Download citation
Download citation
link to html
We have synthesized two isomeric di­deoxy­nucleosides. 4(S)-(6-Amino-9H-purin-9-yl)-3-methyl­ene-2,3,4,5-tetra­hydrofuran-2(S)-yl­methanol, C11H13N5O2, is an analogue of the anti-HIV compound (S,S)-isodi­deoxy­adenosine (isoDDA) with an exocyclic methyl­ene group and is found to be anti-HIV inactive. The solid-state comformation is very similar to that of isoDDA. 4(S)-(6-Amino-3H-purin-3-yl)-3-methyl­ene-2,3,4,5-tetra­hydro­furan-2(S)-ylmethanol, C11H13N5O2, has an isomeric arrangement of the carbohydrate and base moieties, as confirmed by the crystal structure analysis. The asymmetric unit contains two independent mol­ecules that differ in conformations at the sugar moiety.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100008921/qa0334sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100008921/qa0334Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100008921/qa0334IIsup3.hkl
Contains datablock II

CCDC references: 150388; 150389

Comment top

4(S)-6-Amino-9H-purin-9-yl)tetrahydro-2(S)-furanmethanol [(S,S)-isodideoxyadenosine or isoDDA; Bolon et al., 1994] has potent anti-HIV activity against HIV-1 and HIV-2 (Nair et al., 1995). Our interest in this compound led to the design and synthesis (using the Mitsunobu reaction as the key step) of compound (I), which was characterized by NMR, UV and HRMS data. Surprisingly compound (I) was found to be anti-HIV inactive from in vitro studies with infected CEM-SS cells. We determined the crystal structure in a search for possible explanations of the inactivity.

The solid-state conformation of compound (I) shows the sugar ring to have a O1'-envelope conformation anti to the adenine. This conformation is very similar to the solid-state comformation of isoDDA, the only difference being the O1',C5'-half-chair conformation of the sugar ring of isoDDA. In both compounds, an intramolecular hydrogen-bond-like interaction is present between H8 of adenine and O6' of the sugar moiety [C8—O6' = 3.261 (2) Å for isoDDA and 3.444 (2) Å for compound (I)]. The methylene substituent of compound (I) may impart sufficient conformational rigidity to the sugar ring to preserve this conformation in solution, thus preventing cellular phosphorylation which is a requirement for anti-HIV activity.

Intermolecular hydrogen bonding occurs between the N6 amine and O6' hydroxyl H atoms and the ring N atoms of the adenine moiety of adjacent molecules forming interlocked chains two molecules wide along the c axis.

The novel isomer, compound (II), has the sugar ring attachment at N3 of the base and has methylene substitution at C3'. The key step in the synthesis was a Mitsunobu coupling reaction. The title compound was characterized by NMR, UV and HRMS data. The crystal structure confirms the structure of the isomer.

The asymmetric unit contains two independent molecules (A and B) that have different carbohydrate-ring conformations. The conformations differ in three respects: (i) the ring of molecule A has an O5'A-envelope conformation, while the ring of molecule B has an O1'B,C5'B-half-chair conformation; (ii) in molecule A, the O6'A atom is anti to C3'A [C3'A—C2'A—C6'A—O6'A = −167.2 (4)°] and in molecule B, the O6'B atom is anti to H2'B [H2'B—C2'B—C6'B—O6'B = 173°]; (iii) the molecules differ in the relative orientation of the carbohydrate ring to the base; molecule A, C2A—N3A—C4'A—C5'A = 39.3 (6)°, and molecule B, C2B—N3B—C4'B—C5'B = 24.0 (6)°.

The hydrogen bonds between the amine H atoms and the ring N atoms of adjacent molecules form doubly linked ribbons of molecules parallel to the a axis. The O6' hydroxyl H atoms form hydrogen bonds that link the ribbons.

Experimental top

Preparation of compound (I): to a suspension of 2-(S)-(tert-butyldiphenylsilyloxymethyl)-3-methylenetetrahydrofuran-4-(R)-ol (1.66 mmol), Ph3P (0.65 g) and adenine in dioxane (80 ml) at room temperature, DEAD (0.4 ml) was added dropwise and the resulting solution was stirred at room temperature for 22 h. The solvent was evaporated and the residue was purified on a silica-gel column. The major product (N-9 isomer; 0.34 g, 42% yield) was deprotected with NH4F (0.4 g) in MeOH (30 ml) to give, after chromatographic separation on silica gel, compound (I) in 85% yield. Compound (I) crystallized from MeOH as white prisms: m.p. 463 K; 1H NMR (DMSO-d6) δ 8.15 (2 x s, 2H, H-2 and H-8), 7.25 (bs, 2H, NH2), 5.56 (t, 1H, H-4'), 5.30 (bs, 1H, vinyl), 5.06 (t, J = 5.6 Hz, 1H, –OH), 4.44 (bs, 1H, H-2'), 3.73 (m, 2H, H-5'), 3.31 (t, J = 6.7 Hz, 2H, CH2); UV (MeOH) λmax 260.6 nm (ε 14000). HRMS (FAB): (M+Na)+ calculated for C11H13N5NaO2 270.0966, found 270.0959. Preparation of the compound (II): to a suspension of 2-(S)-(tert-butyldiphenylsilyloxymethyl)-3-methylene-tetrahydrofuran-4-(R)-ol (1.66 mmol), Ph3P (0.65 g), and adenine in dioxane (80 ml) at room temperature, DEAD (0.4 ml) was added dropwise and the reaction mixture was stirred at room temperature for 22 h. The solvent was then evaporated and the residue was separated on a silica-gel column. The minor product (N-3 isomer; 0.15 g, 19% yield) was deprotected with NH4F to give, after chromatographic purification on silica gel, the compound (II) in 86% yield. The title compound crystallized from methanol as white prisms: m.p. 529 K; 1H NMR (CD3OD) δ 8.62 (s, 1H, H-8), 7.90 (s, 1H, H-2), 5.85 (m, iH, H-4'), 5.49 (m, 2H, vinyl), 4.52 (bs, 1H, H-2'), 4.29 (dd, J = 2.7, 10.6 Hz, 1H, H-5'a), 4.22 (dd, J = 5.9,10.6 Hz, 1H, H-5'b), 4.00 (dd, J = 2.9, 12.5 Hz, 1H, one of CH2), 3.90 (dd, J = 3.3, 12.4 Hz, 1H, one H of CH2); UV (MeOH) λmax 274.5 nm (ε 13300); HMRS (FAB): (M + Na)+ calculated for C11H13N5NaO2 270.0966, found 270.0954.

Refinement top

Due to the lack of heavy atoms, the Friedel pair reflections were averaged together for each structure. For compound (I), 825 Friedel pairs were averaged and for compound (II), 1786 Friedel pairs were averaged. The absolute configurations of moleculea A and B were inferred from the configuration of the starting materials.

Computing details top

For both compounds, data collection: CAD-4 Operations Manual (Enraf-Nonius,1977); cell refinement: CAD-4 Operations Manual; data reduction: MolEN (Fair,1990); program(s) used to solve structure: SHELXTL (Sheldrick, 1995); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXTL.

(I) top
Crystal data top
C11H13N5O2Dx = 1.429 Mg m3
Mr = 247.26Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 24 reflections
a = 9.727 (2) Åθ = 12.1–17.5°
b = 16.632 (4) ŵ = 0.10 mm1
c = 7.104 (2) ÅT = 210 K
V = 1149.3 (5) Å3Prism, colourless
Z = 40.36 × 0.24 × 0.21 mm
F(000) = 520
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.024
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.0°
Graphite monochromatorh = 1111
θ–2θ scansk = 119
4469 measured reflectionsl = 88
1193 independent reflections4 standard reflections every 120 min
1133 reflections with I > 2σ(I) intensity decay: <2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0349P)2 + 0.1889P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.008
1193 reflectionsΔρmax = 0.17 e Å3
166 parametersΔρmin = 0.10 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.031 (3)
Crystal data top
C11H13N5O2V = 1149.3 (5) Å3
Mr = 247.26Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.727 (2) ŵ = 0.10 mm1
b = 16.632 (4) ÅT = 210 K
c = 7.104 (2) Å0.36 × 0.24 × 0.21 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.024
4469 measured reflections4 standard reflections every 120 min
1193 independent reflections intensity decay: <2%
1133 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.064H-atom parameters constrained
S = 1.11Δρmax = 0.17 e Å3
1193 reflectionsΔρmin = 0.10 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.58625 (15)0.93347 (8)0.7844 (2)0.0263 (3)
C20.51904 (18)0.86504 (10)0.8226 (2)0.0283 (4)
H20.46600.86570.93150.034*
N30.51725 (15)0.79598 (8)0.7266 (2)0.0270 (3)
C40.59144 (16)0.80265 (9)0.5669 (2)0.0216 (3)
C50.66519 (17)0.86903 (9)0.5073 (2)0.0217 (4)
C60.66393 (18)0.93680 (10)0.6265 (2)0.0236 (4)
N60.73670 (17)1.00338 (9)0.5930 (2)0.0294 (3)
H6B0.73351.04290.67100.035*
H6A0.78671.00670.49350.035*
N70.73282 (15)0.85309 (8)0.3395 (2)0.0252 (3)
C80.69869 (17)0.77840 (10)0.3012 (2)0.0262 (4)
H80.72930.75120.19470.031*
N90.61379 (14)0.74447 (8)0.43286 (19)0.0235 (3)
O1'0.70105 (12)0.57710 (7)0.25746 (18)0.0293 (3)
C2'0.57703 (18)0.57818 (10)0.1480 (2)0.0248 (4)
H2'0.52780.52730.16570.030*
C3'0.49360 (17)0.64604 (10)0.2329 (2)0.0232 (4)
C4'0.55393 (18)0.66314 (9)0.4263 (2)0.0243 (4)
H4'0.48310.65730.52350.029*
C5'0.6618 (2)0.59661 (10)0.4460 (2)0.0305 (4)
H5'B0.74040.61550.51750.037*
H5'A0.62320.55000.50890.037*
C6'0.6127 (2)0.58823 (11)0.0591 (2)0.0293 (4)
H6'B0.67460.54530.09630.035*
H6'A0.52940.58300.13320.035*
O6'0.67537 (14)0.66326 (8)0.10049 (19)0.0331 (3)
H6'0.61580.69640.12600.050 (7)*
C7'0.39301 (18)0.68600 (11)0.1517 (3)0.0327 (4)
H7'B0.36670.67340.02940.039*
H7'A0.34820.72690.21670.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0311 (7)0.0245 (7)0.0234 (7)0.0002 (6)0.0004 (7)0.0020 (6)
C20.0309 (8)0.0285 (9)0.0254 (9)0.0017 (7)0.0050 (8)0.0022 (8)
N30.0311 (7)0.0244 (7)0.0255 (7)0.0029 (6)0.0051 (6)0.0011 (6)
C40.0230 (8)0.0202 (8)0.0216 (8)0.0016 (6)0.0027 (7)0.0002 (6)
C50.0227 (8)0.0198 (8)0.0228 (8)0.0012 (6)0.0027 (7)0.0015 (7)
C60.0258 (8)0.0210 (8)0.0239 (8)0.0012 (7)0.0045 (7)0.0018 (7)
N60.0432 (8)0.0210 (6)0.0241 (7)0.0063 (6)0.0034 (7)0.0031 (6)
N70.0298 (7)0.0214 (6)0.0246 (7)0.0035 (6)0.0020 (6)0.0001 (6)
C80.0289 (9)0.0258 (8)0.0240 (8)0.0026 (7)0.0035 (7)0.0012 (7)
N90.0278 (7)0.0190 (7)0.0236 (7)0.0019 (6)0.0022 (6)0.0023 (6)
O1'0.0329 (7)0.0295 (6)0.0254 (6)0.0080 (5)0.0006 (5)0.0001 (5)
C2'0.0297 (8)0.0187 (7)0.0260 (8)0.0019 (7)0.0001 (7)0.0001 (7)
C3'0.0239 (8)0.0194 (7)0.0262 (8)0.0048 (7)0.0035 (7)0.0007 (7)
C4'0.0296 (9)0.0197 (8)0.0234 (8)0.0037 (7)0.0037 (8)0.0005 (7)
C5'0.0448 (10)0.0219 (8)0.0249 (8)0.0016 (8)0.0034 (8)0.0008 (7)
C6'0.0377 (10)0.0248 (8)0.0253 (8)0.0002 (8)0.0012 (8)0.0029 (7)
O6'0.0363 (7)0.0302 (7)0.0329 (7)0.0019 (6)0.0050 (6)0.0053 (6)
C7'0.0297 (9)0.0324 (9)0.0360 (10)0.0018 (8)0.0011 (9)0.0013 (8)
Geometric parameters (Å, º) top
N1—C21.340 (2)O1'—C2'1.435 (2)
N1—C61.354 (2)C2'—C3'1.515 (2)
C2—N31.336 (2)C2'—C6'1.521 (2)
C2—H20.9300C2'—H2'0.9800
N3—C41.349 (2)C3'—C7'1.316 (2)
C4—N91.375 (2)C3'—C4'1.521 (2)
C4—C51.383 (2)C4'—C5'1.532 (2)
C5—N71.387 (2)C4'—H4'0.9800
C5—C61.410 (2)C5'—H5'B0.9700
C6—N61.336 (2)C5'—H5'A0.9700
N6—H6B0.8600C6'—O6'1.420 (2)
N6—H6A0.8600C6'—H6'B0.9700
N7—C81.314 (2)C6'—H6'A0.9700
C8—N91.370 (2)O6'—H6'0.8200
C8—H80.9300C7'—H7'B0.9300
N9—C4'1.473 (2)C7'—H7'A0.9300
O1'—C5'1.430 (2)
C2—N1—C6118.34 (14)O1'—C2'—H2'109.3
N3—C2—N1129.29 (16)C3'—C2'—H2'109.3
N3—C2—H2115.4C6'—C2'—H2'109.3
N1—C2—H2115.4C7'—C3'—C2'126.86 (17)
C2—N3—C4110.58 (14)C7'—C3'—C4'126.04 (17)
N3—C4—N9127.52 (15)C2'—C3'—C4'106.99 (13)
N3—C4—C5126.90 (15)N9—C4'—C3'110.65 (13)
N9—C4—C5105.54 (14)N9—C4'—C5'112.93 (14)
C4—C5—N7110.88 (14)C3'—C4'—C5'102.22 (13)
C4—C5—C6116.73 (15)N9—C4'—H4'110.3
N7—C5—C6132.31 (15)C3'—C4'—H4'110.3
N6—C6—N1118.50 (15)C5'—C4'—H4'110.3
N6—C6—C5123.47 (16)O1'—C5'—C4'105.15 (13)
N1—C6—C5118.02 (15)O1'—C5'—H5'B110.7
C6—N6—H6B120.0C4'—C5'—H5'B110.7
C6—N6—H6A120.0O1'—C5'—H5'A110.7
H6B—N6—H6A120.0C4'—C5'—H5'A110.7
C8—N7—C5103.83 (14)H5'B—C5'—H5'A108.8
N7—C8—N9113.59 (15)O6'—C6'—C2'113.27 (14)
N7—C8—H8123.2O6'—C6'—H6'B108.9
N9—C8—H8123.2C2'—C6'—H6'B108.9
C8—N9—C4106.16 (14)O6'—C6'—H6'A108.9
C8—N9—C4'126.52 (14)C2'—C6'—H6'A108.9
C4—N9—C4'127.26 (14)H6'B—C6'—H6'A107.7
C5'—O1'—C2'106.28 (13)C6'—O6'—H6'109.5
O1'—C2'—C3'104.11 (13)C3'—C7'—H7'B120.0
O1'—C2'—C6'109.48 (14)C3'—C7'—H7'A120.0
C3'—C2'—C6'115.18 (15)H7'B—C7'—H7'A120.0
C6—N1—C2—N30.8 (3)N3—C4—N9—C4'4.6 (3)
N1—C2—N3—C43.1 (3)C5—C4—N9—C4'177.47 (15)
C2—N3—C4—N9179.76 (16)C5'—O1'—C2'—C3'36.01 (16)
C2—N3—C4—C52.3 (2)C5'—O1'—C2'—C6'159.67 (14)
N3—C4—C5—N7177.82 (15)O1'—C2'—C3'—C7'158.59 (16)
N9—C4—C5—N70.11 (18)C6'—C2'—C3'—C7'38.7 (2)
N3—C4—C5—C60.6 (2)O1'—C2'—C3'—C4'17.90 (16)
N9—C4—C5—C6177.34 (14)C6'—C2'—C3'—C4'137.78 (16)
C2—N1—C6—N6176.57 (15)C8—N9—C4'—C3'46.5 (2)
C2—N1—C6—C52.5 (2)C4—N9—C4'—C3'130.41 (16)
C4—C5—C6—N6175.94 (15)C8—N9—C4'—C5'67.3 (2)
N7—C5—C6—N60.6 (3)C4—N9—C4'—C5'115.70 (18)
C4—C5—C6—N13.1 (2)C7'—C3'—C4'—N961.3 (2)
N7—C5—C6—N1179.57 (16)C2'—C3'—C4'—N9115.24 (15)
C4—C5—N7—C80.20 (18)C7'—C3'—C4'—C5'178.21 (17)
C6—C5—N7—C8176.85 (18)C2'—C3'—C4'—C5'5.26 (16)
C5—N7—C8—N90.22 (18)C2'—O1'—C5'—C4'40.20 (17)
N7—C8—N9—C40.16 (19)N9—C4'—C5'—O1'91.97 (17)
N7—C8—N9—C4'177.64 (15)C3'—C4'—C5'—O1'26.93 (17)
N3—C4—N9—C8177.94 (16)O1'—C2'—C6'—O6'64.77 (19)
C5—C4—N9—C80.02 (17)C3'—C2'—C6'—O6'52.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···N1i0.862.172.979 (2)156
N6—H6B···N7ii0.862.132.975 (2)168
O6—H6···N3iii0.822.182.957 (2)158
C8—H8···O60.932.613.444 (2)150
Symmetry codes: (i) x+3/2, y+2, z1/2; (ii) x+3/2, y+2, z+1/2; (iii) x, y, z1.
(II) top
Crystal data top
C11H13N5O2F(000) = 520
Mr = 247.26Dx = 1.444 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 8.496 (4) ÅCell parameters from 22 reflections
b = 18.530 (6) Åθ = 10.0–13.6°
c = 7.226 (2) ŵ = 0.11 mm1
β = 90.81 (4)°T = 200 K
V = 1137.5 (7) Å3Prism, colourless
Z = 40.31 × 0.25 × 0.24 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.069
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.0°
Graphite monochromatorh = 1010
θ–2θ scansk = 2121
5428 measured reflectionsl = 68
2031 independent reflections4 standard reflections every 120 min
1665 reflections with I > 2σ(I) intensity decay: <2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0794P)2 + 0.9198P]
where P = (Fo2 + 2Fc2)/3
2031 reflections(Δ/σ)max = 0.015
327 parametersΔρmax = 0.27 e Å3
1 restraintΔρmin = 0.29 e Å3
Crystal data top
C11H13N5O2V = 1137.5 (7) Å3
Mr = 247.26Z = 4
Monoclinic, P21Mo Kα radiation
a = 8.496 (4) ŵ = 0.11 mm1
b = 18.530 (6) ÅT = 200 K
c = 7.226 (2) Å0.31 × 0.25 × 0.24 mm
β = 90.81 (4)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.069
5428 measured reflections4 standard reflections every 120 min
2031 independent reflections intensity decay: <2%
1665 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0491 restraint
wR(F2) = 0.133H-atom parameters constrained
S = 0.97Δρmax = 0.27 e Å3
2031 reflectionsΔρmin = 0.29 e Å3
327 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N1A0.0989 (5)0.2273 (2)0.4457 (6)0.0258 (10)
C2A0.0726 (6)0.2636 (3)0.5991 (7)0.0252 (12)
H2A0.03150.27590.62130.030*
N3A0.1785 (5)0.2845 (2)0.7261 (6)0.0247 (10)
C4A0.3318 (6)0.2643 (3)0.6939 (7)0.0200 (11)
C5A0.3694 (6)0.2257 (3)0.5378 (7)0.0251 (12)
C6A0.2499 (6)0.2052 (3)0.4085 (7)0.0231 (11)
N6A0.2740 (5)0.1688 (3)0.2562 (6)0.0302 (11)
H6A10.19640.15920.18240.036*
H6A20.36730.15440.23000.036*
N7A0.5308 (5)0.2131 (3)0.5411 (6)0.0266 (10)
C8A0.5762 (6)0.2462 (3)0.6985 (8)0.0289 (12)
H8A0.68100.24700.73750.035*
N9A0.4603 (5)0.2787 (2)0.7984 (6)0.0271 (10)
O1'A0.1319 (4)0.34989 (19)0.9012 (5)0.0296 (9)
C2'A0.0613 (6)0.4210 (3)0.8949 (8)0.0258 (12)
H2'A0.06490.44251.01860.031*
C3'A0.1078 (6)0.4056 (3)0.8482 (7)0.0248 (11)
C4'A0.1406 (6)0.3271 (3)0.8943 (7)0.0220 (11)
H4'A0.22690.32360.98530.026*
C5'A0.0150 (7)0.3042 (3)0.9824 (9)0.0332 (13)
H5'10.03770.25390.95570.040*
H5'20.01030.31071.11560.040*
C6'A0.1535 (7)0.4666 (4)0.7644 (9)0.0395 (15)
H6'10.09070.50810.73090.047*
H6'20.17500.43920.65240.047*
O6'A0.2981 (5)0.4909 (2)0.8375 (7)0.0475 (12)
H6'A0.34570.45660.88160.071*
C7'A0.2108 (7)0.4513 (3)0.7794 (8)0.0355 (14)
H7'10.18120.49870.75470.043*
H7'20.31280.43620.75550.043*
N1B0.4063 (5)0.6152 (2)0.0969 (6)0.0232 (10)
C2B0.4414 (6)0.5805 (3)0.0567 (7)0.0260 (12)
H2B0.54560.56620.07290.031*
N3B0.3411 (5)0.5634 (2)0.1934 (6)0.0224 (9)
C4B0.1859 (6)0.5823 (3)0.1631 (7)0.0231 (11)
C5B0.1393 (6)0.6163 (3)0.0006 (7)0.0219 (11)
N6B0.2215 (5)0.6686 (3)0.2885 (6)0.0278 (11)
H6B10.29580.67690.36520.033*
H6B20.12680.68190.31460.033*
C6B0.2525 (6)0.6355 (3)0.1323 (7)0.0245 (11)
N7B0.0220 (5)0.6259 (2)0.0036 (6)0.0266 (10)
C8B0.0562 (6)0.5960 (3)0.1669 (8)0.0301 (13)
H8B0.15950.59430.20760.036*
N9B0.0628 (5)0.5683 (3)0.2716 (6)0.0293 (11)
O1'B0.6395 (4)0.4786 (2)0.3358 (5)0.0305 (9)
C2'B0.5401 (6)0.4157 (3)0.3560 (8)0.0295 (13)
H2'B0.56030.39330.47690.035*
C3'B0.3743 (6)0.4454 (3)0.3489 (7)0.0232 (11)
C4'B0.3857 (6)0.5270 (3)0.3681 (7)0.0265 (12)
H4'B0.31720.54340.46760.032*
C5'B0.5577 (6)0.5363 (3)0.4267 (8)0.0293 (12)
H5'30.59750.58280.38740.035*
H5'40.56980.53250.56010.035*
O6'B0.5338 (4)0.3902 (2)0.0311 (5)0.0322 (9)
H6'B0.50620.35660.03590.048*
C6'B0.5784 (7)0.3634 (3)0.2055 (8)0.0324 (13)
H6'30.69070.35380.20750.039*
H6'40.52420.31820.22770.039*
C7'B0.2417 (7)0.4077 (3)0.3349 (8)0.0346 (13)
H7'30.24530.35760.32830.042*
H7'40.14520.43140.33160.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.020 (2)0.015 (2)0.042 (3)0.0003 (18)0.0022 (19)0.002 (2)
C2A0.022 (3)0.018 (3)0.036 (3)0.001 (2)0.001 (2)0.002 (2)
N3A0.020 (2)0.015 (2)0.039 (3)0.0030 (17)0.0052 (19)0.003 (2)
C4A0.022 (2)0.012 (2)0.026 (3)0.002 (2)0.002 (2)0.003 (2)
C5A0.026 (3)0.018 (3)0.031 (3)0.002 (2)0.001 (2)0.000 (2)
C6A0.025 (3)0.010 (2)0.034 (3)0.001 (2)0.002 (2)0.001 (2)
N6A0.022 (2)0.030 (3)0.038 (3)0.001 (2)0.000 (2)0.011 (2)
N7A0.016 (2)0.028 (3)0.036 (2)0.0011 (19)0.0051 (18)0.000 (2)
C8A0.024 (3)0.025 (3)0.038 (3)0.000 (2)0.001 (2)0.006 (3)
N9A0.023 (2)0.024 (2)0.035 (2)0.0000 (19)0.0008 (19)0.009 (2)
O1'A0.0224 (18)0.0176 (19)0.049 (2)0.0016 (16)0.0079 (16)0.0008 (18)
C2'A0.029 (3)0.012 (3)0.036 (3)0.003 (2)0.004 (2)0.001 (2)
C3'A0.029 (3)0.013 (3)0.033 (3)0.003 (2)0.003 (2)0.004 (2)
C4'A0.020 (3)0.015 (3)0.031 (3)0.002 (2)0.006 (2)0.004 (2)
C5'A0.033 (3)0.022 (3)0.045 (3)0.007 (2)0.011 (3)0.003 (3)
C6'A0.032 (3)0.036 (4)0.050 (4)0.011 (3)0.006 (3)0.003 (3)
O6'A0.035 (2)0.036 (3)0.072 (3)0.016 (2)0.015 (2)0.022 (3)
C7'A0.045 (3)0.014 (3)0.048 (4)0.005 (2)0.017 (3)0.004 (3)
N1B0.017 (2)0.017 (2)0.035 (2)0.0011 (18)0.0011 (18)0.007 (2)
C2B0.016 (2)0.024 (3)0.039 (3)0.000 (2)0.004 (2)0.001 (3)
N3B0.020 (2)0.017 (2)0.031 (2)0.0054 (18)0.0039 (17)0.003 (2)
C4B0.020 (2)0.020 (3)0.029 (3)0.005 (2)0.002 (2)0.000 (2)
C5B0.020 (3)0.013 (2)0.033 (3)0.002 (2)0.001 (2)0.003 (2)
N6B0.016 (2)0.031 (3)0.037 (3)0.0018 (19)0.0047 (19)0.011 (2)
C6B0.024 (3)0.016 (3)0.034 (3)0.006 (2)0.005 (2)0.003 (2)
N7B0.020 (2)0.019 (2)0.041 (3)0.0007 (18)0.0016 (19)0.004 (2)
C8B0.017 (2)0.030 (3)0.043 (3)0.001 (2)0.008 (2)0.001 (3)
N9B0.022 (2)0.023 (2)0.044 (3)0.004 (2)0.008 (2)0.005 (2)
O1'B0.0248 (19)0.0212 (19)0.046 (2)0.0030 (16)0.0038 (16)0.0025 (18)
C2'B0.031 (3)0.016 (3)0.041 (3)0.006 (2)0.004 (2)0.010 (3)
C3'B0.026 (3)0.016 (2)0.027 (3)0.001 (2)0.005 (2)0.001 (2)
C4'B0.028 (3)0.023 (3)0.028 (3)0.007 (2)0.001 (2)0.001 (2)
C5'B0.030 (3)0.020 (3)0.038 (3)0.004 (2)0.002 (2)0.002 (2)
O6'B0.032 (2)0.024 (2)0.041 (2)0.0012 (17)0.0007 (17)0.0058 (18)
C6'B0.032 (3)0.019 (3)0.046 (3)0.004 (2)0.003 (3)0.002 (3)
C7'B0.028 (3)0.030 (3)0.046 (3)0.003 (2)0.000 (3)0.005 (3)
Geometric parameters (Å, º) top
N1A—C2A1.318 (7)N1B—C2B1.314 (7)
N1A—C6A1.377 (7)N1B—C6B1.380 (6)
C2A—N3A1.333 (7)C2B—N3B1.351 (7)
C2A—H2A0.9300C2B—H2B0.9300
N3A—C4A1.379 (6)N3B—C4B1.379 (6)
N3A—C4'A1.489 (6)N3B—C4'B1.476 (7)
C4A—N9A1.345 (7)C4B—N9B1.341 (7)
C4A—C5A1.377 (7)C4B—C5B1.392 (8)
C5A—N7A1.391 (7)C5B—N7B1.383 (7)
C5A—C6A1.421 (7)C5B—C6B1.408 (7)
C6A—N6A1.310 (7)N6B—C6B1.308 (7)
N6A—H6A10.8600N6B—H6B10.8600
N6A—H6A20.8600N6B—H6B20.8600
N7A—C8A1.343 (7)N7B—C8B1.339 (7)
C8A—N9A1.369 (7)C8B—N9B1.355 (7)
C8A—H8A0.9300C8B—H8B0.9300
O1'A—C5'A1.425 (7)O1'B—C5'B1.440 (7)
O1'A—C2'A1.448 (6)O1'B—C2'B1.447 (7)
C2'A—C6'A1.482 (8)C2'B—C6'B1.497 (8)
C2'A—C3'A1.507 (7)C2'B—C3'B1.512 (8)
C2'A—H2'A0.9800C2'B—H2'B0.9800
C3'A—C7'A1.321 (8)C3'B—C7'B1.328 (8)
C3'A—C4'A1.516 (7)C3'B—C4'B1.522 (8)
C4'A—C5'A1.535 (8)C4'B—C5'B1.526 (7)
C4'A—H4'A0.9800C4'B—H4'B0.9800
C5'A—H5'10.9700C5'B—H5'30.9700
C5'A—H5'20.9700C5'B—H5'40.9700
C6'A—O6'A1.417 (7)O6'B—C6'B1.402 (7)
C6'A—H6'10.9700O6'B—H6'B0.8200
C6'A—H6'20.9700C6'B—H6'30.9700
O6'A—H6'A0.8200C6'B—H6'40.9700
C7'A—H7'10.9300C7'B—H7'30.9300
C7'A—H7'20.9300C7'B—H7'40.9300
C2A—N1A—C6A119.0 (4)C2B—N1B—C6B119.6 (4)
N1A—C2A—N3A127.3 (5)N1B—C2B—N3B126.5 (5)
N1A—C2A—H2A116.3N1B—C2B—H2B116.8
N3A—C2A—H2A116.3N3B—C2B—H2B116.8
C2A—N3A—C4A115.8 (4)C2B—N3B—C4B115.9 (4)
C2A—N3A—C4'A124.4 (4)C2B—N3B—C4'B125.1 (4)
C4A—N3A—C4'A119.8 (4)C4B—N3B—C4'B119.0 (4)
N9A—C4A—N3A127.8 (4)N9B—C4B—N3B127.6 (5)
N9A—C4A—C5A111.5 (4)N9B—C4B—C5B111.6 (4)
N3A—C4A—C5A120.6 (4)N3B—C4B—C5B120.6 (4)
C4A—C5A—N7A108.2 (4)N7B—C5B—C4B108.0 (4)
C4A—C5A—C6A120.4 (5)N7B—C5B—C6B131.9 (5)
N7A—C5A—C6A131.4 (5)C4B—C5B—C6B120.0 (5)
N6A—C6A—N1A118.3 (5)C6B—N6B—H6B1120.0
N6A—C6A—C5A124.8 (5)C6B—N6B—H6B2120.0
N1A—C6A—C5A116.8 (5)H6B1—N6B—H6B2120.0
C6A—N6A—H6A1120.0N6B—C6B—N1B117.8 (4)
C6A—N6A—H6A2120.0N6B—C6B—C5B124.8 (5)
H6A1—N6A—H6A2120.0N1B—C6B—C5B117.3 (5)
C8A—N7A—C5A102.1 (4)C8B—N7B—C5B101.2 (4)
N7A—C8A—N9A116.6 (5)N7B—C8B—N9B118.6 (5)
N7A—C8A—H8A121.7N7B—C8B—H8B120.7
N9A—C8A—H8A121.7N9B—C8B—H8B120.7
C4A—N9A—C8A101.6 (4)C4B—N9B—C8B100.5 (4)
C5'A—O1'A—C2'A105.5 (4)C5'B—O1'B—C2'B105.4 (4)
O1'A—C2'A—C6'A108.8 (4)O1'B—C2'B—C6'B108.3 (5)
O1'A—C2'A—C3'A103.4 (4)O1'B—C2'B—C3'B104.4 (4)
C6'A—C2'A—C3'A117.6 (5)C6'B—C2'B—C3'B115.0 (5)
O1'A—C2'A—H2'A108.9O1'B—C2'B—H2'B109.6
C6'A—C2'A—H2'A108.9C6'B—C2'B—H2'B109.6
C3'A—C2'A—H2'A108.9C3'B—C2'B—H2'B109.6
C7'A—C3'A—C2'A127.0 (5)C7'B—C3'B—C2'B126.9 (5)
C7'A—C3'A—C4'A125.3 (5)C7'B—C3'B—C4'B125.6 (5)
C2'A—C3'A—C4'A107.8 (4)C2'B—C3'B—C4'B107.4 (4)
N3A—C4'A—C3'A111.7 (4)N3B—C4'B—C3'B111.2 (4)
N3A—C4'A—C5'A112.9 (4)N3B—C4'B—C5'B114.8 (4)
C3'A—C4'A—C5'A101.5 (4)C3'B—C4'B—C5'B101.4 (4)
N3A—C4'A—H4'A110.1N3B—C4'B—H4'B109.7
C3'A—C4'A—H4'A110.1C3'B—C4'B—H4'B109.7
C5'A—C4'A—H4'A110.1C5'B—C4'B—H4'B109.7
O1'A—C5'A—C4'A105.3 (4)O1'B—C5'B—C4'B104.8 (4)
O1'A—C5'A—H5'1110.7O1'B—C5'B—H5'3110.8
C4'A—C5'A—H5'1110.7C4'B—C5'B—H5'3110.8
O1'A—C5'A—H5'2110.7O1'B—C5'B—H5'4110.8
C4'A—C5'A—H5'2110.7C4'B—C5'B—H5'4110.8
H5'1—C5'A—H5'2108.8H5'3—C5'B—H5'4108.9
O6'A—C6'A—C2'A113.4 (5)C6'B—O6'B—H6'B109.5
O6'A—C6'A—H6'1108.9O6'B—C6'B—C2'B111.4 (4)
C2'A—C6'A—H6'1108.9O6'B—C6'B—H6'3109.4
O6'A—C6'A—H6'2108.9C2'B—C6'B—H6'3109.4
C2'A—C6'A—H6'2108.9O6'B—C6'B—H6'4109.4
H6'1—C6'A—H6'2107.7C2'B—C6'B—H6'4109.4
C6'A—O6'A—H6'A109.5H6'3—C6'B—H6'4108.0
C3'A—C7'A—H7'1120.0C3'B—C7'B—H7'3120.0
C3'A—C7'A—H7'2120.0C3'B—C7'B—H7'4120.0
H7'1—C7'A—H7'2120.0H7'3—C7'B—H7'4120.0
C6A—N1A—C2A—N3A2.3 (8)C6B—N1B—C2B—N3B2.4 (8)
N1A—C2A—N3A—C4A1.5 (8)N1B—C2B—N3B—C4B2.8 (8)
N1A—C2A—N3A—C4'A178.3 (5)N1B—C2B—N3B—C4'B177.2 (5)
C2A—N3A—C4A—N9A179.5 (5)C2B—N3B—C4B—N9B176.3 (5)
C4'A—N3A—C4A—N9A0.3 (8)C4'B—N3B—C4B—N9B3.6 (8)
C2A—N3A—C4A—C5A0.8 (7)C2B—N3B—C4B—C5B0.4 (7)
C4'A—N3A—C4A—C5A179.1 (5)C4'B—N3B—C4B—C5B179.6 (5)
N9A—C4A—C5A—N7A1.0 (6)N9B—C4B—C5B—N7B1.0 (6)
N3A—C4A—C5A—N7A179.9 (4)N3B—C4B—C5B—N7B177.6 (4)
N9A—C4A—C5A—C6A179.9 (5)N9B—C4B—C5B—C6B179.8 (5)
N3A—C4A—C5A—C6A0.9 (7)N3B—C4B—C5B—C6B3.7 (7)
C2A—N1A—C6A—N6A179.5 (5)C2B—N1B—C6B—N6B178.4 (5)
C2A—N1A—C6A—C5A2.2 (7)C2B—N1B—C6B—C5B1.1 (7)
C4A—C5A—C6A—N6A179.8 (5)N7B—C5B—C6B—N6B0.5 (9)
N7A—C5A—C6A—N6A1.2 (9)C4B—C5B—C6B—N6B178.9 (5)
C4A—C5A—C6A—N1A1.6 (7)N7B—C5B—C6B—N1B177.6 (5)
N7A—C5A—C6A—N1A179.5 (5)C4B—C5B—C6B—N1B4.0 (7)
C4A—C5A—N7A—C8A0.8 (6)C4B—C5B—N7B—C8B0.8 (5)
C6A—C5A—N7A—C8A179.8 (6)C6B—C5B—N7B—C8B179.4 (6)
C5A—N7A—C8A—N9A0.4 (6)C5B—N7B—C8B—N9B0.5 (6)
N3A—C4A—N9A—C8A179.5 (5)N3B—C4B—N9B—C8B176.9 (5)
C5A—C4A—N9A—C8A0.7 (6)C5B—C4B—N9B—C8B0.7 (6)
N7A—C8A—N9A—C4A0.1 (6)N7B—C8B—N9B—C4B0.1 (7)
C5'A—O1'A—C2'A—C6'A163.3 (4)C5'B—O1'B—C2'B—C6'B156.8 (4)
C5'A—O1'A—C2'A—C3'A37.6 (5)C5'B—O1'B—C2'B—C3'B33.8 (5)
O1'A—C2'A—C3'A—C7'A160.7 (5)O1'B—C2'B—C3'B—C7'B169.5 (5)
C6'A—C2'A—C3'A—C7'A40.7 (8)C6'B—C2'B—C3'B—C7'B50.9 (8)
O1'A—C2'A—C3'A—C4'A19.3 (5)O1'B—C2'B—C3'B—C4'B12.6 (6)
C6'A—C2'A—C3'A—C4'A139.2 (5)C6'B—C2'B—C3'B—C4'B131.2 (5)
C2A—N3A—C4'A—C3'A74.7 (6)C2B—N3B—C4'B—C3'B89.8 (6)
C4A—N3A—C4'A—C3'A105.1 (5)C4B—N3B—C4'B—C3'B90.1 (5)
C2A—N3A—C4'A—C5'A39.0 (7)C2B—N3B—C4'B—C5'B24.5 (7)
C4A—N3A—C4'A—C5'A141.2 (5)C4B—N3B—C4'B—C5'B155.5 (5)
C7'A—C3'A—C4'A—N3A64.0 (7)C7'B—C3'B—C4'B—N3B71.3 (7)
C2'A—C3'A—C4'A—N3A116.0 (5)C2'B—C3'B—C4'B—N3B110.7 (5)
C7'A—C3'A—C4'A—C5'A175.5 (5)C7'B—C3'B—C4'B—C5'B166.2 (6)
C2'A—C3'A—C4'A—C5'A4.6 (5)C2'B—C3'B—C4'B—C5'B11.8 (6)
C2'A—O1'A—C5'A—C4'A41.6 (5)C2'B—O1'B—C5'B—C4'B42.3 (5)
N3A—C4'A—C5'A—O1'A92.2 (5)N3B—C4'B—C5'B—O1'B87.5 (5)
C3'A—C4'A—C5'A—O1'A27.6 (5)C3'B—C4'B—C5'B—O1'B32.4 (5)
O1'A—C2'A—C6'A—O6'A75.8 (6)O1'B—C2'B—C6'B—O6'B67.4 (6)
C3'A—C2'A—C6'A—O6'A167.2 (5)C3'B—C2'B—C6'B—O6'B49.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6A—H6A1···N7Bi0.862.082.937 (6)174
N6A—H6A2···N1Bii0.862.283.127 (6)168
O6A—H6A···O6Biii0.821.942.745 (6)167
N6B—H6B1···N7Aiv0.862.072.924 (6)172
N6B—H8B2···N1Av0.862.293.130 (6)167
O6B—H6B···N9Avi0.821.912.731 (5)175
Symmetry codes: (i) x, y1/2, z; (ii) x+1, y1/2, z; (iii) x1, y, z+1; (iv) x+1, y+1/2, z; (v) x, y+1/2, z; (vi) x, y, z1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC11H13N5O2C11H13N5O2
Mr247.26247.26
Crystal system, space groupOrthorhombic, P212121Monoclinic, P21
Temperature (K)210200
a, b, c (Å)9.727 (2), 16.632 (4), 7.104 (2)8.496 (4), 18.530 (6), 7.226 (2)
α, β, γ (°)90, 90, 9090, 90.81 (4), 90
V3)1149.3 (5)1137.5 (7)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.100.11
Crystal size (mm)0.36 × 0.24 × 0.210.31 × 0.25 × 0.24
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Enraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4469, 1193, 1133 5428, 2031, 1665
Rint0.0240.069
(sin θ/λ)max1)0.5950.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.064, 1.11 0.049, 0.133, 0.97
No. of reflections11932031
No. of parameters166327
No. of restraints01
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.100.27, 0.29

Computer programs: CAD-4 Operations Manual (Enraf-Nonius,1977), CAD-4 Operations Manual, MolEN (Fair,1990), SHELXTL (Sheldrick, 1995), SHELXL97 (Sheldrick, 1997), SHELXTL.

Selected geometric parameters (Å, º) for (I) top
N1—C21.340 (2)C8—N91.370 (2)
N1—C61.354 (2)N9—C4'1.473 (2)
C2—N31.336 (2)O1'—C5'1.430 (2)
N3—C41.349 (2)O1'—C2'1.435 (2)
C4—N91.375 (2)C2'—C3'1.515 (2)
C4—C51.383 (2)C2'—C6'1.521 (2)
C5—N71.387 (2)C3'—C7'1.316 (2)
C5—C61.410 (2)C3'—C4'1.521 (2)
C6—N61.336 (2)C4'—C5'1.532 (2)
N7—C81.314 (2)C6'—O6'1.420 (2)
C2—N1—C6118.34 (14)C8—N9—C4'126.52 (14)
N3—C2—N1129.29 (16)C4—N9—C4'127.26 (14)
C2—N3—C4110.58 (14)C5'—O1'—C2'106.28 (13)
N3—C4—N9127.52 (15)O1'—C2'—C3'104.11 (13)
N3—C4—C5126.90 (15)O1'—C2'—C6'109.48 (14)
N9—C4—C5105.54 (14)C3'—C2'—C6'115.18 (15)
C4—C5—N7110.88 (14)C7'—C3'—C2'126.86 (17)
C4—C5—C6116.73 (15)C7'—C3'—C4'126.04 (17)
N7—C5—C6132.31 (15)C2'—C3'—C4'106.99 (13)
N6—C6—N1118.50 (15)N9—C4'—C3'110.65 (13)
N6—C6—C5123.47 (16)N9—C4'—C5'112.93 (14)
N1—C6—C5118.02 (15)C3'—C4'—C5'102.22 (13)
C8—N7—C5103.83 (14)O1'—C5'—C4'105.15 (13)
N7—C8—N9113.59 (15)O6'—C6'—C2'113.27 (14)
C8—N9—C4106.16 (14)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···N1i0.862.172.979 (2)156
N6—H6B···N7ii0.862.132.975 (2)168
O6'—H6'···N3iii0.822.182.957 (2)158
C8—H8···O6'0.932.613.444 (2)150
Symmetry codes: (i) x+3/2, y+2, z1/2; (ii) x+3/2, y+2, z+1/2; (iii) x, y, z1.
Selected geometric parameters (Å, º) for (II) top
N1A—C2A1.318 (7)N1B—C2B1.314 (7)
N1A—C6A1.377 (7)N1B—C6B1.380 (6)
C2A—N3A1.333 (7)C2B—N3B1.351 (7)
N3A—C4A1.379 (6)N3B—C4B1.379 (6)
N3A—C4'A1.489 (6)N3B—C4'B1.476 (7)
C4A—N9A1.345 (7)C4B—N9B1.341 (7)
C4A—C5A1.377 (7)C4B—C5B1.392 (8)
C5A—N7A1.391 (7)C5B—N7B1.383 (7)
C5A—C6A1.421 (7)C5B—C6B1.408 (7)
C6A—N6A1.310 (7)N6B—C6B1.308 (7)
N7A—C8A1.343 (7)N7B—C8B1.339 (7)
C8A—N9A1.369 (7)C8B—N9B1.355 (7)
O1'A—C5'A1.425 (7)O1'B—C5'B1.440 (7)
O1'A—C2'A1.448 (6)O1'B—C2'B1.447 (7)
C2'A—C6'A1.482 (8)C2'B—C6'B1.497 (8)
C2'A—C3'A1.507 (7)C2'B—C3'B1.512 (8)
C3'A—C7'A1.321 (8)C3'B—C7'B1.328 (8)
C3'A—C4'A1.516 (7)C3'B—C4'B1.522 (8)
C4'A—C5'A1.535 (8)C4'B—C5'B1.526 (7)
C6'A—O6'A1.417 (7)O6'B—C6'B1.402 (7)
C2A—N1A—C6A119.0 (4)C2B—N1B—C6B119.6 (4)
N1A—C2A—N3A127.3 (5)N1B—C2B—N3B126.5 (5)
C2A—N3A—C4A115.8 (4)C2B—N3B—C4B115.9 (4)
C2A—N3A—C4'A124.4 (4)C2B—N3B—C4'B125.1 (4)
C4A—N3A—C4'A119.8 (4)C4B—N3B—C4'B119.0 (4)
N9A—C4A—N3A127.8 (4)N9B—C4B—N3B127.6 (5)
N9A—C4A—C5A111.5 (4)N9B—C4B—C5B111.6 (4)
N3A—C4A—C5A120.6 (4)N3B—C4B—C5B120.6 (4)
C4A—C5A—N7A108.2 (4)N7B—C5B—C4B108.0 (4)
C4A—C5A—C6A120.4 (5)N7B—C5B—C6B131.9 (5)
N7A—C5A—C6A131.4 (5)C4B—C5B—C6B120.0 (5)
N6A—C6A—N1A118.3 (5)N6B—C6B—N1B117.8 (4)
N6A—C6A—C5A124.8 (5)N6B—C6B—C5B124.8 (5)
N1A—C6A—C5A116.8 (5)N1B—C6B—C5B117.3 (5)
C8A—N7A—C5A102.1 (4)C8B—N7B—C5B101.2 (4)
N7A—C8A—N9A116.6 (5)N7B—C8B—N9B118.6 (5)
C4A—N9A—C8A101.6 (4)C4B—N9B—C8B100.5 (4)
C5'A—O1'A—C2'A105.5 (4)C5'B—O1'B—C2'B105.4 (4)
O1'A—C2'A—C6'A108.8 (4)O1'B—C2'B—C6'B108.3 (5)
O1'A—C2'A—C3'A103.4 (4)O1'B—C2'B—C3'B104.4 (4)
C6'A—C2'A—C3'A117.6 (5)C6'B—C2'B—C3'B115.0 (5)
C7'A—C3'A—C2'A127.0 (5)C7'B—C3'B—C2'B126.9 (5)
C7'A—C3'A—C4'A125.3 (5)C7'B—C3'B—C4'B125.6 (5)
C2'A—C3'A—C4'A107.8 (4)C2'B—C3'B—C4'B107.4 (4)
N3A—C4'A—C3'A111.7 (4)N3B—C4'B—C3'B111.2 (4)
N3A—C4'A—C5'A112.9 (4)N3B—C4'B—C5'B114.8 (4)
C3'A—C4'A—C5'A101.5 (4)C3'B—C4'B—C5'B101.4 (4)
O1'A—C5'A—C4'A105.3 (4)O1'B—C5'B—C4'B104.8 (4)
O6'A—C6'A—C2'A113.4 (5)O6'B—C6'B—C2'B111.4 (4)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N6A—H6A1···N7Bi0.862.082.937 (6)174
N6A—H6A2···N1Bii0.862.283.127 (6)168
O6'A—H6'A···O6'Biii0.821.942.745 (6)167
N6B—H6B1···N7Aiv0.862.072.924 (6)172
N6B—H8B2···N1Av0.862.293.130 (6)167
O6'B—H6'B···N9Avi0.821.912.731 (5)175
Symmetry codes: (i) x, y1/2, z; (ii) x+1, y1/2, z; (iii) x1, y, z+1; (iv) x+1, y+1/2, z; (v) x, y+1/2, z; (vi) x, y, z1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds