.8 (3)
C16—C41—C46—C45179.41 (17)C62—C63—C64—C650.5 (3)
O1—C16—C31—C32117.66 (15)C63—C64—C65—C660.7 (3)
C11—C16—C31—C320.7 (2)C64—C65—C66—C610.4 (3)
C41—C16—C31—C32124.02 (16)C62—C61—C66—C651.6 (2)
O1—C16—C31—C3660.90 (18)C26—C61—C66—C65179.36 (15)
C11—C16—C31—C36177.85 (14)C73—N2—C71—N1179.57 (14)
C41—C16—C31—C3657.41 (19)C73—N2—C71—C760.9 (2)
C36—C31—C32—C331.8 (2)C81—N1—C71—N2165.27 (15)
C16—C31—C32—C33176.77 (14)C81—N1—C71—C7614.2 (3)
C31—C32—C33—C340.3 (2)C71—N2—C73—C740.1 (3)
C32—C33—C34—C351.4 (3)N2—C73—C74—C750.8 (3)
C33—C34—C35—C361.5 (3)C73—C74—C75—C760.8 (3)
C34—C35—C36—C310.0 (3)C74—C75—C76—C710.0 (3)
C32—C31—C36—C351.6 (3)N2—C71—C76—C750.9 (3)
C16—C31—C36—C35176.97 (17)N1—C71—C76—C75179.67 (16)
C25—C24—C23—C220.48 (18)C71—N1—C81—N316.4 (2)
C24—C23—C22—C210.17 (18)C71—N1—C81—C86162.74 (17)
C23—C22—C21—C250.75 (17)N1—C81—N3—C83178.12 (14)
C23—C22—C21—C26175.70 (14)C86—C81—N3—C831.0 (2)
C23—C24—C25—C210.95 (17)C81—N3—C83—C840.0 (3)
C22—C21—C25—C241.05 (16)N3—C83—C84—C850.9 (3)
C26—C21—C25—C24176.35 (13)C83—C84—C85—C860.9 (3)
C25—C21—C26—O233.94 (18)C84—C85—C86—C810.0 (3)
C22—C21—C26—O2151.86 (14)N3—C81—C86—C851.0 (3)
C25—C21—C26—C61151.62 (13)N1—C81—C86—C85178.16 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.842.032.7748 (15)147
O2—H2···N20.841.962.7556 (17)158
N1—H1A···O10.882.263.1116 (17)164
C76—H76···N30.952.312.922 (2)122

Experimental details

Crystal data
Chemical formulaC36H30FeO2·C10H9N3
Mr721.65
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)13.3507 (1), 16.8198 (2), 17.6306 (2)
β (°) 113.6410 (7)
V3)3626.80 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.35 × 0.32 × 0.30
Data collection
DiffractometerKappa-CCD
diffractometer
Absorption correctionMulti-scan
DENZO-SMN (Otwinowski & Minor, 1997)
Tmin, Tmax0.856, 0.874
No. of measured, independent and
observed [I > 2σ(I)] reflections
32220, 8294, 7142
Rint0.039
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.095, 1.04
No. of reflections8294
No. of parameters472
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.36

Computer programs: Kappa-CCD server software (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), PLATON (Spek, 2001), SHELXL97 (Sheldrick, 1997) and PRPKAPPA (Ferguson, 1999).

Selected torsion angles (º) top
C81—N1—C71—N2165.27 (15)C71—N1—C81—N316.4 (2)
C81—N1—C71—C7614.2 (3)C71—N1—C81—C86162.74 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.842.032.7748 (15)147
O2—H2···N20.841.962.7556 (17)158
N1—H1A···O10.882.263.1116 (17)164
C76—H76···N30.952.312.922 (2)122
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds