metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Ferrocenylphenyl)benzamide

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan, and bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 16 May 2010; accepted 17 June 2010; online 23 June 2010)

In the title compound, [Fe(C5H5)(C18H14NO)], the unsubstituted cyclo­penta­dienyl ring is disordered over two sets of sites with occupancy ratio of 0.55 (1):0.45 (1). One conformation has the rings eclipsed and the other staggered. An intra­molecular C—H⋯O hydrogen bond forms an S(6) ring motif. In the crystal, inter­molecular C—H⋯O and N—H⋯O hydrogen bonds lead to R21(7) ring motifs. The mol­ecules are linked into polymeric chains extending along the b axis.

Related literature

For similar structures, see: Fukuzumi et al. (2002[Fukuzumi, S., Yoshida, Y., Okamoto, K., Imahori, H., Araki, Y. & Ito, O. (2002). J. Am. Chem. Soc. 124, 6794-6795.]); Shah et al. (2007[Shah, F. U., Akhter, Z., Siddiqi, H. M. & Parvez, M. (2007). Appl. Organomet. Chem. 21, 758-762.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C18H14NO)]

  • Mr = 381.24

  • Monoclinic, P 21 /c

  • a = 20.4467 (16) Å

  • b = 10.3592 (8) Å

  • c = 8.2933 (6) Å

  • β = 91.996 (3)°

  • V = 1755.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.87 mm−1

  • T = 296 K

  • 0.32 × 0.14 × 0.08 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.865, Tmax = 0.931

  • 13450 measured reflections

  • 3257 independent reflections

  • 1703 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.099

  • S = 1.00

  • 3257 reflections

  • 260 parameters

  • 60 restraints

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Selected geometric parameters (Å, °)

Fe1—C6 2.034 (3)
Fe1—C7 2.030 (4)
Fe1—C8 2.028 (4)
Fe1—C9 2.039 (4)
Fe1—C10 2.059 (3)
C6—Fe1—C7 40.81 (15)
C6—Fe1—C8 68.11 (17)
C6—Fe1—C9 68.32 (16)
C6—Fe1—C10 40.66 (14)
C7—Fe1—C8 40.32 (18)
C7—Fe1—C9 68.47 (17)
C7—Fe1—C10 68.72 (15)
C8—Fe1—C9 40.79 (16)
C8—Fe1—C10 68.55 (15)
C9—Fe1—C10 40.80 (14)
C1B—Fe1—C9 122.2 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.26 3.110 (4) 172
C13—H13⋯O1 0.93 2.48 2.926 (4) 109
C23—H23⋯O1i 0.93 2.50 3.180 (4) 130
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The crystal structure of (II) i.e. N-(benzylidene)-4-ferrocenylaniline (Shah et al., 2007) and (III) i.e. 1-(4-((1,4-Benzoquinonyl)carbonylamino)phenyl)ferrocene (Fukuzumi et al., 2002) have been published. The title compound (I) differs from these due to substituants at the N-atom.

In (I) the cyclopentadienyl ring A (C6–C10), phenyl rings B (C11–C16) and C (C18–C23) are planar with r. m. s. deviations of 0.0024, 0.0020 and 0.0030 Å, respectively. The dihedral angle between A/B is 2.31 (23)° which shows that central phenyl ring is almost planar with attached cyclopentadienyl. The dihedral angle between B/C is 69.05 (8)°. The Fe-atom is at a distance of 1.6435 (17) Å from the centroid of ring A. The important bond distances [Fe–C] and bond angles [C–Fe–C] are given in Table 1. Cyclopentadienyl ring of ferrocene not attached with 4-(benzoylamino)phenyl is disordered over two set of sites with occupancy ratio of 0.548 (14):0.452 (14). There exist intramolecular H-bonding of C—H···O type forming S(6) ring motif (Bernstein et al., 1995). The intermolecular H-bondings of C—H···O and N—H···O type complete R21(7) ring motif (Table 2, Fig. 2). The molecules are stabilized in the form of polymeric chains extending along the crystallographic b axis (Fig. 2). In these chains molecules are connected in helical way due to screw symmetry.

Related literature top

For similar structures, see: Fukuzumi et al. (2002); Shah et al. (2007). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

Solution of benzoyl chloride (0.5 ml, 4.296 mmol) in 50 ml anhydrous CHCl3 added to the solution of ferrocenyl aniline (1.19 g, 4.296 mmol) and triethylamine (0.71 ml, 5.155 mmol) in 50 ml anhydrous CHCl3, at 273 K and stirred for 24 h. The completion of reaction monitored through TLC. To remove extra triethylamine and un-reacted acid chloride and the formed ammonium chloride, the mixture was extracted with distilled water (6 × 100 ml). The solution was evaporated under reduced pressure to give orange solid and re-crystallized form CH2Cl2. (yield: 84%)

Refinement top

The disordered cyclopentadienyl was refined in two groups as regular pentagons of 1.42 Å. The anisotropic temperature factors of the disordered C atoms were restrained to be nearly isotropic.

The H-atoms were positioned geometrically (N–H = 0.86 Å, C–H = 0.93 Å) and refined as riding with Uiso(H) = xUeq(C, N), where x = 1.2 for all H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with the atom numbering scheme having atoms of greater occupancy ratio. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii. The dotted lines indicate the intra-molecular H-bondings.
[Figure 2] Fig. 2. View of (I) with atom numbering scheme having atoms of smaller occupancy ratio.. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii. The dotted lines indicate the intra-molecular H-bondings.
[Figure 3] Fig. 3. The partial packing (PLATON; Spek, 2009) which shows that molecules form polymeric chains extending along the b axis.
N-(4-Ferrocenylphenyl)benzamide top
Crystal data top
[Fe(C5H5)(C18H14NO)]F(000) = 792
Mr = 381.24Dx = 1.442 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1703 reflections
a = 20.4467 (16) Åθ = 2.0–25.5°
b = 10.3592 (8) ŵ = 0.87 mm1
c = 8.2933 (6) ÅT = 296 K
β = 91.996 (3)°Needle, orange
V = 1755.6 (2) Å30.32 × 0.14 × 0.08 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3257 independent reflections
Radiation source: fine-focus sealed tube1703 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
Detector resolution: 8.20 pixels mm-1θmax = 25.5°, θmin = 2.0°
ω scansh = 2424
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1112
Tmin = 0.865, Tmax = 0.931l = 1010
13450 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0304P)2 + 0.2729P]
where P = (Fo2 + 2Fc2)/3
3257 reflections(Δ/σ)max < 0.001
260 parametersΔρmax = 0.22 e Å3
60 restraintsΔρmin = 0.23 e Å3
Crystal data top
[Fe(C5H5)(C18H14NO)]V = 1755.6 (2) Å3
Mr = 381.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 20.4467 (16) ŵ = 0.87 mm1
b = 10.3592 (8) ÅT = 296 K
c = 8.2933 (6) Å0.32 × 0.14 × 0.08 mm
β = 91.996 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3257 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1703 reflections with I > 2σ(I)
Tmin = 0.865, Tmax = 0.931Rint = 0.074
13450 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04360 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.00Δρmax = 0.22 e Å3
3257 reflectionsΔρmin = 0.23 e Å3
260 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. The disordered cyclopentadienyl was refined in two groups as regular pentagons. All the disordered C-atoms were treated anisotropically having equal thermal parameters because refinement anisotropically with individual atoms or rings affoarded large ellipsoids. The sides of regular pentagons after final refinement have naearly 1.392 and 1.436 Å.

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.37659 (2)0.49923 (6)0.17093 (6)0.0508 (2)
O10.00559 (11)0.4359 (2)0.2493 (3)0.0591 (10)
N10.03504 (13)0.6469 (3)0.2387 (3)0.0431 (10)
C1A0.3578 (5)0.4675 (8)0.4134 (8)0.057 (3)0.548 (14)
C2A0.3398 (3)0.3566 (8)0.3215 (12)0.062 (4)0.548 (14)
C3A0.3962 (6)0.3122 (6)0.2429 (9)0.071 (4)0.548 (14)
C4A0.4490 (3)0.3957 (11)0.2861 (14)0.063 (3)0.548 (14)
C5A0.4253 (5)0.4917 (7)0.3915 (11)0.071 (3)0.548 (14)
C60.32793 (17)0.5137 (4)0.0465 (4)0.0573 (14)
C70.3954 (2)0.5401 (4)0.0623 (5)0.0713 (19)
C80.4114 (2)0.6458 (4)0.0363 (6)0.0715 (19)
C90.35447 (19)0.6862 (4)0.1150 (5)0.0602 (17)
C100.30168 (17)0.6043 (3)0.0627 (4)0.0457 (12)
C110.23316 (16)0.6128 (3)0.1118 (4)0.0391 (12)
C120.18580 (17)0.5278 (3)0.0523 (4)0.0453 (12)
C130.12123 (17)0.5361 (3)0.0931 (4)0.0436 (12)
C140.10100 (16)0.6315 (3)0.1977 (4)0.0380 (11)
C150.14760 (17)0.7169 (3)0.2587 (4)0.0486 (14)
C160.21225 (17)0.7074 (3)0.2172 (4)0.0494 (14)
C170.00885 (18)0.5505 (3)0.2620 (4)0.0422 (11)
C180.07618 (16)0.5899 (3)0.3012 (4)0.0370 (11)
C190.11146 (17)0.5096 (4)0.3993 (4)0.0474 (12)
C200.17482 (19)0.5387 (4)0.4346 (4)0.0574 (17)
C210.20407 (18)0.6490 (4)0.3725 (4)0.0555 (16)
C220.16941 (18)0.7288 (3)0.2752 (4)0.0505 (14)
C230.10566 (17)0.7008 (3)0.2401 (4)0.0440 (12)
C4B0.3690 (6)0.3127 (5)0.2407 (9)0.069 (4)0.452 (14)
C5B0.4363 (4)0.3442 (12)0.2316 (7)0.064 (4)0.452 (14)
C2B0.3900 (7)0.4859 (9)0.4075 (6)0.071 (4)0.452 (14)
C3B0.3403 (3)0.4003 (14)0.3494 (7)0.057 (4)0.452 (14)
C1B0.4493 (4)0.4513 (11)0.3347 (11)0.059 (4)0.452 (14)
H2A0.298410.319480.314210.0743*0.548 (14)
H3A0.398140.240980.174970.0854*0.548 (14)
H10.021250.724730.249980.0516*
H1A0.330270.515810.476740.0691*0.548 (14)
H90.351920.754180.187800.0721*
H120.198120.462720.017740.0542*
H130.090950.477310.050160.0522*
H150.135190.781790.328840.0583*
H160.242560.765790.260850.0595*
H190.092030.435270.441650.0570*
H200.198130.483970.500500.0690*
H210.246980.669020.396640.0667*
H220.189160.802680.232290.0603*
H230.082350.756370.175400.0525*
H4A0.491630.388800.251460.0754*0.548 (14)
H5A0.449680.558650.437960.0843*0.548 (14)
H60.304650.448010.098980.0682*
H70.423910.495200.126740.0859*
H80.452650.683250.048300.0857*
H1B0.489600.491580.351640.0710*0.452 (14)
H2B0.384580.552960.480430.0854*0.452 (14)
H3B0.296690.401370.377530.0683*0.452 (14)
H4B0.347400.246310.185140.0827*0.452 (14)
H5B0.466620.302060.169130.0768*0.452 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0403 (3)0.0540 (3)0.0581 (3)0.0033 (3)0.0001 (2)0.0041 (3)
O10.0488 (16)0.0309 (15)0.098 (2)0.0007 (13)0.0098 (15)0.0039 (16)
N10.0424 (18)0.0271 (16)0.060 (2)0.0006 (14)0.0035 (15)0.0015 (15)
C1A0.044 (5)0.077 (6)0.051 (5)0.007 (5)0.001 (4)0.010 (4)
C2A0.074 (7)0.052 (6)0.060 (6)0.015 (5)0.006 (5)0.001 (5)
C3A0.074 (7)0.058 (6)0.082 (6)0.009 (5)0.001 (5)0.008 (5)
C4A0.045 (5)0.064 (6)0.080 (7)0.003 (5)0.002 (5)0.001 (6)
C5A0.055 (6)0.088 (6)0.067 (6)0.003 (5)0.018 (5)0.004 (6)
C60.054 (2)0.067 (3)0.051 (2)0.004 (2)0.0038 (19)0.005 (2)
C70.055 (3)0.091 (4)0.069 (3)0.011 (2)0.020 (2)0.007 (3)
C80.057 (3)0.064 (3)0.094 (4)0.013 (2)0.012 (3)0.018 (3)
C90.054 (3)0.051 (3)0.076 (3)0.006 (2)0.009 (2)0.004 (2)
C100.047 (2)0.044 (2)0.046 (2)0.0008 (19)0.0011 (19)0.0072 (19)
C110.046 (2)0.035 (2)0.036 (2)0.0022 (17)0.0020 (18)0.0062 (17)
C120.054 (2)0.037 (2)0.045 (2)0.0002 (18)0.0050 (18)0.0052 (17)
C130.051 (2)0.038 (2)0.042 (2)0.0072 (16)0.0026 (18)0.0049 (17)
C140.041 (2)0.0288 (19)0.044 (2)0.0018 (16)0.0004 (18)0.0049 (18)
C150.052 (2)0.036 (2)0.058 (3)0.0002 (18)0.004 (2)0.0109 (19)
C160.041 (2)0.046 (2)0.061 (3)0.0039 (18)0.0027 (19)0.011 (2)
C170.049 (2)0.0293 (19)0.048 (2)0.0011 (18)0.0019 (19)0.0012 (18)
C180.040 (2)0.0309 (19)0.040 (2)0.0026 (17)0.0010 (17)0.0052 (17)
C190.055 (2)0.041 (2)0.046 (2)0.003 (2)0.0010 (17)0.007 (2)
C200.056 (3)0.064 (3)0.053 (3)0.007 (2)0.014 (2)0.009 (2)
C210.047 (2)0.070 (3)0.050 (3)0.008 (2)0.007 (2)0.003 (2)
C220.049 (2)0.045 (2)0.057 (3)0.008 (2)0.004 (2)0.002 (2)
C230.047 (2)0.035 (2)0.050 (2)0.0055 (17)0.0018 (18)0.0022 (18)
C4B0.062 (7)0.065 (7)0.079 (8)0.000 (5)0.004 (6)0.015 (6)
C5B0.059 (7)0.054 (7)0.079 (7)0.001 (5)0.007 (6)0.001 (6)
C2B0.065 (9)0.085 (7)0.064 (6)0.001 (6)0.011 (6)0.001 (6)
C3B0.050 (6)0.062 (7)0.059 (7)0.004 (5)0.006 (5)0.012 (6)
C1B0.053 (6)0.073 (8)0.051 (7)0.004 (5)0.010 (5)0.015 (6)
Geometric parameters (Å, º) top
Fe1—C1A2.086 (7)C11—C161.390 (5)
Fe1—C2A2.091 (9)C12—C131.377 (5)
Fe1—C3A2.063 (7)C13—C141.388 (5)
Fe1—C4A2.039 (9)C14—C151.383 (5)
Fe1—C5A2.054 (9)C15—C161.381 (5)
Fe1—C62.034 (3)C17—C181.483 (5)
Fe1—C72.030 (4)C18—C231.385 (5)
Fe1—C82.028 (4)C18—C191.384 (5)
Fe1—C92.039 (4)C19—C201.372 (5)
Fe1—C102.059 (3)C20—C211.381 (6)
Fe1—C1B2.040 (9)C21—C221.370 (5)
Fe1—C2B1.976 (5)C22—C231.376 (5)
Fe1—C3B1.967 (9)C1A—H1A0.9300
Fe1—C4B2.025 (6)C1B—H1B0.9300
Fe1—C5B2.069 (11)C2A—H2A0.9300
O1—C171.229 (4)C2B—H2B0.9300
N1—C141.411 (4)C3A—H3A0.9300
N1—C171.361 (4)C3B—H3B0.9300
N1—H10.8600C4A—H4A0.9300
C1A—C5A1.421 (14)C4B—H4B0.9300
C1A—C2A1.420 (12)C5A—H5A0.9300
C1B—C2B1.419 (15)C5B—H5B0.9300
C1B—C5B1.420 (15)C6—H60.9300
C2A—C3A1.421 (13)C7—H70.9300
C2B—C3B1.420 (16)C8—H80.9300
C3A—C4A1.420 (13)C9—H90.9300
C3B—C4B1.420 (13)C12—H120.9300
C4A—C5A1.420 (14)C13—H130.9300
C4B—C5B1.419 (15)C15—H150.9300
C6—C71.417 (5)C16—H160.9300
C6—C101.422 (5)C19—H190.9300
C7—C81.399 (6)C20—H200.9300
C8—C91.417 (6)C21—H210.9300
C9—C101.428 (5)C22—H220.9300
C10—C111.475 (5)C23—H230.9300
C11—C121.387 (5)
Fe1···C124.001 (4)C3B···H4B2.1100
Fe1···C164.022 (3)C3B···H21iv2.9800
Fe1···H1B2.7100C4A···H3A2.1100
Fe1···H2B2.6300C4A···H5A2.1100
Fe1···H3B2.6100C4A···H5Aiii3.0700
Fe1···H4B2.6900C4B···H5B2.1000
Fe1···H5B2.7500C4B···H3B2.1100
O1···C132.926 (4)C4B···H21i3.0900
O1···C23i3.180 (4)C5A···H4A2.1100
O1···N1i3.110 (4)C5A···H1A2.1100
O1···H192.6000C5A···H5Aiii2.9200
O1···H132.4800C5B···H4B2.1100
O1···H1i2.2600C5B···H1B2.1100
O1···H23i2.5000C6···H72.1000
N1···O1ii3.110 (4)C6···H122.7200
N1···H232.6900C7···H9v3.0800
C1A···C3A2.298 (11)C7···H82.0800
C1A···C4A2.298 (12)C7···H4Avi2.9300
C1A···C93.354 (9)C7···H62.1000
C1A···C103.399 (8)C8···H92.1000
C1B···C4B2.297 (14)C8···H72.0900
C1B···C73.556 (10)C9···H82.1000
C1B···C83.264 (11)C9···H162.7500
C1B···C1Biii3.527 (13)C9···H2Bv3.0000
C1B···C3B2.298 (11)C10···H92.1100
C1B···C93.571 (11)C10···H16v3.0500
C2A···C4A2.298 (9)C10···H62.1000
C2A···C63.460 (10)C12···H22i2.9400
C2A···C103.418 (9)C12···H62.8900
C2A···C5A2.298 (12)C12···H15v2.8700
C2B···C4B2.297 (10)C13···H15v2.9100
C2B···C93.255 (9)C14···H19iv3.0800
C2B···C103.547 (9)C15···H20iv3.0400
C2B···C83.536 (8)C15···H19ii3.0100
C2B···C5B2.297 (13)C16···H20iv3.0900
C3A···C5A2.298 (11)C16···H92.9200
C3A···C1A2.298 (11)C17···H13vii3.0500
C3A···C73.461 (8)C17···H132.8400
C3A···C63.440 (9)C18···H13vii3.0000
C3B···C1B2.298 (11)C19···H15i3.0500
C3B···C93.560 (13)C20···H22viii2.9900
C3B···C5B2.298 (11)C20···H3Biv3.0500
C3B···C63.488 (8)C21···H22viii3.0300
C3B···C103.258 (11)C21···H3Biv2.9000
C4A···C1A2.298 (12)C21···H2Aii3.0000
C4A···C83.389 (12)C22···H2Aii2.8700
C4A···C2A2.298 (9)C22···H12vii2.9600
C4A···C73.401 (12)C23···H12vii3.1000
C4B···C73.500 (8)C23···H12.6100
C4B···C2B2.297 (10)C23···H13vii3.0600
C4B···C1B2.297 (14)H1···H152.4700
C4B···C63.252 (8)H1···C232.6100
C5A···C93.344 (10)H1···H232.2100
C5A···C83.354 (10)H1···O1ii2.2600
C5A···C5Aiii3.495 (14)H1B···Fe12.7100
C5A···C3A2.298 (11)H1B···H1Biii2.4900
C5A···C2A2.298 (12)H1B···C1Biii2.9100
C5B···C3B2.298 (11)H2A···C22i2.8700
C5B···C2B2.297 (13)H2A···C21i3.0000
C5B···C83.548 (12)H2A···H21i2.5400
C5B···C73.258 (10)H2A···H22i2.2600
C5B···C63.600 (9)H2B···Fe12.6300
C6···C92.287 (6)H2B···C9viii3.0000
C6···C112.590 (5)H3B···H20iv2.5800
C6···C3A3.440 (9)H3B···Fe12.6100
C6···C82.275 (6)H3B···H22i2.5600
C6···C2A3.460 (10)H3B···C20iv3.0500
C6···C4B3.252 (8)H3B···C21iv2.9000
C6···C5B3.600 (9)H3B···H21iv2.2800
C6···C3B3.488 (8)H4A···H7vi2.3700
C7···C5B3.258 (10)H4A···C7vi2.9300
C7···C4A3.401 (12)H4B···Fe12.6900
C7···C1B3.556 (10)H4B···H21i2.2800
C7···C92.289 (6)H5A···C5Aiii2.9200
C7···C3A3.461 (8)H5A···H5Aiii2.5700
C7···C102.308 (5)H5A···C4Aiii3.0700
C7···C4B3.500 (8)H5B···Fe12.7500
C8···C62.275 (6)H5B···H8vi2.4900
C8···C5B3.548 (12)H6···C122.8900
C8···C1B3.264 (11)H6···H122.3100
C8···C102.302 (5)H7···H4Avi2.3700
C8···C4A3.389 (12)H8···H5Bvi2.4900
C8···C2B3.536 (8)H9···C7viii3.0800
C8···C5A3.354 (10)H9···C162.9200
C9···C5A3.344 (10)H9···H162.3400
C9···C1B3.571 (11)H12···C23vii3.1000
C9···C112.594 (5)H12···C62.7200
C9···C1A3.354 (9)H12···H62.3100
C9···C62.287 (6)H12···C22vii2.9600
C9···C3B3.560 (13)H13···C23vii3.0600
C9···C2B3.255 (9)H13···C172.8400
C9···C72.289 (6)H13···C17vii3.0500
C10···C72.308 (5)H13···O12.4800
C10···C3B3.258 (11)H13···C18vii3.0000
C10···C82.302 (5)H15···C19ii3.0500
C10···C2B3.547 (9)H15···C12viii2.8700
C10···C2A3.418 (9)H15···H12.4700
C10···C1A3.399 (8)H15···C13viii2.9100
C12···Fe14.001 (4)H16···C92.7500
C12···C22i3.433 (4)H16···H92.3400
C13···C22i3.496 (4)H16···C10viii3.0500
C13···O12.926 (4)H19···C15i3.0100
C15···C19ii3.375 (5)H19···C14iv3.0800
C16···Fe14.022 (3)H19···O12.6000
C19···C15i3.375 (5)H20···C15iv3.0400
C22···C12ii3.433 (4)H20···C16iv3.0900
C22···C13ii3.496 (4)H20···H3Biv2.5800
C23···O1ii3.180 (4)H21···C3Biv2.9800
C1A···H2A2.1100H21···H3Biv2.2800
C1A···H5A2.1100H21···C2Aiv3.0700
C1B···H5B2.1100H21···H2Aii2.5400
C1B···H2B2.1100H21···C4Bii3.0900
C1B···H1Biii2.9100H21···H4Bii2.2800
C2A···H21iv3.0700H22···C12ii2.9400
C2A···H1A2.1100H22···H2Aii2.2600
C2A···H3A2.1100H22···H3Bii2.5600
C2B···H1B2.1100H22···C20v2.9900
C2B···H3B2.1100H22···C21v3.0300
C3A···H2A2.1100H23···N12.6900
C3A···H4A2.1100H23···H12.2100
C3B···H2B2.1100H23···O1ii2.5000
C1A—Fe1—C2A39.7 (3)Fe1—C4B—C5B71.4 (6)
C1A—Fe1—C3A67.3 (3)Fe1—C5A—C4A69.1 (5)
C1A—Fe1—C4A67.7 (4)C1A—C5A—C4A108.0 (7)
C1A—Fe1—C5A40.1 (4)Fe1—C5A—C1A71.2 (5)
C1A—Fe1—C6139.9 (3)Fe1—C5B—C1B68.7 (6)
C1A—Fe1—C7177.0 (3)Fe1—C5B—C4B68.1 (5)
C1A—Fe1—C8136.8 (3)C1B—C5B—C4B108.0 (7)
C1A—Fe1—C9108.8 (3)Fe1—C6—C769.4 (2)
C1A—Fe1—C10110.1 (3)C7—C6—C10108.8 (3)
C2A—Fe1—C3A40.0 (4)Fe1—C6—C1070.61 (19)
C2A—Fe1—C4A67.6 (3)Fe1—C7—C869.8 (3)
C2A—Fe1—C5A67.3 (3)Fe1—C7—C669.8 (2)
C2A—Fe1—C6114.0 (3)C6—C7—C8107.8 (4)
C2A—Fe1—C7143.2 (3)Fe1—C8—C970.0 (2)
C2A—Fe1—C8176.4 (3)Fe1—C8—C769.9 (2)
C2A—Fe1—C9136.5 (2)C7—C8—C9108.7 (4)
C2A—Fe1—C10110.9 (2)Fe1—C9—C1070.4 (2)
C3A—Fe1—C4A40.5 (4)C8—C9—C10108.0 (3)
C3A—Fe1—C5A67.9 (3)Fe1—C9—C869.2 (2)
C3A—Fe1—C6114.2 (3)Fe1—C10—C668.73 (19)
C3A—Fe1—C7115.5 (3)Fe1—C10—C11127.6 (2)
C3A—Fe1—C8142.6 (3)C6—C10—C9106.7 (3)
C3A—Fe1—C9176.0 (3)Fe1—C10—C968.8 (2)
C3A—Fe1—C10139.2 (3)C9—C10—C11126.6 (3)
C4A—Fe1—C5A40.6 (4)C6—C10—C11126.7 (3)
C4A—Fe1—C6141.2 (3)C10—C11—C12121.5 (3)
C4A—Fe1—C7113.4 (3)C10—C11—C16122.1 (3)
C4A—Fe1—C8112.9 (3)C12—C11—C16116.4 (3)
C4A—Fe1—C9139.3 (3)C11—C12—C13122.5 (3)
C4A—Fe1—C10177.8 (3)C12—C13—C14120.5 (3)
C5A—Fe1—C6177.9 (2)C13—C14—C15117.9 (3)
C5A—Fe1—C7139.0 (3)N1—C14—C15119.4 (3)
C5A—Fe1—C8110.5 (3)N1—C14—C13122.6 (3)
C5A—Fe1—C9109.6 (2)C14—C15—C16121.1 (3)
C5A—Fe1—C10137.6 (3)C11—C16—C15121.7 (3)
C6—Fe1—C740.81 (15)O1—C17—N1122.4 (3)
C6—Fe1—C868.11 (17)O1—C17—C18120.8 (3)
C6—Fe1—C968.32 (16)N1—C17—C18116.8 (3)
C6—Fe1—C1040.66 (14)C17—C18—C19118.1 (3)
C1B—Fe1—C6158.5 (3)C19—C18—C23119.0 (3)
C2B—Fe1—C6158.7 (4)C17—C18—C23122.9 (3)
C3B—Fe1—C6121.3 (2)C18—C19—C20120.6 (4)
C4B—Fe1—C6106.5 (3)C19—C20—C21120.2 (4)
C5B—Fe1—C6122.6 (2)C20—C21—C22119.5 (3)
C7—Fe1—C840.32 (18)C21—C22—C23120.7 (3)
C7—Fe1—C968.47 (17)C18—C23—C22120.1 (3)
C7—Fe1—C1068.72 (15)Fe1—C1A—H1A127.00
C1B—Fe1—C7121.8 (3)C2A—C1A—H1A126.00
C2B—Fe1—C7159.4 (4)C5A—C1A—H1A126.00
C3B—Fe1—C7156.2 (3)C5B—C1B—H1B126.00
C4B—Fe1—C7119.4 (2)Fe1—C1B—H1B128.00
C5B—Fe1—C7105.3 (2)C2B—C1B—H1B126.00
C8—Fe1—C940.79 (16)Fe1—C2A—H2A127.00
C8—Fe1—C1068.55 (15)C1A—C2A—H2A126.00
C1B—Fe1—C8106.7 (3)C3A—C2A—H2A126.00
C2B—Fe1—C8124.0 (3)C3B—C2B—H2B126.00
C3B—Fe1—C8162.4 (4)Fe1—C2B—H2B125.00
C4B—Fe1—C8154.6 (3)C1B—C2B—H2B126.00
C5B—Fe1—C8120.0 (3)Fe1—C3A—H3A126.00
C9—Fe1—C1040.80 (14)C2A—C3A—H3A126.00
C1B—Fe1—C9122.2 (3)C4A—C3A—H3A126.00
C2B—Fe1—C9108.3 (3)Fe1—C3B—H3B125.00
C3B—Fe1—C9125.4 (4)C4B—C3B—H3B126.00
C4B—Fe1—C9162.4 (4)C2B—C3B—H3B126.00
C5B—Fe1—C9156.5 (3)C3A—C4A—H4A126.00
C1B—Fe1—C10158.9 (3)Fe1—C4A—H4A125.00
C2B—Fe1—C10123.0 (4)C5A—C4A—H4A126.00
C3B—Fe1—C10108.0 (3)Fe1—C4B—H4B127.00
C4B—Fe1—C10124.5 (3)C5B—C4B—H4B126.00
C5B—Fe1—C10160.1 (3)C3B—C4B—H4B126.00
C1B—Fe1—C2B41.4 (5)C1A—C5A—H5A126.00
C1B—Fe1—C3B70.0 (3)Fe1—C5A—H5A125.00
C1B—Fe1—C4B68.8 (4)C4A—C5A—H5A126.00
C1B—Fe1—C5B40.4 (4)Fe1—C5B—H5B129.00
C2B—Fe1—C3B42.2 (4)C4B—C5B—H5B126.00
C2B—Fe1—C4B70.1 (3)C1B—C5B—H5B126.00
C2B—Fe1—C5B69.2 (4)C7—C6—H6126.00
C3B—Fe1—C4B41.7 (4)Fe1—C6—H6126.00
C3B—Fe1—C5B69.4 (4)C10—C6—H6126.00
C4B—Fe1—C5B40.5 (4)C8—C7—H7126.00
C14—N1—C17126.3 (3)Fe1—C7—H7126.00
C17—N1—H1117.00C6—C7—H7126.00
C14—N1—H1117.00C9—C8—H8126.00
Fe1—C1A—C5A68.7 (5)Fe1—C8—H8126.00
C2A—C1A—C5A108.0 (7)C7—C8—H8126.00
Fe1—C1A—C2A70.3 (5)C10—C9—H9126.00
Fe1—C1B—C2B66.9 (5)Fe1—C9—H9126.00
C2B—C1B—C5B108.0 (8)C8—C9—H9126.00
Fe1—C1B—C5B70.9 (5)C13—C12—H12119.00
Fe1—C2A—C3A68.9 (4)C11—C12—H12119.00
C1A—C2A—C3A108.0 (7)C12—C13—H13120.00
Fe1—C2A—C1A69.9 (4)C14—C13—H13120.00
Fe1—C2B—C1B71.7 (4)C14—C15—H15119.00
Fe1—C2B—C3B68.5 (4)C16—C15—H15119.00
C1B—C2B—C3B108.1 (7)C11—C16—H16119.00
Fe1—C3A—C4A68.9 (5)C15—C16—H16119.00
Fe1—C3A—C2A71.1 (5)C18—C19—H19120.00
C2A—C3A—C4A108.0 (7)C20—C19—H19120.00
Fe1—C3B—C2B69.3 (5)C19—C20—H20120.00
Fe1—C3B—C4B71.4 (4)C21—C20—H20120.00
C2B—C3B—C4B107.9 (7)C20—C21—H21120.00
C3A—C4A—C5A108.0 (7)C22—C21—H21120.00
Fe1—C4A—C5A70.3 (5)C21—C22—H22120.00
Fe1—C4A—C3A70.7 (5)C23—C22—H22120.00
C3B—C4B—C5B108.0 (7)C18—C23—H23120.00
Fe1—C4B—C3B67.0 (5)C22—C23—H23120.00
C2A—Fe1—C1A—C5A119.5 (7)C6—Fe1—C8—C981.7 (3)
C3A—Fe1—C1A—C2A37.3 (5)C7—Fe1—C8—C9119.8 (4)
C3A—Fe1—C1A—C5A82.1 (6)C9—Fe1—C8—C7119.8 (4)
C4A—Fe1—C1A—C2A81.3 (5)C10—Fe1—C8—C782.0 (2)
C4A—Fe1—C1A—C5A38.1 (5)C10—Fe1—C8—C937.8 (2)
C5A—Fe1—C1A—C2A119.5 (7)C1A—Fe1—C9—C8141.6 (4)
C6—Fe1—C1A—C2A63.8 (6)C1A—Fe1—C9—C1099.3 (3)
C6—Fe1—C1A—C5A176.8 (4)C2A—Fe1—C9—C8176.3 (4)
C8—Fe1—C1A—C2A178.5 (3)C2A—Fe1—C9—C1064.6 (4)
C8—Fe1—C1A—C5A62.1 (6)C4A—Fe1—C9—C864.2 (5)
C9—Fe1—C1A—C2A142.1 (4)C4A—Fe1—C9—C10176.7 (5)
C9—Fe1—C1A—C5A98.4 (4)C5A—Fe1—C9—C899.0 (4)
C10—Fe1—C1A—C2A98.8 (4)C5A—Fe1—C9—C10141.9 (3)
C10—Fe1—C1A—C5A141.8 (4)C6—Fe1—C9—C881.2 (3)
C1A—Fe1—C2A—C3A119.6 (7)C6—Fe1—C9—C1037.9 (2)
C3A—Fe1—C2A—C1A119.6 (7)C7—Fe1—C9—C837.1 (3)
C4A—Fe1—C2A—C1A81.6 (6)C7—Fe1—C9—C1082.0 (2)
C4A—Fe1—C2A—C3A38.0 (6)C8—Fe1—C9—C10119.1 (3)
C5A—Fe1—C2A—C1A37.5 (5)C10—Fe1—C9—C8119.1 (3)
C5A—Fe1—C2A—C3A82.1 (5)C1A—Fe1—C10—C6145.5 (3)
C6—Fe1—C2A—C1A140.8 (5)C1A—Fe1—C10—C995.8 (3)
C6—Fe1—C2A—C3A99.7 (5)C1A—Fe1—C10—C1124.8 (4)
C7—Fe1—C2A—C1A178.8 (5)C2A—Fe1—C10—C6102.9 (3)
C7—Fe1—C2A—C3A61.7 (6)C2A—Fe1—C10—C9138.3 (3)
C9—Fe1—C2A—C1A57.6 (6)C2A—Fe1—C10—C1117.8 (4)
C9—Fe1—C2A—C3A177.2 (4)C3A—Fe1—C10—C667.3 (4)
C10—Fe1—C2A—C1A96.8 (5)C3A—Fe1—C10—C9173.9 (4)
C10—Fe1—C2A—C3A143.7 (5)C3A—Fe1—C10—C1153.4 (5)
C1A—Fe1—C3A—C2A37.1 (5)C5A—Fe1—C10—C6178.3 (4)
C1A—Fe1—C3A—C4A81.8 (6)C5A—Fe1—C10—C959.5 (4)
C2A—Fe1—C3A—C4A118.9 (7)C5A—Fe1—C10—C1161.0 (5)
C4A—Fe1—C3A—C2A118.9 (7)C6—Fe1—C10—C9118.8 (3)
C5A—Fe1—C3A—C2A80.7 (5)C6—Fe1—C10—C11120.7 (4)
C5A—Fe1—C3A—C4A38.2 (6)C7—Fe1—C10—C637.5 (2)
C6—Fe1—C3A—C2A99.1 (5)C7—Fe1—C10—C981.3 (2)
C6—Fe1—C3A—C4A142.1 (5)C7—Fe1—C10—C11158.2 (3)
C7—Fe1—C3A—C2A144.2 (4)C8—Fe1—C10—C680.9 (2)
C7—Fe1—C3A—C4A96.9 (5)C8—Fe1—C10—C937.8 (2)
C8—Fe1—C3A—C2A175.9 (4)C8—Fe1—C10—C11158.4 (3)
C8—Fe1—C3A—C4A57.0 (7)C9—Fe1—C10—C6118.8 (3)
C10—Fe1—C3A—C2A57.8 (6)C9—Fe1—C10—C11120.5 (4)
C10—Fe1—C3A—C4A176.7 (5)C17—N1—C14—C1337.2 (5)
C1A—Fe1—C4A—C3A80.6 (6)C17—N1—C14—C15145.1 (3)
C1A—Fe1—C4A—C5A37.7 (5)C14—N1—C17—O10.2 (5)
C2A—Fe1—C4A—C3A37.5 (5)C14—N1—C17—C18178.8 (3)
C2A—Fe1—C4A—C5A80.8 (6)Fe1—C1A—C2A—C3A58.6 (6)
C3A—Fe1—C4A—C5A118.3 (8)C5A—C1A—C2A—Fe158.5 (5)
C5A—Fe1—C4A—C3A118.3 (8)C5A—C1A—C2A—C3A0.0 (9)
C6—Fe1—C4A—C3A63.4 (7)Fe1—C1A—C5A—C4A59.6 (7)
C6—Fe1—C4A—C5A178.3 (4)C2A—C1A—C5A—Fe159.6 (6)
C7—Fe1—C4A—C3A102.4 (5)C2A—C1A—C5A—C4A0.0 (10)
C7—Fe1—C4A—C5A139.3 (5)Fe1—C2A—C3A—C4A59.2 (6)
C8—Fe1—C4A—C3A146.4 (5)C1A—C2A—C3A—Fe159.2 (6)
C8—Fe1—C4A—C5A95.3 (5)C1A—C2A—C3A—C4A0.1 (10)
C9—Fe1—C4A—C3A173.9 (4)Fe1—C3A—C4A—C5A60.6 (7)
C9—Fe1—C4A—C5A55.6 (7)C2A—C3A—C4A—Fe160.6 (6)
C1A—Fe1—C5A—C4A118.6 (7)C2A—C3A—C4A—C5A0.1 (11)
C2A—Fe1—C5A—C1A37.1 (5)Fe1—C4A—C5A—C1A60.9 (6)
C2A—Fe1—C5A—C4A81.5 (5)C3A—C4A—C5A—Fe160.9 (7)
C3A—Fe1—C5A—C1A80.5 (6)C3A—C4A—C5A—C1A0.0 (11)
C3A—Fe1—C5A—C4A38.1 (6)Fe1—C6—C7—C859.7 (3)
C4A—Fe1—C5A—C1A118.6 (7)C10—C6—C7—Fe159.9 (2)
C7—Fe1—C5A—C1A175.6 (4)C10—C6—C7—C80.2 (5)
C7—Fe1—C5A—C4A65.8 (6)Fe1—C6—C10—C958.6 (3)
C8—Fe1—C5A—C1A139.7 (4)Fe1—C6—C10—C11121.8 (3)
C8—Fe1—C5A—C4A101.6 (5)C7—C6—C10—Fe159.1 (3)
C9—Fe1—C5A—C1A96.2 (4)C7—C6—C10—C90.6 (4)
C9—Fe1—C5A—C4A145.2 (5)C7—C6—C10—C11179.1 (3)
C10—Fe1—C5A—C1A59.5 (6)Fe1—C7—C8—C959.4 (3)
C10—Fe1—C5A—C4A178.1 (4)C6—C7—C8—Fe159.7 (3)
C1A—Fe1—C6—C7175.5 (4)C6—C7—C8—C90.2 (5)
C1A—Fe1—C6—C1055.7 (5)Fe1—C8—C9—C1059.9 (3)
C2A—Fe1—C6—C7145.6 (3)C7—C8—C9—Fe159.4 (3)
C2A—Fe1—C6—C1094.6 (3)C7—C8—C9—C100.6 (5)
C3A—Fe1—C6—C7101.6 (4)Fe1—C9—C10—C658.5 (2)
C3A—Fe1—C6—C10138.6 (4)Fe1—C9—C10—C11121.9 (3)
C4A—Fe1—C6—C762.1 (5)C8—C9—C10—Fe159.2 (3)
C4A—Fe1—C6—C10178.2 (4)C8—C9—C10—C60.7 (4)
C7—Fe1—C6—C10119.8 (3)C8—C9—C10—C11179.0 (3)
C8—Fe1—C6—C737.6 (2)Fe1—C10—C11—C1290.0 (4)
C8—Fe1—C6—C1082.1 (2)Fe1—C10—C11—C1691.2 (4)
C9—Fe1—C6—C781.7 (3)C6—C10—C11—C120.2 (5)
C9—Fe1—C6—C1038.0 (2)C6—C10—C11—C16178.5 (3)
C10—Fe1—C6—C7119.8 (3)C9—C10—C11—C12179.7 (3)
C2A—Fe1—C7—C659.4 (4)C9—C10—C11—C161.0 (5)
C2A—Fe1—C7—C8178.3 (4)C10—C11—C12—C13178.2 (3)
C3A—Fe1—C7—C698.2 (4)C16—C11—C12—C130.6 (5)
C3A—Fe1—C7—C8142.9 (4)C10—C11—C16—C15178.1 (3)
C4A—Fe1—C7—C6142.8 (4)C12—C11—C16—C150.7 (5)
C4A—Fe1—C7—C898.3 (4)C11—C12—C13—C140.2 (5)
C5A—Fe1—C7—C6176.9 (4)C12—C13—C14—N1177.7 (3)
C5A—Fe1—C7—C858.0 (4)C12—C13—C14—C150.0 (5)
C6—Fe1—C7—C8118.9 (3)N1—C14—C15—C16177.9 (3)
C8—Fe1—C7—C6118.9 (3)C13—C14—C15—C160.2 (5)
C9—Fe1—C7—C681.3 (3)C14—C15—C16—C110.6 (5)
C9—Fe1—C7—C837.5 (2)O1—C17—C18—C1932.4 (5)
C10—Fe1—C7—C637.4 (2)O1—C17—C18—C23145.5 (3)
C10—Fe1—C7—C881.5 (2)N1—C17—C18—C19148.6 (3)
C1A—Fe1—C8—C7179.0 (4)N1—C17—C18—C2333.5 (5)
C1A—Fe1—C8—C959.2 (5)C17—C18—C19—C20177.5 (3)
C3A—Fe1—C8—C763.6 (5)C23—C18—C19—C200.5 (5)
C3A—Fe1—C8—C9176.6 (4)C17—C18—C23—C22177.0 (3)
C4A—Fe1—C8—C799.8 (4)C19—C18—C23—C221.0 (5)
C4A—Fe1—C8—C9140.4 (4)C18—C19—C20—C210.1 (5)
C5A—Fe1—C8—C7143.6 (3)C19—C20—C21—C220.2 (5)
C5A—Fe1—C8—C996.6 (4)C20—C21—C22—C230.6 (5)
C6—Fe1—C8—C738.1 (2)C21—C22—C23—C181.0 (5)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x, y+1, z+1; (v) x, y+3/2, z1/2; (vi) x+1, y+1, z; (vii) x, y+1, z; (viii) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1ii0.86002.26003.110 (4)172.00
C13—H13···O10.93002.48002.926 (4)109.00
C23—H23···O1ii0.93002.50003.180 (4)130.00
Symmetry code: (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C18H14NO)]
Mr381.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)20.4467 (16), 10.3592 (8), 8.2933 (6)
β (°) 91.996 (3)
V3)1755.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.87
Crystal size (mm)0.32 × 0.14 × 0.08
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.865, 0.931
No. of measured, independent and
observed [I > 2σ(I)] reflections
13450, 3257, 1703
Rint0.074
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.099, 1.00
No. of reflections3257
No. of parameters260
No. of restraints60
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.23

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Fe1—C62.034 (3)Fe1—C92.039 (4)
Fe1—C72.030 (4)Fe1—C102.059 (3)
Fe1—C82.028 (4)
C6—Fe1—C740.81 (15)C7—Fe1—C1068.72 (15)
C6—Fe1—C868.11 (17)C8—Fe1—C940.79 (16)
C6—Fe1—C968.32 (16)C8—Fe1—C1068.55 (15)
C6—Fe1—C1040.66 (14)C9—Fe1—C1040.80 (14)
C7—Fe1—C840.32 (18)C1B—Fe1—C9122.2 (3)
C7—Fe1—C968.47 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.86002.26003.110 (4)172.00
C13—H13···O10.93002.48002.926 (4)109.00
C23—H23···O1i0.93002.50003.180 (4)130.00
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Higher Education Commission, Pakistan, for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFukuzumi, S., Yoshida, Y., Okamoto, K., Imahori, H., Araki, Y. & Ito, O. (2002). J. Am. Chem. Soc. 124, 6794–6795.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationShah, F. U., Akhter, Z., Siddiqi, H. M. & Parvez, M. (2007). Appl. Organomet. Chem. 21, 758–762.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds