organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(3-Chloro­phen­yl)-3-[(2,6-di­fluoro­benz­yl)sulfan­yl]-5-(3,4,5-trimeth­­oxy­phen­yl)-4H-1,2,4-triazole

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, Manipal Institute of Technology, Manipal 576 104, India, cMedicinal Chemistry Division, Department of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore, 575 025, India, and dDepartment of Printing, Manipal Institute of Technology, Manipal 576 104, India
*Correspondence e-mail: hkfun@usm.my

(Received 11 November 2011; accepted 16 November 2011; online 25 November 2011)

In the title compound, C24H20ClF2N3O3S, the essentially planar triazole ring (r.m.s. deviation = 0.001 Å) forms dihedral angles of 22.35 (10), 68.17 (10) and 42.01 (10)° with the mean planes of the trimeth­oxy­phenyl, chloro­phenyl and difluoro­phenyl rings, respectively. A weak intra­molecular C—H⋯π inter­action occurs. In the crystal, mol­ecules are linked into sheets lying parallel to the bc plane by C—H⋯O and C—H⋯N hydrogen bonds. The crystal packing also features weak C—H⋯π inter­actions.

Related literature

For the pharmacological activity of [1,2,4] triazole derivatives, see: Zhou et al. (2007[Zhou, S. N., Zhang, L. X., Zhang, A. J., Sheng, J. S. & Zhang, H. L. (2007). J. Heterocycl. Chem. 44, 1019-1022.]); Chen et al. (2007[Chen, C. J., Song, B. A., Yang, S., Xu, G. F., Bhadury, P. S., Jin, L. H., Hu, D. Y., Li, Q. Z., Liu, F., Xue, W., Lu, P. & Chen, Z. (2007). Bioorg. Med. Chem. 15, 3981-3989.]); Isloor et al. (2010[Isloor, A. M., Kalluraya, B. & Pai, K. S. (2010). Eur. J. Med. Chem. 45, 825-830.]); Kalluraya et al. (2004[Kalluraya, B., Jagadeesha, R. L. & Isloor, A. M. (2004). Indian J. Heterocycl. Chem. 13, 245-248.]); Sunil et al. (2009[Sunil, D., Isloor, A. M. & Shetty, P. (2009). Der Pharma Chem. 1, 19-26.]); Chandrakantha et al. (2010[Chandrakantha, B., Shetty, P., Nambiyar, V., Isloor, N. & Isloor, A. M. (2010). Eur. J. Med. Chem. 45, 1206-1210.]). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C24H20ClF2N3O3S

  • Mr = 503.94

  • Monoclinic, P 21 /c

  • a = 9.9867 (2) Å

  • b = 21.5140 (3) Å

  • c = 11.9793 (2) Å

  • β = 117.197 (1)°

  • V = 2289.24 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 100 K

  • 0.36 × 0.17 × 0.11 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.896, Tmax = 0.968

  • 26235 measured reflections

  • 6681 independent reflections

  • 5130 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.110

  • S = 1.03

  • 6681 reflections

  • 310 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C1–C6 and C9–C14 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O2i 0.95 2.43 3.353 (2) 165
C15—H15B⋯O3ii 0.99 2.54 3.281 (2) 132
C24—H24A⋯N2iii 0.98 2.49 3.189 (2) 128
C20—H20ACg2iv 0.95 2.66 3.543 (2) 154
C1—H1ACg3 0.95 2.85 3.6138 (19) 138
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) x, y, z+1; (iii) -x+2, -y+2, -z; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

During the last few decades, a considerable attention has been devoted to the synthesis of [1, 2, 4] triazole derivatives possessing such diverse pharmacological properties as antimicrobial, anti-inflammatory (Zhou et al., 2007), analgesic antitumorial, antihypertensive (Chen et al., 2007), anticonvulsant and antiviral activities (Isloor et al., 2010). Some 1, 2, 4-triazoles are used as DNA cleaving agents and potassium channel activators. Introduction of fluorine atom in these compounds could alter the course of the pharmacological activities (Kalluraya et al., 2004). In particular, introduction of diflurophenyl substituted group in the moiety immensely increases the pharmacological as well liphophilicity effectiveness (Sunil et al., 2009). It is also observed that the amino and mercapto groups in triazoles are readily accessible nucleophilic centers (Chandrakantha et al., 2010).

In the title compound of (I), (Fig. 1), the triazole (N1–N3/C7/C8) ring is essentially planar, with maximum deviation of 0.001 Å for C1 and N2. The dihedral angles between triazole ring and the mean plane of trimethoxyphenyl (C1–C6/C22–C24/O1–O3), chlorophenyl (C9–C14/Cl1), and difluorophenyl groups (C16–C21/F1–F2) are 22.35 (10), 68.17 (10) and 42.01 (10)° respectively.

In the crystal structure of (Fig. 2), the molecules are linked into two-dimensional network parallel to bc plane by C11—H11A···O2, C15—H15B···O3 and C24—H24A···N2 hydrogen bonds. The crystal packing is further stabilized by weak C—H···π interactions (Table 1) with distances of 3.543 (2) and 3.6138 (19) A.

Related literature top

For the pharmacological activity of [1,2,4] triazole derivatives, see: Zhou et al. (2007); Chen et al. (2007); Isloor et al. (2010); Kalluraya et al. (2004); Sunil et al. (2009); Chandrakantha et al. (2010). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

To a solution of 4-(3-chloro phenyl)-5-(3,4,5-trimethoxy phenyl) -4H-1,2,4-triazole-3-thiol (1 g, 0.0026 mol) in dry acetonitrile (20 ml) was added potassium carbonate (0.73 g, 0.0053 mol) followed by 2,6-difluorobenzyl bromide (0.58 g, 0.0029 mol) at RT. After the addition, the reaction mixture was stirred at RT for 6h. Reaction mixture was monitored by TLC. After the completion, the reaction mixture was concentrated and purified by column chromatography using pet ether, ethyl acetate as an eluent to afford title compound as colorless solid. Yield: 1.1 g, 84%. M.p. 450-453 K.

Refinement top

All the H atoms were positioned geometrically and refined using a riding model with C–H = 0.93–0.99 Å. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Structure description top

During the last few decades, a considerable attention has been devoted to the synthesis of [1, 2, 4] triazole derivatives possessing such diverse pharmacological properties as antimicrobial, anti-inflammatory (Zhou et al., 2007), analgesic antitumorial, antihypertensive (Chen et al., 2007), anticonvulsant and antiviral activities (Isloor et al., 2010). Some 1, 2, 4-triazoles are used as DNA cleaving agents and potassium channel activators. Introduction of fluorine atom in these compounds could alter the course of the pharmacological activities (Kalluraya et al., 2004). In particular, introduction of diflurophenyl substituted group in the moiety immensely increases the pharmacological as well liphophilicity effectiveness (Sunil et al., 2009). It is also observed that the amino and mercapto groups in triazoles are readily accessible nucleophilic centers (Chandrakantha et al., 2010).

In the title compound of (I), (Fig. 1), the triazole (N1–N3/C7/C8) ring is essentially planar, with maximum deviation of 0.001 Å for C1 and N2. The dihedral angles between triazole ring and the mean plane of trimethoxyphenyl (C1–C6/C22–C24/O1–O3), chlorophenyl (C9–C14/Cl1), and difluorophenyl groups (C16–C21/F1–F2) are 22.35 (10), 68.17 (10) and 42.01 (10)° respectively.

In the crystal structure of (Fig. 2), the molecules are linked into two-dimensional network parallel to bc plane by C11—H11A···O2, C15—H15B···O3 and C24—H24A···N2 hydrogen bonds. The crystal packing is further stabilized by weak C—H···π interactions (Table 1) with distances of 3.543 (2) and 3.6138 (19) A.

For the pharmacological activity of [1,2,4] triazole derivatives, see: Zhou et al. (2007); Chen et al. (2007); Isloor et al. (2010); Kalluraya et al. (2004); Sunil et al. (2009); Chandrakantha et al. (2010). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 50% probability displacement ellipsoids. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing, viewed along the a-axis, showing two-dimensional planes parallel to bc plane. Hydrogen atoms that not involved in hydrogen bonding (dashed lines) are omitted for clarity.
4-(3-Chlorophenyl)-3-[(2,6-difluorobenzyl)sulfanyl]-5-(3,4,5- trimethoxyphenyl)-4H-1,2,4-triazole top
Crystal data top
C24H20ClF2N3O3SF(000) = 1040
Mr = 503.94Dx = 1.462 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7706 reflections
a = 9.9867 (2) Åθ = 2.3–30.0°
b = 21.5140 (3) ŵ = 0.31 mm1
c = 11.9793 (2) ÅT = 100 K
β = 117.197 (1)°Block, colourless
V = 2289.24 (7) Å30.36 × 0.17 × 0.11 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
6681 independent reflections
Radiation source: fine-focus sealed tube5130 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
φ and ω scansθmax = 30.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1314
Tmin = 0.896, Tmax = 0.968k = 3028
26235 measured reflectionsl = 1613
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0429P)2 + 1.4878P]
where P = (Fo2 + 2Fc2)/3
6681 reflections(Δ/σ)max < 0.001
310 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C24H20ClF2N3O3SV = 2289.24 (7) Å3
Mr = 503.94Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.9867 (2) ŵ = 0.31 mm1
b = 21.5140 (3) ÅT = 100 K
c = 11.9793 (2) Å0.36 × 0.17 × 0.11 mm
β = 117.197 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
6681 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5130 reflections with I > 2σ(I)
Tmin = 0.896, Tmax = 0.968Rint = 0.039
26235 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.03Δρmax = 0.43 e Å3
6681 reflectionsΔρmin = 0.33 e Å3
310 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.09590 (5)0.86248 (3)0.08433 (5)0.03151 (13)
S10.68053 (5)0.94142 (2)0.38418 (4)0.01701 (10)
F11.00621 (13)0.87358 (6)0.32771 (11)0.0301 (3)
F20.68850 (14)0.78856 (5)0.47897 (11)0.0313 (3)
O10.29452 (13)0.86279 (6)0.34883 (11)0.0175 (3)
O20.48997 (14)0.88263 (6)0.44702 (11)0.0175 (3)
O30.75145 (14)0.93893 (6)0.31485 (11)0.0182 (3)
N10.77291 (16)0.99061 (7)0.11532 (13)0.0162 (3)
N20.79349 (16)0.99452 (7)0.23776 (13)0.0163 (3)
N30.61625 (16)0.92492 (6)0.13604 (13)0.0137 (3)
C10.47268 (19)0.90647 (8)0.14903 (15)0.0147 (3)
H1A0.40590.89990.11360.018*
C20.42908 (18)0.89043 (8)0.27358 (15)0.0146 (3)
C30.52434 (19)0.90190 (8)0.32781 (15)0.0139 (3)
C40.66518 (19)0.92956 (8)0.25484 (15)0.0143 (3)
C50.71188 (18)0.94367 (8)0.12895 (15)0.0146 (3)
H5A0.80880.96090.07910.018*
C60.61431 (19)0.93212 (8)0.07673 (15)0.0136 (3)
C70.66734 (18)0.94915 (8)0.05602 (15)0.0137 (3)
C80.69995 (18)0.95528 (8)0.24881 (15)0.0143 (3)
C90.50775 (19)0.87636 (8)0.11320 (14)0.0139 (3)
C100.5402 (2)0.81642 (8)0.09147 (16)0.0180 (3)
H10A0.63460.80690.09440.022*
C110.4324 (2)0.77023 (9)0.06527 (16)0.0216 (4)
H11A0.45280.72890.04940.026*
C120.2952 (2)0.78418 (9)0.06222 (17)0.0223 (4)
H12A0.22150.75270.04420.027*
C130.2666 (2)0.84463 (9)0.08571 (16)0.0196 (4)
C140.37204 (19)0.89165 (8)0.11156 (15)0.0156 (3)
H14A0.35180.93290.12760.019*
C150.8492 (2)0.89379 (8)0.47096 (16)0.0180 (4)
H15A0.93890.91800.48250.022*
H15B0.85860.88470.55530.022*
C160.84819 (19)0.83360 (8)0.40752 (15)0.0174 (3)
C170.9269 (2)0.82486 (9)0.33895 (16)0.0201 (4)
C180.9289 (2)0.76939 (9)0.28106 (17)0.0251 (4)
H18A0.98520.76550.23540.030*
C190.8471 (2)0.71991 (9)0.29131 (18)0.0270 (4)
H19A0.84670.68150.25210.032*
C200.7655 (2)0.72574 (9)0.35825 (17)0.0256 (4)
H20A0.70920.69180.36570.031*
C210.7685 (2)0.78214 (9)0.41376 (16)0.0208 (4)
C220.2031 (2)0.84505 (9)0.29081 (17)0.0204 (4)
H22A0.11370.82300.35180.031*
H22B0.17200.88230.26160.031*
H22C0.26090.81780.21930.031*
C230.3695 (2)0.91553 (10)0.54687 (16)0.0236 (4)
H23A0.34630.89550.62720.035*
H23B0.40010.95870.54850.035*
H23C0.28010.91480.53310.035*
C240.8921 (2)0.97061 (9)0.24538 (18)0.0237 (4)
H24A0.93960.97790.29990.036*
H24B0.95860.94500.17370.036*
H24C0.87401.01050.21510.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0222 (2)0.0397 (3)0.0385 (3)0.0091 (2)0.0190 (2)0.0078 (2)
S10.0213 (2)0.0192 (2)0.01326 (19)0.00148 (17)0.01018 (16)0.00077 (16)
F10.0286 (6)0.0313 (7)0.0378 (7)0.0063 (5)0.0217 (5)0.0054 (5)
F20.0480 (8)0.0257 (6)0.0333 (6)0.0054 (5)0.0299 (6)0.0001 (5)
O10.0166 (6)0.0213 (7)0.0138 (6)0.0053 (5)0.0063 (5)0.0016 (5)
O20.0221 (6)0.0185 (6)0.0120 (5)0.0011 (5)0.0080 (5)0.0016 (5)
O30.0198 (6)0.0215 (6)0.0170 (6)0.0054 (5)0.0115 (5)0.0030 (5)
N10.0173 (7)0.0187 (8)0.0126 (7)0.0025 (6)0.0068 (6)0.0017 (5)
N20.0183 (7)0.0172 (7)0.0131 (6)0.0016 (6)0.0070 (6)0.0012 (5)
N30.0149 (6)0.0134 (7)0.0129 (6)0.0018 (5)0.0064 (5)0.0013 (5)
C10.0160 (8)0.0144 (8)0.0136 (7)0.0010 (6)0.0066 (6)0.0020 (6)
C20.0147 (8)0.0132 (8)0.0139 (8)0.0007 (6)0.0048 (6)0.0015 (6)
C30.0176 (8)0.0125 (8)0.0109 (7)0.0010 (6)0.0060 (6)0.0002 (6)
C40.0164 (8)0.0145 (8)0.0143 (8)0.0001 (6)0.0091 (6)0.0016 (6)
C50.0152 (8)0.0130 (8)0.0148 (8)0.0012 (6)0.0061 (6)0.0001 (6)
C60.0159 (7)0.0120 (8)0.0121 (7)0.0013 (6)0.0057 (6)0.0015 (6)
C70.0153 (7)0.0146 (8)0.0122 (7)0.0012 (6)0.0070 (6)0.0010 (6)
C80.0165 (8)0.0146 (8)0.0120 (7)0.0018 (6)0.0068 (6)0.0004 (6)
C90.0169 (8)0.0148 (8)0.0092 (7)0.0024 (6)0.0053 (6)0.0012 (6)
C100.0200 (8)0.0157 (8)0.0161 (8)0.0013 (7)0.0066 (7)0.0005 (7)
C110.0283 (10)0.0138 (8)0.0188 (8)0.0022 (7)0.0074 (7)0.0004 (7)
C120.0261 (9)0.0193 (9)0.0190 (9)0.0098 (7)0.0082 (7)0.0005 (7)
C130.0194 (8)0.0248 (10)0.0157 (8)0.0039 (7)0.0091 (7)0.0001 (7)
C140.0189 (8)0.0155 (8)0.0135 (8)0.0013 (6)0.0084 (6)0.0003 (6)
C150.0219 (9)0.0170 (9)0.0122 (8)0.0002 (7)0.0052 (7)0.0004 (6)
C160.0190 (8)0.0162 (8)0.0125 (8)0.0018 (7)0.0034 (6)0.0006 (6)
C170.0185 (8)0.0215 (9)0.0184 (8)0.0004 (7)0.0068 (7)0.0001 (7)
C180.0259 (10)0.0288 (11)0.0206 (9)0.0078 (8)0.0105 (8)0.0015 (8)
C190.0343 (11)0.0197 (10)0.0210 (9)0.0074 (8)0.0075 (8)0.0015 (7)
C200.0332 (11)0.0176 (9)0.0217 (9)0.0011 (8)0.0087 (8)0.0032 (7)
C210.0285 (10)0.0198 (9)0.0160 (8)0.0023 (7)0.0118 (7)0.0030 (7)
C220.0168 (8)0.0252 (10)0.0196 (9)0.0050 (7)0.0087 (7)0.0011 (7)
C230.0211 (9)0.0335 (11)0.0142 (8)0.0018 (8)0.0065 (7)0.0021 (7)
C240.0233 (9)0.0285 (10)0.0242 (9)0.0108 (8)0.0151 (8)0.0085 (8)
Geometric parameters (Å, º) top
Cl1—C131.7404 (19)C10—H10A0.9500
S1—C81.7446 (17)C11—C121.386 (3)
S1—C151.8352 (18)C11—H11A0.9500
F1—C171.357 (2)C12—C131.388 (3)
F2—C211.355 (2)C12—H12A0.9500
O1—C21.366 (2)C13—C141.389 (2)
O1—C221.429 (2)C14—H14A0.9500
O2—C31.3714 (19)C15—C161.499 (2)
O2—C231.436 (2)C15—H15A0.9900
O3—C41.366 (2)C15—H15B0.9900
O3—C241.436 (2)C16—C171.385 (3)
N1—C71.314 (2)C16—C211.386 (3)
N1—N21.3875 (19)C17—C181.385 (3)
N2—C81.310 (2)C18—C191.381 (3)
N3—C71.378 (2)C18—H18A0.9500
N3—C81.385 (2)C19—C201.385 (3)
N3—C91.439 (2)C19—H19A0.9500
C1—C61.391 (2)C20—C211.377 (3)
C1—C21.393 (2)C20—H20A0.9500
C1—H1A0.9500C22—H22A0.9800
C2—C31.397 (2)C22—H22B0.9800
C3—C41.405 (2)C22—H22C0.9800
C4—C51.393 (2)C23—H23A0.9800
C5—C61.400 (2)C23—H23B0.9800
C5—H5A0.9500C23—H23C0.9800
C6—C71.474 (2)C24—H24A0.9800
C9—C101.383 (2)C24—H24B0.9800
C9—C141.386 (2)C24—H24C0.9800
C10—C111.392 (3)
C8—S1—C1599.14 (8)C14—C13—Cl1118.74 (14)
C2—O1—C22116.74 (13)C9—C14—C13117.84 (16)
C3—O2—C23115.73 (13)C9—C14—H14A121.1
C4—O3—C24116.76 (13)C13—C14—H14A121.1
C7—N1—N2107.89 (13)C16—C15—S1113.79 (12)
C8—N2—N1107.45 (13)C16—C15—H15A108.8
C7—N3—C8104.48 (13)S1—C15—H15A108.8
C7—N3—C9128.96 (14)C16—C15—H15B108.8
C8—N3—C9126.46 (14)S1—C15—H15B108.8
C6—C1—C2119.75 (15)H15A—C15—H15B107.7
C6—C1—H1A120.1C17—C16—C21114.80 (16)
C2—C1—H1A120.1C17—C16—C15122.94 (16)
O1—C2—C1123.12 (15)C21—C16—C15122.26 (16)
O1—C2—C3116.34 (14)F1—C17—C18118.26 (17)
C1—C2—C3120.54 (15)F1—C17—C16117.97 (16)
O2—C3—C2122.08 (15)C18—C17—C16123.77 (18)
O2—C3—C4118.62 (15)C19—C18—C17118.37 (18)
C2—C3—C4119.10 (15)C19—C18—H18A120.8
O3—C4—C5123.91 (15)C17—C18—H18A120.8
O3—C4—C3115.34 (14)C18—C19—C20120.65 (18)
C5—C4—C3120.70 (15)C18—C19—H19A119.7
C4—C5—C6119.21 (15)C20—C19—H19A119.7
C4—C5—H5A120.4C21—C20—C19118.10 (18)
C6—C5—H5A120.4C21—C20—H20A121.0
C1—C6—C5120.63 (15)C19—C20—H20A121.0
C1—C6—C7122.13 (15)F2—C21—C20118.68 (17)
C5—C6—C7117.23 (15)F2—C21—C16117.01 (16)
N1—C7—N3109.96 (14)C20—C21—C16124.31 (18)
N1—C7—C6123.75 (15)O1—C22—H22A109.5
N3—C7—C6126.29 (15)O1—C22—H22B109.5
N2—C8—N3110.22 (14)H22A—C22—H22B109.5
N2—C8—S1126.26 (13)O1—C22—H22C109.5
N3—C8—S1123.52 (13)H22A—C22—H22C109.5
C10—C9—C14122.02 (16)H22B—C22—H22C109.5
C10—C9—N3119.47 (15)O2—C23—H23A109.5
C14—C9—N3118.49 (15)O2—C23—H23B109.5
C9—C10—C11118.98 (17)H23A—C23—H23B109.5
C9—C10—H10A120.5O2—C23—H23C109.5
C11—C10—H10A120.5H23A—C23—H23C109.5
C12—C11—C10120.31 (17)H23B—C23—H23C109.5
C12—C11—H11A119.8O3—C24—H24A109.5
C10—C11—H11A119.8O3—C24—H24B109.5
C11—C12—C13119.34 (17)H24A—C24—H24B109.5
C11—C12—H12A120.3O3—C24—H24C109.5
C13—C12—H12A120.3H24A—C24—H24C109.5
C12—C13—C14121.50 (17)H24B—C24—H24C109.5
C12—C13—Cl1119.76 (14)
C7—N1—N2—C80.07 (18)C9—N3—C8—N2176.61 (15)
C22—O1—C2—C15.8 (2)C7—N3—C8—S1179.61 (12)
C22—O1—C2—C3173.75 (15)C9—N3—C8—S13.0 (2)
C6—C1—C2—O1177.28 (15)C15—S1—C8—N276.25 (16)
C6—C1—C2—C32.3 (2)C15—S1—C8—N3103.35 (15)
C23—O2—C3—C271.3 (2)C7—N3—C9—C1065.5 (2)
C23—O2—C3—C4113.93 (18)C8—N3—C9—C10110.22 (19)
O1—C2—C3—O24.5 (2)C7—N3—C9—C14113.38 (19)
C1—C2—C3—O2175.11 (15)C8—N3—C9—C1470.9 (2)
O1—C2—C3—C4179.25 (15)C14—C9—C10—C111.0 (2)
C1—C2—C3—C40.3 (2)N3—C9—C10—C11177.84 (15)
C24—O3—C4—C56.1 (2)C9—C10—C11—C120.6 (3)
C24—O3—C4—C3176.26 (15)C10—C11—C12—C130.1 (3)
O2—C3—C4—O34.8 (2)C11—C12—C13—C140.4 (3)
C2—C3—C4—O3179.76 (15)C11—C12—C13—Cl1179.09 (14)
O2—C3—C4—C5172.94 (15)C10—C9—C14—C130.7 (2)
C2—C3—C4—C52.0 (2)N3—C9—C14—C13178.12 (14)
O3—C4—C5—C6179.94 (15)C12—C13—C14—C90.0 (3)
C3—C4—C5—C62.4 (2)Cl1—C13—C14—C9179.49 (12)
C2—C1—C6—C51.9 (2)C8—S1—C15—C1663.03 (14)
C2—C1—C6—C7179.10 (15)S1—C15—C16—C17100.76 (18)
C4—C5—C6—C10.4 (2)S1—C15—C16—C2179.58 (19)
C4—C5—C6—C7178.63 (15)C21—C16—C17—F1179.26 (15)
N2—N1—C7—N30.04 (19)C15—C16—C17—F11.1 (3)
N2—N1—C7—C6179.95 (15)C21—C16—C17—C180.5 (3)
C8—N3—C7—N10.00 (18)C15—C16—C17—C18179.14 (17)
C9—N3—C7—N1176.45 (16)F1—C17—C18—C19179.36 (16)
C8—N3—C7—C6179.90 (16)C16—C17—C18—C190.4 (3)
C9—N3—C7—C63.5 (3)C17—C18—C19—C200.2 (3)
C1—C6—C7—N1156.64 (17)C18—C19—C20—C210.1 (3)
C5—C6—C7—N122.4 (2)C19—C20—C21—F2179.65 (17)
C1—C6—C7—N323.5 (3)C19—C20—C21—C160.2 (3)
C5—C6—C7—N3157.48 (16)C17—C16—C21—F2179.45 (15)
N1—N2—C8—N30.08 (19)C15—C16—C21—F20.9 (3)
N1—N2—C8—S1179.57 (12)C17—C16—C21—C200.4 (3)
C7—N3—C8—N20.05 (18)C15—C16—C21—C20179.24 (17)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C1–C6 and C9–C14 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C11—H11A···O2i0.952.433.353 (2)165
C15—H15B···O3ii0.992.543.281 (2)132
C24—H24A···N2iii0.982.493.189 (2)128
C20—H20A···Cg2iv0.952.663.543 (2)154
C1—H1A···Cg30.952.853.6138 (19)138
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y, z+1; (iii) x+2, y+2, z; (iv) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC24H20ClF2N3O3S
Mr503.94
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.9867 (2), 21.5140 (3), 11.9793 (2)
β (°) 117.197 (1)
V3)2289.24 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.36 × 0.17 × 0.11
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.896, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
26235, 6681, 5130
Rint0.039
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.110, 1.03
No. of reflections6681
No. of parameters310
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.33

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C1–C6 and C9–C14 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C11—H11A···O2i0.952.433.353 (2)165
C15—H15B···O3ii0.992.543.281 (2)132
C24—H24A···N2iii0.982.493.189 (2)128
C20—H20A···Cg2iv0.952.663.543 (2)154
C1—H1A···Cg30.952.853.6138 (19)138
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y, z+1; (iii) x+2, y+2, z; (iv) x, y+1/2, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and SIJA thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grants (Nos.1001/PFIZIK/811160 and 1001/PFIZIK/ 811151). AMI thanks the Board for Research in Nuclear Sciences, Department of Atomic Energy, and the Government of India for the Young Scientist award.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandrakantha, B., Shetty, P., Nambiyar, V., Isloor, N. & Isloor, A. M. (2010). Eur. J. Med. Chem. 45, 1206–1210.  Web of Science CrossRef CAS PubMed Google Scholar
First citationChen, C. J., Song, B. A., Yang, S., Xu, G. F., Bhadury, P. S., Jin, L. H., Hu, D. Y., Li, Q. Z., Liu, F., Xue, W., Lu, P. & Chen, Z. (2007). Bioorg. Med. Chem. 15, 3981–3989.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationIsloor, A. M., Kalluraya, B. & Pai, K. S. (2010). Eur. J. Med. Chem. 45, 825–830.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKalluraya, B., Jagadeesha, R. L. & Isloor, A. M. (2004). Indian J. Heterocycl. Chem. 13, 245–248.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSunil, D., Isloor, A. M. & Shetty, P. (2009). Der Pharma Chem. 1, 19–26.  CAS Google Scholar
First citationZhou, S. N., Zhang, L. X., Zhang, A. J., Sheng, J. S. & Zhang, H. L. (2007). J. Heterocycl. Chem. 44, 1019–1022.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds