organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages o2522-o2523

4-(9-Anthr­yl)-1-(3-bromo­phen­yl)spiro­[azetidine-3,9′-xanthen]-2-one

aDepartment of Physics, Faculty of Arts and Sciences, Cumhuriyet University, 58140 Sivas, Turkey, bDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Chemistry, College of Sciences, Shiraz University, 71454 Shiraz, Iran, and dDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 17 September 2009; accepted 18 September 2009; online 26 September 2009)

In the title mol­ecule, C35H22BrNO2, the four-membered ring of the β-lactam unit is nearly planar [maximum deviation = 0.003 (3) Å] and makes dihedral angles of 87.07 (15), 59.80 (16) and 20.81 (19)°, respectively, with the xanthene system, the anthracene system and the bromo-substituted benzene ring. The mol­ecular conformation is stabilized by weak intra­molecular C—H⋯O and C—H⋯N hydrogen bonds. The crystal structure features weak C—H⋯π inter­actions.

Related literature

For general background to β-lactam anti­biotics, see: Jarrahpour & Khalili (2007[Jarrahpour, A. & Khalili, D. (2007). Tetrahedron. Lett. 48, 7140-7143.]); Landis-Piwowar et al. (2006[Landis-Piwowar, K. R., Chen, D., Cui, Q. C., Minic, V., Becker, F. F., Banik, B. K. & Dou, Q. P. (2006). Int. J. Mol Med. 17, 931-935.]); Palomo et al. (2003[Palomo, C., Aizpurua, J. M., Benito, A., Miranda, J. I., Fratila, R. M., Matute, C., Domercq, M., Gago, F., Martin-Santamaria, S. & Linden, A. (2003). J. Am. Chem. Soc. 125, 16243-16260.]); Skiles & McNeil (1990[Skiles, J. W. & McNeil, D. (1990). Tetrahedron Lett. 31, 7277-7280.]); Wu & Tormos (1997[Wu, G. & Tormos, W. (1997). J. Org. Chem. 62, 6412-6414.]). For related structures, see: Akkurt et al. (2006[Akkurt, M., Karaca, S., Jarrahpour, A. A., Khalili, D. & Büyükgüngör, O. (2006). Acta Cryst. E62, o866-o868.], 2007[Akkurt, M., Yalçın, Ş. P., Jarrahpour, A. A., Nazari, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3729-o3730.]); Akkurt, Jarrahpour et al. (2008[Akkurt, M., Jarrahpour, A., Ebrahimi, E., Gençaslan, M. & Büyükgüngör, O. (2008). Acta Cryst. E64, o2466-o2467.]); Akkurt, Karaca et al. (2008[Akkurt, M., Karaca, S., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2008). Acta Cryst. E64, o902-o903.]); Pınar et al. (2006[Pınar, Ş., Akkurt, M., Jarrahpour, A. A., Khalili, D. & Büyükgüngör, O. (2006). Acta Cryst. E62, o804-o806.]). For geometric analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C35H22BrNO2

  • Mr = 568.44

  • Monoclinic, P 21 /c

  • a = 11.1143 (4) Å

  • b = 19.9412 (5) Å

  • c = 14.0317 (5) Å

  • β = 122.106 (2)°

  • V = 2634.28 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.59 mm−1

  • T = 295 K

  • 0.71 × 0.59 × 0.39 mm

Data collection
  • Stoe IPDS2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.397, Tmax = 0.575

  • 39287 measured reflections

  • 5424 independent reflections

  • 4308 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.122

  • S = 1.08

  • 5424 reflections

  • 352 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.74 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯N1 0.93 2.30 2.968 (4) 128
C31—H31⋯O2 0.93 2.46 3.073 (4) 123
C11—H11⋯Cg2i 0.93 2.75 3.653 (5) 164
C26—H26⋯Cg1i 0.93 2.96 3.616 (4) 129
Symmetry code: (i) -x+1, -y+1, -z. Cg1 and Cg2 are the centroids of the C8–C13 C30–C35 rings, respectively].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The application of spiro-β-lactams in peptidomimetic chemistry is well documented, and relevant examples include the development of constrained β-turn mimetics (Palomo et al., 2003). Also, spiro-β-lactams have received attention in medicinal chemistry owing to their antiviral and antibacterial properties, (Skiles et al., 1990) as well as recognized activity as cholesterol absorption inhibitors (Wu & Tormos, 1997). Syntheses of new spiro-β-lactams have been reported in the literature (Jarrahpour & Khalili, 2007). Persistent but relatively limited research has been devoted to the use of compounds related to polycyclic aromatic hydrocarbons (PAH) asanticancer agents. Banik and co-workers have described the cytotoxicity of a number of new and novel PAH against human cancer cell lines (Landis-Piwowar et al., 2006).

In the title compound (I) (Fig. 1), the β-lactam ring (N1/C15/C16/C29) is essentially planar with a maximum deviation of 0.003 (3) Å for C29 from the mean plane and its bond lengths and angles are comparable with the values in our previously papers (Akkurt, Jarrahpour et al., 2008; Akkurt, Karaca et al., 2008; Akkurt et al., 2006,2007; Pınar et al., 2006). Atom O2 lies almost in the β-lactam plane, with a deviation of -0.032 (2) Å. The dihedral angle between the benzene ring (C30—C35) attached at N1 and the β-lactam ring is 20.81 (19)°.

In the xanthene ring system (O1/C17–C28), attached at C16, the benzene rings (C17–C22) and (C23–C28) are almost planar, forming a dihedral angle of 12.84 (16)° with each other. Its central ring, O1/C16/C17/C22/C23/C28, is not planar, with puckering parameters: QT= 0.198 (3) Å, θ = 99.3 (9)° and ϕ = 6.5 (9)° (Cremer & Pople, 1975). The mean plane of the xanthene ring system forms the dihedral angles of 87.07 (15)°, and 84.80 (13)°, with the β-lactam ring and the benzene ring (C30–C35), respectively.

The anthracene ring system, attached at C15, is almost planar, with maximum deviations of -0.034 (3) Å for C14, 0.032 (3) Å for C13 and 0.031 (4) Å for C1, makes dihedral angle of 59.80 (16)°, 78.58 (13)° and 62.40 (8)°, with the β-lactam, benzene and the mean plane of the xanthene ring system, respectively.

Molecular conformation is stabilized by weak intramolecular C—H···O and C—H···N hydrogen bonds. The crystal packing is stabilized by two weak C—H···π interactions [Table 1; Cg1 and Cg2 refer to the ring centroids of the rings (C8–C13) and (C30–C35), respectively]. Fig. 2 shows a view down the a axis of the crystal packing of compound (I).

Related literature top

For general background to β-lactam antibiotics, see: Jarrahpour & Khalili (2007); Landis-Piwowar et al. (2006); Palomo et al. (2003); Skiles & McNeil (1990); Wu & Tormos (1997). For related structures, see: Akkurt et al. (2006, 2007); Akkurt, Jarrahpour et al. (2008); Akkurt, Karaca et al. (2008); Pınar et al. (2006). For geometric analysis, see: Cremer & Pople (1975). Cg1 and Cg2 are the centroids of the C8–C13 C30–C35 rings, respectively].

Experimental top

A mixture of (E)-N-(anthracen-10-ylmethylene)-3-bromobenzenamine (0.30 g, 0.83 mmol) and triethylamine (0.42 g, 4.15 mmol), 9H-xanthen-9-carboxylic acid (0.28 g, 1.24 mmol) and tosyl chloride (0.24 g, 1.24 mmol) in CH2Cl2(15 ml) was stirred at room temperature for 24 h. Then it was washed with HCl 1 N (20 ml) and saturated sodiumbicarbonate solution (20 ml), brine (20 ml), dried (Na2SO4) and the solvent was evaporated to give the crude product as an orange crystal which was then purified by recrystallization from ethyl acetate (yield: 55%, m.p.: 495–497 K). IR (KBr, cm-1): 1755 (CO β-lactam). 1H-NMR δ (p.p.m.): 6.18 (s, 1H, H-4), 6.23–8.65 (m, ArH, 21H).13C-NMR δ (p.p.m.): 66.0 (C-3), 75.6 (C-4), 115.7–151.9 (aromatic carbon), 167.7 (CO β-lactam). Analysis calculated for C35H22BrNO2: C 73.95, H 3.90, N 2.46%. Found: C 73.90, H 3.93, N 2.51%.

Refinement top

H atoms were positioned geometrically and refined a riding model, with the C—H = 0.93 and 0.98 Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The title molecular structure, with the atom-numbering scheme and 30% probability displacement ellipsoids
[Figure 2] Fig. 2. A view down the a axis of the packing of (I).
4-(9-Anthryl)-1-(3-bromophenyl)spiro[azetidine-3,9'-xanthen]-2-one top
Crystal data top
C35H22BrNO2F(000) = 1160
Mr = 568.44Dx = 1.433 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 43756 reflections
a = 11.1143 (4) Åθ = 1.7–28.0°
b = 19.9412 (5) ŵ = 1.59 mm1
c = 14.0317 (5) ÅT = 295 K
β = 122.106 (2)°Block, light yellow
V = 2634.28 (16) Å30.71 × 0.59 × 0.39 mm
Z = 4
Data collection top
Stoe IPDS2
diffractometer
5424 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus4308 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.046
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 2.0°
ω scansh = 1313
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 2424
Tmin = 0.397, Tmax = 0.575l = 1717
39287 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0466P)2 + 1.4948P]
where P = (Fo2 + 2Fc2)/3
5424 reflections(Δ/σ)max < 0.001
352 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.74 e Å3
Crystal data top
C35H22BrNO2V = 2634.28 (16) Å3
Mr = 568.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.1143 (4) ŵ = 1.59 mm1
b = 19.9412 (5) ÅT = 295 K
c = 14.0317 (5) Å0.71 × 0.59 × 0.39 mm
β = 122.106 (2)°
Data collection top
Stoe IPDS2
diffractometer
5424 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
4308 reflections with I > 2σ(I)
Tmin = 0.397, Tmax = 0.575Rint = 0.046
39287 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.08Δρmax = 0.52 e Å3
5424 reflectionsΔρmin = 0.74 e Å3
352 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.14849 (5)0.25728 (2)0.18916 (4)0.0883 (2)
O10.9308 (2)0.56016 (12)0.3586 (2)0.0757 (8)
O20.6106 (2)0.40529 (10)0.39082 (18)0.0675 (7)
N10.4500 (2)0.47038 (10)0.23373 (18)0.0475 (7)
C10.3676 (3)0.62105 (14)0.2257 (2)0.0543 (8)
C20.3254 (3)0.58361 (19)0.2902 (3)0.0675 (11)
C30.2423 (4)0.6108 (2)0.3248 (3)0.0878 (14)
C40.1913 (4)0.6773 (3)0.2953 (4)0.1023 (18)
C50.2282 (4)0.7145 (2)0.2365 (4)0.0895 (16)
C60.3177 (3)0.68965 (16)0.1994 (3)0.0668 (10)
C70.3553 (4)0.72966 (16)0.1396 (3)0.0732 (11)
C80.4436 (3)0.70807 (14)0.1049 (2)0.0617 (9)
C90.4806 (4)0.74926 (15)0.0411 (3)0.0798 (13)
C100.5646 (5)0.72759 (18)0.0068 (3)0.0841 (14)
C110.6241 (4)0.66303 (17)0.0374 (3)0.0724 (12)
C120.5919 (3)0.62105 (14)0.0967 (2)0.0562 (9)
C130.4974 (3)0.64013 (13)0.1315 (2)0.0500 (8)
C140.4549 (3)0.59686 (12)0.1883 (2)0.0461 (8)
C150.5078 (3)0.52549 (12)0.1999 (2)0.0429 (7)
C160.6615 (3)0.50414 (12)0.3045 (2)0.0451 (7)
C170.7443 (3)0.55389 (13)0.3976 (2)0.0516 (8)
C180.6972 (4)0.57626 (17)0.4658 (3)0.0684 (11)
C190.7729 (5)0.62392 (19)0.5495 (3)0.0836 (14)
C200.8975 (5)0.64880 (19)0.5662 (3)0.0892 (14)
C210.9491 (4)0.62630 (17)0.5034 (3)0.0784 (11)
C220.8721 (3)0.57905 (14)0.4188 (2)0.0595 (9)
C230.8774 (3)0.50458 (15)0.2907 (2)0.0584 (10)
C240.9551 (4)0.4803 (2)0.2475 (3)0.0804 (14)
C250.9094 (4)0.4251 (2)0.1796 (3)0.0851 (16)
C260.7873 (4)0.39262 (19)0.1543 (3)0.0776 (12)
C270.7097 (3)0.41707 (15)0.1974 (3)0.0610 (10)
C280.7521 (3)0.47399 (13)0.2655 (2)0.0485 (8)
C290.5791 (3)0.45045 (13)0.3248 (2)0.0498 (8)
C300.3212 (3)0.43540 (13)0.1680 (2)0.0460 (8)
C310.3017 (3)0.37439 (13)0.2052 (2)0.0500 (8)
C320.1775 (3)0.33946 (14)0.1364 (3)0.0561 (10)
C330.0742 (3)0.36319 (18)0.0326 (3)0.0667 (11)
C340.0942 (3)0.42442 (19)0.0021 (3)0.0703 (11)
C350.2170 (3)0.46130 (16)0.0651 (2)0.0601 (10)
H20.355400.539400.309000.0810*
H30.218900.585400.368300.1050*
H40.132000.694900.317100.1230*
H50.194900.758400.218700.1070*
H70.319600.773100.121900.0880*
H90.444800.792700.022900.0950*
H100.583900.755000.037100.1010*
H110.686700.648900.016500.0870*
H120.632700.578600.115300.0670*
H150.501700.512800.130100.0520*
H180.613300.559100.455400.0820*
H190.739000.638800.593700.1000*
H200.947200.681300.621000.1070*
H211.035300.642300.516700.0940*
H241.038800.501500.264600.0960*
H250.961800.409300.150200.1020*
H260.757100.354700.108800.0930*
H270.626900.395000.180600.0730*
H310.370600.357400.275100.0600*
H330.007700.338400.013300.0800*
H340.024400.441300.071700.0850*
H350.229100.502900.041300.0720*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0990 (3)0.0679 (2)0.0934 (3)0.0370 (2)0.0481 (2)0.0161 (2)
O10.0685 (14)0.0753 (15)0.0782 (15)0.0261 (11)0.0355 (13)0.0033 (12)
O20.0671 (13)0.0592 (12)0.0570 (12)0.0049 (10)0.0201 (10)0.0178 (10)
N10.0440 (11)0.0440 (11)0.0460 (12)0.0020 (9)0.0182 (10)0.0036 (9)
C10.0395 (13)0.0594 (16)0.0496 (15)0.0022 (11)0.0140 (12)0.0148 (13)
C20.0560 (17)0.082 (2)0.0633 (19)0.0060 (15)0.0310 (16)0.0190 (16)
C30.062 (2)0.126 (3)0.081 (2)0.018 (2)0.0418 (19)0.042 (2)
C40.058 (2)0.139 (4)0.104 (3)0.001 (2)0.039 (2)0.062 (3)
C50.057 (2)0.095 (3)0.092 (3)0.0152 (19)0.023 (2)0.041 (2)
C60.0428 (15)0.0620 (18)0.067 (2)0.0086 (13)0.0099 (14)0.0245 (16)
C70.066 (2)0.0451 (16)0.072 (2)0.0148 (14)0.0120 (17)0.0073 (15)
C80.0629 (17)0.0399 (14)0.0537 (17)0.0027 (12)0.0116 (14)0.0003 (12)
C90.095 (3)0.0402 (16)0.065 (2)0.0026 (15)0.0160 (19)0.0091 (14)
C100.119 (3)0.058 (2)0.065 (2)0.017 (2)0.042 (2)0.0067 (16)
C110.091 (2)0.065 (2)0.063 (2)0.0138 (17)0.0422 (19)0.0021 (16)
C120.0659 (17)0.0474 (15)0.0535 (16)0.0011 (12)0.0305 (14)0.0029 (12)
C130.0519 (14)0.0396 (13)0.0429 (14)0.0033 (11)0.0146 (12)0.0009 (11)
C140.0417 (13)0.0425 (13)0.0392 (13)0.0026 (10)0.0114 (11)0.0028 (10)
C150.0440 (13)0.0397 (12)0.0397 (13)0.0024 (10)0.0186 (11)0.0008 (10)
C160.0416 (13)0.0400 (12)0.0423 (13)0.0007 (10)0.0146 (11)0.0035 (10)
C170.0531 (15)0.0422 (13)0.0418 (14)0.0028 (11)0.0133 (12)0.0013 (11)
C180.0655 (19)0.070 (2)0.0535 (17)0.0061 (15)0.0206 (15)0.0107 (15)
C190.100 (3)0.077 (2)0.0517 (19)0.015 (2)0.0255 (19)0.0099 (17)
C200.109 (3)0.064 (2)0.053 (2)0.014 (2)0.015 (2)0.0081 (16)
C210.079 (2)0.0619 (19)0.0574 (19)0.0243 (17)0.0113 (18)0.0043 (16)
C220.0601 (17)0.0477 (15)0.0503 (16)0.0085 (13)0.0155 (14)0.0069 (12)
C230.0534 (16)0.0610 (17)0.0547 (17)0.0040 (13)0.0247 (14)0.0127 (13)
C240.061 (2)0.106 (3)0.078 (2)0.0084 (19)0.0396 (19)0.022 (2)
C250.081 (3)0.113 (3)0.070 (2)0.037 (2)0.046 (2)0.018 (2)
C260.087 (2)0.077 (2)0.060 (2)0.0271 (19)0.0331 (18)0.0004 (16)
C270.0577 (17)0.0576 (17)0.0567 (17)0.0084 (13)0.0229 (14)0.0045 (13)
C280.0445 (13)0.0453 (13)0.0477 (14)0.0081 (11)0.0191 (12)0.0074 (11)
C290.0524 (15)0.0448 (14)0.0446 (14)0.0014 (11)0.0207 (12)0.0011 (11)
C300.0424 (13)0.0476 (14)0.0470 (14)0.0026 (10)0.0231 (12)0.0064 (11)
C310.0509 (14)0.0525 (15)0.0471 (15)0.0047 (11)0.0263 (12)0.0054 (12)
C320.0595 (17)0.0579 (16)0.0585 (18)0.0134 (13)0.0364 (15)0.0165 (13)
C330.0526 (17)0.087 (2)0.0598 (19)0.0195 (16)0.0294 (15)0.0208 (17)
C340.0510 (17)0.091 (2)0.0540 (18)0.0013 (16)0.0179 (15)0.0008 (17)
C350.0481 (15)0.0654 (18)0.0539 (17)0.0017 (13)0.0184 (13)0.0013 (14)
Geometric parameters (Å, º) top
Br1—C321.895 (3)C23—C241.380 (6)
O1—C221.366 (4)C23—C281.383 (5)
O1—C231.374 (4)C24—C251.365 (5)
O2—C291.203 (3)C25—C261.369 (7)
N1—C151.473 (4)C26—C271.379 (6)
N1—C291.379 (4)C27—C281.395 (4)
N1—C301.408 (4)C30—C311.386 (4)
C1—C21.431 (5)C30—C351.384 (4)
C1—C61.448 (4)C31—C321.381 (5)
C1—C141.411 (5)C32—C331.373 (5)
C2—C31.364 (6)C33—C341.376 (5)
C3—C41.415 (7)C34—C351.387 (5)
C4—C51.326 (7)C2—H20.9300
C5—C61.434 (6)C3—H30.9300
C6—C71.374 (5)C4—H40.9300
C7—C81.376 (6)C5—H50.9300
C8—C91.427 (5)C7—H70.9300
C8—C131.448 (4)C9—H90.9300
C9—C101.330 (7)C10—H100.9300
C10—C111.406 (5)C11—H110.9300
C11—C121.356 (5)C12—H120.9300
C12—C131.425 (5)C15—H150.9800
C13—C141.415 (4)C18—H180.9300
C14—C151.515 (4)C19—H190.9300
C15—C161.609 (4)C20—H200.9300
C16—C171.503 (3)C21—H210.9300
C16—C281.504 (5)C24—H240.9300
C16—C291.531 (4)C25—H250.9300
C17—C181.386 (5)C26—H260.9300
C17—C221.382 (5)C27—H270.9300
C18—C191.393 (5)C31—H310.9300
C19—C201.369 (8)C33—H330.9300
C20—C211.358 (7)C34—H340.9300
C21—C221.396 (4)C35—H350.9300
Br1···C21i3.491 (4)C29···H22.9600
O2···C313.073 (4)C30···H22.7500
O2···H312.4600C30···H11ix3.0500
O2···H7i2.7800C31···H19ii3.1000
O2···H9i2.7700C32···H25vii2.8700
O2···H3ii2.8700C33···H11ix3.0900
N1···C22.968 (4)C33···H25vii2.7100
N1···C273.359 (5)C34···H11ix2.9400
N1···H22.3000C35···H152.9700
N1···H272.8700C35···H11ix2.9300
C1···C183.528 (5)H2···N12.3000
C2···N12.968 (4)H2···C152.8400
C2···C183.514 (6)H2···C292.9600
C2···C303.405 (5)H2···C302.7500
C4···C9iii3.548 (6)H2···H182.5200
C9···C4iv3.548 (6)H3···H24vii2.4100
C12···C163.484 (4)H3···O2ii2.8700
C12···C283.591 (4)H5···H72.4200
C14···C353.525 (4)H7···H52.4200
C14···C183.382 (4)H7···H92.4600
C16···C123.484 (4)H7···O2vi2.7800
C18···C143.382 (4)H9···H72.4600
C18···C23.514 (6)H9···O2vi2.7700
C18···C13.528 (5)H9···C4iv2.9900
C19···C24v3.524 (6)H10···C19iv3.0000
C20···C25v3.371 (5)H11···C30ix3.0500
C20···C24v3.405 (5)H11···C33ix3.0900
C21···C23v3.599 (4)H11···C34ix2.9400
C21···Br1vi3.491 (4)H11···C35ix2.9300
C23···C21v3.599 (4)H12···C152.4900
C24···C20v3.405 (5)H12···C162.9100
C24···C19v3.524 (6)H12···C232.9200
C25···C20v3.371 (5)H12···C282.7500
C27···N13.359 (5)H12···H152.0500
C28···C123.591 (4)H15···C122.5300
C30···C23.405 (5)H15···C272.7500
C31···O23.073 (4)H15···C352.9700
C35···C143.525 (4)H15···H122.0500
C2···H182.8200H15···H352.6000
C3···H24vii2.9200H18···C22.8200
C4···H9iii2.9900H18···C292.7300
C5···H33viii2.9600H18···H22.5200
C6···H33viii3.0700H19···C31ii3.1000
C8···H26ix2.9000H24···C3x2.9200
C9···H31vi3.0800H24···H3x2.4100
C11···H27ix3.0700H25···C32x2.8700
C12···H152.5300H25···C33x2.7100
C13···H26ix3.0400H26···C8ix2.9000
C14···H352.9300H26···C13ix3.0400
C15···H122.4900H27···N12.8700
C15···H273.0000H27···C153.0000
C15···H22.8400H27···C292.6000
C15···H352.7200H27···C11ix3.0700
C16···H122.9100H31···O22.4600
C19···H10iii3.0000H31···C292.7500
C23···H122.9200H31···C9i3.0800
C24···H34ix3.0300H33···C5viii2.9600
C25···H35ix2.9900H33···C6viii3.0700
C27···H152.7500H34···C24ix3.0300
C28···H122.7500H35···C142.9300
C29···H272.6000H35···C152.7200
C29···H182.7300H35···H152.6000
C29···H312.7500H35···C25ix2.9900
C22—O1—C23118.6 (3)O2—C29—C16135.1 (3)
C15—N1—C2995.5 (2)N1—C29—C1693.3 (2)
C15—N1—C30128.6 (2)N1—C30—C31119.8 (2)
C29—N1—C30131.2 (2)N1—C30—C35119.6 (3)
C2—C1—C6116.4 (3)C31—C30—C35120.6 (3)
C2—C1—C14125.3 (3)C30—C31—C32118.6 (3)
C6—C1—C14118.3 (3)Br1—C32—C31118.5 (2)
C1—C2—C3122.0 (3)Br1—C32—C33119.5 (3)
C2—C3—C4120.7 (4)C31—C32—C33122.0 (3)
C3—C4—C5119.9 (5)C32—C33—C34118.7 (3)
C4—C5—C6122.4 (4)C33—C34—C35121.0 (3)
C1—C6—C5118.7 (3)C30—C35—C34119.1 (3)
C1—C6—C7120.3 (3)C1—C2—H2119.00
C5—C6—C7121.1 (3)C3—C2—H2119.00
C6—C7—C8122.7 (3)C2—C3—H3120.00
C7—C8—C9122.6 (3)C4—C3—H3120.00
C7—C8—C13118.4 (3)C3—C4—H4120.00
C9—C8—C13118.9 (3)C5—C4—H4120.00
C8—C9—C10122.1 (3)C4—C5—H5119.00
C9—C10—C11119.6 (4)C6—C5—H5119.00
C10—C11—C12121.2 (4)C6—C7—H7119.00
C11—C12—C13121.9 (3)C8—C7—H7119.00
C8—C13—C12116.1 (3)C8—C9—H9119.00
C8—C13—C14120.0 (3)C10—C9—H9119.00
C12—C13—C14123.9 (3)C9—C10—H10120.00
C1—C14—C13120.2 (2)C11—C10—H10120.00
C1—C14—C15125.8 (3)C10—C11—H11119.00
C13—C14—C15114.0 (3)C12—C11—H11119.00
N1—C15—C14121.6 (3)C11—C12—H12119.00
N1—C15—C1686.68 (19)C13—C12—H12119.00
C14—C15—C16120.7 (2)N1—C15—H15109.00
C15—C16—C17118.7 (2)C14—C15—H15109.00
C15—C16—C28111.4 (2)C16—C15—H15109.00
C15—C16—C2984.5 (2)C17—C18—H18119.00
C17—C16—C28111.2 (3)C19—C18—H18119.00
C17—C16—C29116.8 (2)C18—C19—H19120.00
C28—C16—C29111.8 (2)C20—C19—H19120.00
C16—C17—C18122.1 (3)C19—C20—H20120.00
C16—C17—C22120.8 (3)C21—C20—H20120.00
C18—C17—C22117.2 (3)C20—C21—H21120.00
C17—C18—C19121.4 (4)C22—C21—H21120.00
C18—C19—C20119.6 (5)C23—C24—H24120.00
C19—C20—C21120.5 (4)C25—C24—H24120.00
C20—C21—C22119.7 (4)C24—C25—H25120.00
O1—C22—C17122.7 (2)C26—C25—H25120.00
O1—C22—C21115.7 (3)C25—C26—H26121.00
C17—C22—C21121.6 (3)C27—C26—H26120.00
O1—C23—C24116.6 (3)C26—C27—H27119.00
O1—C23—C28122.6 (3)C28—C27—H27119.00
C24—C23—C28120.9 (3)C30—C31—H31121.00
C23—C24—C25120.1 (4)C32—C31—H31121.00
C24—C25—C26120.8 (4)C32—C33—H33121.00
C25—C26—C27118.9 (3)C34—C33—H33121.00
C26—C27—C28121.7 (4)C33—C34—H34119.00
C16—C28—C23120.6 (2)C35—C34—H34120.00
C16—C28—C27121.8 (3)C30—C35—H35120.00
C23—C28—C27117.5 (3)C34—C35—H35120.00
O2—C29—N1131.5 (3)
C23—O1—C22—C21166.8 (3)C14—C15—C16—C177.2 (4)
C22—O1—C23—C24168.8 (3)N1—C15—C16—C17118.0 (3)
C22—O1—C23—C2811.5 (4)N1—C15—C16—C28110.9 (2)
C23—O1—C22—C1713.8 (4)C14—C15—C16—C29124.8 (3)
C29—N1—C30—C3113.3 (5)C14—C15—C16—C28123.9 (3)
C29—N1—C30—C35164.7 (3)C29—C16—C28—C2733.9 (3)
C29—N1—C15—C160.4 (2)C29—C16—C28—C23150.1 (2)
C15—N1—C30—C3514.9 (5)C15—C16—C28—C2758.7 (3)
C30—N1—C15—C1478.4 (3)C15—C16—C29—O2177.7 (4)
C15—N1—C29—C160.4 (2)C15—C16—C28—C23117.3 (3)
C30—N1—C15—C16157.3 (3)C28—C16—C17—C18164.1 (3)
C29—N1—C15—C14123.9 (2)C28—C16—C17—C2215.6 (3)
C30—N1—C29—C16156.3 (3)C29—C16—C17—C1834.3 (4)
C15—N1—C30—C31163.1 (3)C29—C16—C17—C22145.5 (3)
C15—N1—C29—O2177.8 (3)C15—C16—C17—C1864.6 (4)
C30—N1—C29—O221.1 (5)C17—C16—C28—C2317.7 (3)
C2—C1—C14—C13175.7 (3)C17—C16—C28—C27166.4 (3)
C2—C1—C6—C7178.8 (3)C15—C16—C29—N10.4 (2)
C6—C1—C14—C15175.1 (3)C15—C16—C17—C22115.6 (3)
C14—C1—C6—C5179.6 (3)C28—C16—C29—N1110.5 (2)
C2—C1—C6—C51.5 (5)C28—C16—C29—O266.7 (4)
C14—C1—C6—C70.1 (5)C17—C16—C29—O262.8 (5)
C14—C1—C2—C3179.0 (3)C17—C16—C29—N1119.9 (3)
C6—C1—C14—C133.1 (4)C16—C17—C22—C21178.7 (3)
C6—C1—C2—C30.2 (5)C22—C17—C18—C192.3 (5)
C2—C1—C14—C156.2 (5)C18—C17—C22—O1179.0 (3)
C1—C2—C3—C41.6 (6)C16—C17—C18—C19178.0 (3)
C2—C3—C4—C52.2 (7)C18—C17—C22—C211.6 (4)
C3—C4—C5—C60.9 (7)C16—C17—C22—O10.7 (4)
C4—C5—C6—C11.0 (6)C17—C18—C19—C200.8 (5)
C4—C5—C6—C7179.3 (4)C18—C19—C20—C211.4 (6)
C1—C6—C7—C81.9 (5)C19—C20—C21—C222.1 (5)
C5—C6—C7—C8178.4 (4)C20—C21—C22—C170.6 (5)
C6—C7—C8—C130.8 (5)C20—C21—C22—O1178.9 (3)
C6—C7—C8—C9178.9 (3)O1—C23—C24—C25179.8 (3)
C7—C8—C13—C142.3 (4)C28—C23—C24—C250.5 (5)
C7—C8—C9—C10179.1 (4)O1—C23—C28—C165.1 (4)
C13—C8—C9—C101.1 (5)C24—C23—C28—C16174.6 (3)
C9—C8—C13—C123.7 (4)C24—C23—C28—C271.5 (4)
C7—C8—C13—C12178.1 (3)O1—C23—C28—C27178.8 (3)
C9—C8—C13—C14175.9 (3)C23—C24—C25—C260.7 (6)
C8—C9—C10—C112.5 (6)C24—C25—C26—C270.8 (6)
C9—C10—C11—C123.3 (6)C25—C26—C27—C280.3 (5)
C10—C11—C12—C130.4 (5)C26—C27—C28—C16174.7 (3)
C11—C12—C13—C83.1 (4)C26—C27—C28—C231.4 (5)
C11—C12—C13—C14176.6 (3)N1—C30—C31—C32176.6 (3)
C12—C13—C14—C155.5 (4)C35—C30—C31—C321.3 (5)
C8—C13—C14—C15174.2 (2)N1—C30—C35—C34176.0 (3)
C12—C13—C14—C1176.2 (3)C31—C30—C35—C341.9 (5)
C8—C13—C14—C14.2 (4)C30—C31—C32—Br1178.2 (3)
C1—C14—C15—N111.7 (4)C30—C31—C32—C330.5 (5)
C1—C14—C15—C1694.9 (4)Br1—C32—C33—C34177.0 (3)
C13—C14—C15—C1686.9 (3)C31—C32—C33—C341.7 (6)
C13—C14—C15—N1166.5 (2)C32—C33—C34—C351.1 (6)
N1—C15—C16—C290.37 (19)C33—C34—C35—C300.7 (5)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x, y+3/2, z+1/2; (iv) x, y+3/2, z1/2; (v) x+2, y+1, z+1; (vi) x+1, y+1/2, z+1/2; (vii) x1, y, z; (viii) x, y+1, z; (ix) x+1, y+1, z; (x) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N10.932.302.968 (4)128
C31—H31···O20.932.463.073 (4)123
C11—H11···Cg2ix0.932.753.653 (5)164
C26—H26···Cg1ix0.932.963.616 (4)129
Symmetry code: (ix) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC35H22BrNO2
Mr568.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)11.1143 (4), 19.9412 (5), 14.0317 (5)
β (°) 122.106 (2)
V3)2634.28 (16)
Z4
Radiation typeMo Kα
µ (mm1)1.59
Crystal size (mm)0.71 × 0.59 × 0.39
Data collection
DiffractometerStoe IPDS2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.397, 0.575
No. of measured, independent and
observed [I > 2σ(I)] reflections
39287, 5424, 4308
Rint0.046
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.122, 1.08
No. of reflections5424
No. of parameters352
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.74

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N10.932.302.968 (4)128
C31—H31···O20.932.463.073 (4)123
C11—H11···Cg2i0.932.753.653 (5)164
C26—H26···Cg1i0.932.963.616 (4)129
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS2 diffractometer (purchased under grant F.279 of the University Research Fund). The authors thank the Cumhuriyet University Research Foundation (CUBAP grant No 2009/F-266) for financial support.

References

First citationAkkurt, M., Jarrahpour, A., Ebrahimi, E., Gençaslan, M. & Büyükgüngör, O. (2008). Acta Cryst. E64, o2466–o2467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Karaca, S., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2008). Acta Cryst. E64, o902–o903.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Karaca, S., Jarrahpour, A. A., Khalili, D. & Büyükgüngör, O. (2006). Acta Cryst. E62, o866–o868.  CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Yalçın, Ş. P., Jarrahpour, A. A., Nazari, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3729–o3730.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJarrahpour, A. & Khalili, D. (2007). Tetrahedron. Lett. 48, 7140–7143.  Web of Science CrossRef CAS Google Scholar
First citationLandis-Piwowar, K. R., Chen, D., Cui, Q. C., Minic, V., Becker, F. F., Banik, B. K. & Dou, Q. P. (2006). Int. J. Mol Med. 17, 931–935.  Web of Science PubMed CAS Google Scholar
First citationPalomo, C., Aizpurua, J. M., Benito, A., Miranda, J. I., Fratila, R. M., Matute, C., Domercq, M., Gago, F., Martin-Santamaria, S. & Linden, A. (2003). J. Am. Chem. Soc. 125, 16243–16260.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPınar, Ş., Akkurt, M., Jarrahpour, A. A., Khalili, D. & Büyükgüngör, O. (2006). Acta Cryst. E62, o804–o806.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSkiles, J. W. & McNeil, D. (1990). Tetrahedron Lett. 31, 7277–7280.  CrossRef CAS Web of Science Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWu, G. & Tormos, W. (1997). J. Org. Chem. 62, 6412–6414.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages o2522-o2523
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds