Supplementary material

Non-linearity coefficient μ

1. The variation with pressure of the volume of a system for which μ is constant is given by $V(P)=V_{0}(1+a P)^{-\frac{1}{\mu}}$ where V_{0} is a constant, which represents the volume of the system in the limit of vanishing pressure.

Since $\mu=-\left[\frac{\partial}{\partial P}\left(V /\left(\frac{\partial V}{\partial P}\right)_{T}\right)\right]_{T}=V\left(\frac{\partial^{2} V}{\partial P^{2}}\right)_{T} /\left(\frac{\partial V}{\partial P}\right)_{T}^{2}-1$, an expression for $\mu(P)$ can easily be derived when the variation with pressure of the system volume is known as a power series

$$
\begin{aligned}
& V(P)=\sum_{i=0}^{\infty} a_{i} P^{i}: \quad \mu(P)=\sum_{i=0}^{\infty} a_{i} P^{i} \sum_{j=0}^{\infty}(j+1)(j+2) a_{j+2} P^{j} / \sum_{i=0}^{\infty}(i+1) a_{i+1} P^{i} \sum_{j=0}^{\infty}(j+1) a_{j+1} P^{j}-1 \\
& =\sum_{k=0}^{\infty} P^{k} \sum_{l=0}^{k}(l+1)(l+2) a_{k-l} a_{l+2} / \sum_{k=0}^{\infty} P^{k} \sum_{l=0}^{k}(l+1)(k-l+1) a_{l+1} a_{k-l+1}-1 .
\end{aligned}
$$

In particular, $\mu=2 \frac{a_{0} a_{2}}{a_{1}^{2}}-1$ in the limit of vanishing pressure.
2. The Lennard-Jones potential can be written as $E_{p}(r)=E_{0}\left[\left(\frac{r_{e}}{r}\right)^{12}-2\left(\frac{r_{e}}{r}\right)^{6}\right]$, where E_{0} is a positive constant and r_{e} is an equilibrium distance for which $E_{p}\left(r_{e}\right)=E_{0}\left[\left(\frac{r_{e}}{r}\right)^{12}-2\left(\frac{r_{e}}{r}\right)^{6}\right]_{r=r_{e}}=-E_{0}$,
$\frac{\mathrm{d} E_{p}}{\mathrm{~d} r}\left(r_{e}\right)=-\frac{12 E_{0}}{r_{e}}\left[\left(\frac{r_{e}}{r}\right)^{13}-\left(\frac{r_{e}}{r}\right)^{7}\right]_{r=r_{e}}=0$,
$\frac{\mathrm{d}^{2} E_{p}}{\mathrm{~d} r^{2}}\left(r_{e}\right)=\frac{12 E_{0}}{r_{e}^{2}}\left|13\left(\frac{r_{e}}{r}\right)^{14}-7\left(\frac{r_{e}}{r}\right)^{8}\right|_{r=r_{e}}=\frac{72 E_{0}}{r_{e}^{2}}>0$, which means that for $r=r_{e}, E_{p}(r)$ is minimal.

Assume that the volume of the system is proportional to the cube of the distance r, which translates into $V(r)=V_{e}\left(\frac{r}{r_{e}}\right)^{3}$, then:
$E_{p}(r)=E_{0}\left[\left(\frac{V_{e}}{V}\right)^{4}-2\left(\frac{V_{e}}{V}\right)^{2}\right]$ and
$P(V)=-\frac{\partial E_{p}}{\partial V}=\frac{4 E_{0}}{V_{e}}\left[\left(\frac{V_{e}}{V}\right)^{5}-\left(\frac{V_{e}}{V}\right)^{3}\right]$
One should note that $P\left(V_{e}\right)=0$, which means that, with this model, the pressure to apply to the system at equilibrium is null.

$$
\kappa(V)=-\frac{1}{V} \frac{\partial V}{\partial P} \Leftrightarrow \frac{1}{\kappa(V)}=-V \frac{\partial P}{\partial V}=\frac{4 E_{0}}{V_{e}} \frac{V}{V_{e}}\left[5\left(\frac{V_{e}}{V}\right)^{6}-3\left(\frac{V_{e}}{V}\right)^{4}\right]=\frac{4 E_{0}}{V_{e}}\left[5\left(\frac{V_{e}}{V}\right)^{5}-3\left(\frac{V_{e}}{V}\right)^{3}\right]
$$

hence :
$\mu(V)=\frac{\partial \frac{1}{\kappa}}{\partial P}=\frac{\frac{\partial \frac{1}{\kappa}}{\partial V}}{\frac{\partial P}{\partial V}}=\frac{-\frac{4 E_{0}}{V_{e}^{2}}\left[5 \cdot 5\left(\frac{V_{e}}{V}\right)^{6}-3 \cdot 3\left(\frac{V_{e}}{V}\right)^{4}\right]}{-\frac{4 E_{0}}{V_{e}^{2}}\left[5\left(\frac{V_{e}}{V}\right)^{6}-3\left(\frac{V_{e}}{V}\right)^{4}\right]}=\frac{\left[25\left(\frac{V_{e}}{V}\right)^{2}-9\right]}{\left[5\left(\frac{V_{e}}{V}\right)^{2}-3\right]}$ and

$$
\mu\left(V=V_{e}\right)=\mu(P=0)=\frac{25-9}{5-3}=8
$$

In the domain $0<V \leq V_{e}, \mu(V)$ is an increasing function of V with $5<\mu(V) \leq 8$.

