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Supplementary material 

 

Non-linearity coefficient µµµµ  

 

1. The variation with pressure of the volume of a system for which µ is constant is given by 

V P( )= V0 1+ aP( )− 1

µ  where V0 is a constant, which represents the volume of the system in 

the limit of vanishing pressure.  
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−1, an expression for µ P( ) can easily be 

derived when the variation with pressure of the system volume is known as a power series 
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In particular, µ = 2
a0a2

a1
2

−1 in the limit of vanishing pressure. 

2. The Lennard-Jones potential can be written asE p r( )= E0
re
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, whereE0 is a 

positive constant and re is an equilibrium distance for which 

E p re( )= E0
re
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> 0, which means that for r = re , E p r( )  is 

minimal. 

Assume that the volume of the system is proportional to the cube of the distance r , which 

translates into V r( )= Ve
r
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, then: 
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One should note that P Ve( )= 0, which means that, with this model, the pressure to apply to 
the system at equilibrium is null. 
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  and 

 

µ V = Ve( )= µ P = 0( )= 25− 9
5− 3

= 8  

 

In the domain 0 < V ≤ Ve , µ V( ) is an increasing function of V  with 5< µ V( )≤ 8. 

 

 

 




